首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
荒漠-湿地生态系统区盐渍土特征及空间变异性   总被引:1,自引:0,他引:1       下载免费PDF全文
敦煌西湖国家级自然保护区地处西北极端干旱区,具有特殊的荒漠-湿地生态系统。土壤盐渍化问题突出且研究程度很低,保护区内的哈拉齐一带甚至为研究空白区。在对保护区进行详细调查以及采样测试的基础上,采用传统统计学与地统计学相结合的方法对0~120 cm深度内的土壤盐分特征及空间变异性进行了研究,填补了该区域的研究空白。研究结果表明:保护区内的土壤含盐量总体呈现随深度增加而降低的趋势,具有明显的表聚性特征;土壤盐渍化类型为中盐土和重盐土,化学类型为硫酸盐—氯化物型以及氯化物—硫酸盐型;土壤含盐量总体表现为中等变异性;受结构性因素主导,土壤含盐量总体呈现出中-强空间相关性;表层土壤含盐量具有明显的空间分布变化规律,总体呈现出西南低,东北高的特征。影响保护区表层土壤含盐量空间变化的自然因素包括极端干旱气候、地下水位埋深、与河流距离、地势条件以及土壤质地类型。研究结果可为该类型区域的土壤盐渍化防治及生态环境保护提供科学依据和参考。  相似文献   

2.
Decades of intensive irrigation of farmlands in the oasis irrigated areas of Xinjiang, Northwest China has caused secondary salinization of vast areas of land since the mid-1980s. Based on the systematic analysis of the monitoring data of hydrology, soil, irrigation and salinity at two different scales in the case of Weigan River Plain Oasis in Xinjiang Province, algorithms derived from hydrosalinity balance principle were developed to estimate the salt mobilization and characteristics; salt and water mobilization and distribution were closely examined both in catchment scale and in field scale. The critical ratio of drainage to irrigation of Weigan River Plain Oasis was estimated to be 9.19%. Furthermore, analysis of the relationship between the two different scaling issues was illustrated. Finally, corresponding countermeasures for secondary soil salinization were proposed according to the different developmental stages and salinization status of water and soil resources.The findings of this paper is helpful in controlling the local hydrology, in limiting or diminishing salinization trends, as well as in providing academic and instructive meaning for the sustainable development of agriculture in oasis irrigation areas.  相似文献   

3.
不同微尺度膜下滴灌棉田土壤水盐空间变异特性   总被引:6,自引:0,他引:6       下载免费PDF全文
为揭示微尺度膜下滴灌农田土壤水盐的空间变异特性,通过大田试验,采用经典统计和地质统计方法,研究了3种微尺度(0.25 m、1 m和4 m)和不同土层深度棉田土壤水盐的空间变异性,并确定其合理取样数。结果发现,3种微尺度下,土壤含水量的变异强度为中等偏弱,其变异性随尺度增大而增强,随深度增加呈先增强后减弱趋势。土壤含盐量的变异强度为中等偏强,其变异性随尺度增大而增强,随深度增大呈先减弱后增强趋势;3种尺度和不同深度条件下,土壤含水量和含盐量的半方差函数大部分可采用高斯模型模拟,且精度较高;样品的合理取样数为367个。研究结果可为制定膜下滴灌土壤水盐的监测方案和调控措施提供理论指导。  相似文献   

4.
An investigation of soil salinization was carried out in the Nanshantaizi area (Northwest China) with WET Sensor. This device can measure such soil parameters as bulk soil electrical conductivity, water content, and the pore water electrical conductivity that are important for soil salinization assessments. A distribution map of soil salinization was produced, and the factors influencing soil salinization and its processes were discussed in detail. The study shows that moderately salinized to salt soils are mainly observed in the alluvial plain, where groundwater level is high and lateral recharge water contains high salinity. Nanshantaizi is covered by slightly salinized soils. The soil salinization distribution estimated by WET Sensor is generally consistent with the actual levels of salinization. Soil salinity in Nanshantaizi is mostly of natural origin and accumulated salts could leach to deeper soils or aquifers by water percolation during irrigation. Groundwater evaporation, groundwater level depth and quality of recharge water are important factors influencing soil salinization in the alluvial plain.  相似文献   

5.
为了研究黄河北矿区土壤盐渍化现状及特征,采用野外调查、钻探、现场采样和室内分析测试等手段获取了土壤盐分含量和地下水特征数据,分析了区内土壤盐分含量、空间分布、垂向变化及与浅层地下水的相互关系。结果显示,研究区土壤主要以潜在盐渍土和轻度盐渍土为主,土壤盐分中阴离子以重碳酸根和硫酸根离子为主,阳离子以钠和钙离子为主。土壤垂向上显示表聚性(0~20 cm),表层盐渍化严重,深部盐渍化程度有所降低。研究区土壤盐渍土与浅层地下水存在内在的自然的直接关系,土壤全盐量与地下水中溶解性总固体(TDS)含量呈明显正相关关系,而与浅层地下水位埋深呈负相关关系。研究区煤炭的开发利用,将加剧和恶化土壤盐渍化程度,煤炭的开采需要合理确定地表塌陷的程度,以此来倒逼煤炭的开采开发模式,从而减缓土壤盐渍化程度。  相似文献   

6.
土壤水作为陆地水循环和水量平衡的一个重要组成部分,在土壤-植被-大气连续体物质与能量转化中起着重要的作用,成为陆面过程研究中的重要参量.选择黄土高原西部的安家坡流域,采用多点长序列观测方法,对该区域土壤水分的时空变化规律进行研究.结果表明:坡向和土地利用类型是小流域土壤水分变异的重要影响因素,得出了不同立地条件下土壤水分的剖面变化与时间的动态规律.在此基础上,利用土壤湿度指数结合主要影响因素预测土壤水分的时空变化,旨在为黄土高原大中尺度的土壤水分模拟提供思路.  相似文献   

7.
电磁感应方法在土壤盐渍化评价中的应用研究   总被引:20,自引:2,他引:20  
本文应用电磁感应方法(大地电导率探测仪EM38),对新疆焉耆盆地的土壤电导率进行了测量,分析了电磁感应方法所得结果和土样分析结果之间的相关关系,证实了电磁感应方法的有效性。基于电磁感应方法测量的结果,对新疆焉耆盆地土壤盐渍化进行了定性评价。结果表明,在开都河上游,土壤盐渍化程度普遍较轻:在中游地带,灌医内的上壤盐渍化改良取得了一定的成效,土壤中的含盐量较低,但是在远离河谷的非灌区,土壤含盐量依然很高;在下游及靠近博斯腾湖的地区,土壤含盐量普遍较高,并有随深度增加而增加的趋势。  相似文献   

8.
基于策勒绿洲78个取样点的地下水埋深、矿化度和pH值的观测资料, 应用遥感、地理信息系统、 空间插值和地质统计学分析的方法对所取数据进行空间变异性分析.结果表明: 1)地下水埋深和pH值服从正态分布, 矿化度服从对数正态分布;2)地下水埋深、矿化度和pH值都具有强烈的空间相关性, 在步长为8 km范围之内, 地下水特征的空间变异是各向同性的, 当步长>8 km时, 四个方向上的半变异函数发生了不同的变化;3)受盆地地形影响, 地下水埋深从南到北变浅, 东部区域埋深最浅, 最小为1.56 m;矿化度分布趋势则是从南到北逐渐增大;pH值高值区发生在绿洲东南部和中北部, pH值高的区域矿化度较低, 而pH值低的区域矿化度较高;4) 绿洲耕地主要分布于地下水位埋深为5~25 m, 且矿化度<2.0 g·L~(-1) 的区域;林地和草地分布于绿洲边缘区, 该区域地下水埋深浅, 平均水位<10 m, 而地下水矿化度较高, >2.0 g·L~(-1) .  相似文献   

9.
利用碎石屏障阻断非饱和带毛细上升为土壤盐渍化改良提供了新思路.为了研究碎石屏障对盐渍化土壤改良的可行性以及碎石层结构和埋深对改良效果的影响,在河套灌区西部杭锦后旗典型盐渍化分布区建立试验地,设置了7组不同碎石屏障处理工艺开展土壤盐渍化改良试验,对试验地40 cm深度的土壤盐分、pH、阳离子交换量、交换性钠百分率等参数进行了为期一年的监测和分析.结果表明,7组不同处理中,埋设深度为60~80 cm,利用颗粒直径为1 cm和3 cm的碎石按上细下粗的结构分两层铺设的处理方法改良效果最佳;从表层到40 cm深,土壤EC值平均下降55.9%.较大的碎石屏障埋深,上细下粗的铺设方式,可提高下层碎石孔隙度,并在非饱和带深处切断毛细管,从而有效降低土壤毛细上升高度,抑制深层土壤中的盐分上移"返盐",改良效果较好.   相似文献   

10.
渤海湾西岸滨海盐渍土的盐渍化特征分析   总被引:4,自引:0,他引:4  
渤海湾西岸滨海盐渍土的盐渍化特征与滨海平原的地面高程、气候条件、盐渍土的理化性状、地下水的矿化度及人类活动等密切相关。就土盐渍化的程度而言,地面高程较高处的土高于地面高程较低处的土,上层土高于下层土。受蒸发和降水影响,地下水位以上土的盐渍化敏感深度为1 m左右。随着气候的变化,滨海盐渍土显现出春季蒸发,上层土积盐;夏季淋洗,土中盐分向下移动的盐渍化特征。随着深度的增加,土的含盐量逐渐减少,至地下水位附近出现轻微增长。从剖面上地表至地下水位间可划分为3个不同聚盐形态和含盐量的土盐渍化程度分区带,即土蒸发浓缩聚盐带、土盐化变动带和土饱水溶盐带;平面上向海岸线方向延伸,土逐渐由非盐渍土变为弱盐渍土、中盐渍土和强盐渍土,含盐量和盐渍化程度也越来越高。地下水位浅和地下水矿化度高,则上层土的盐渍化程度就愈高。  相似文献   

11.
In coastal area, salinization is a common and serious problem for crop cultivation and ecological restoration of degraded wetlands. Therefore, the soil salinity has attracted increasing attention from farmers, government and environmental scientists. The factors controlling the soil salinity distribution have become a hot point in saline soil studies. In this study, statistics and geostatistics were used to explore the distribution of soil salinity in the Yellow River Delta (YRD) based on 150 soil samples that were collected in June 2010. Besides the experimental work, a geographical information system technique was adopted in this study. The results showed that the soil salinity ranged from 0.11 to 10.50 dS m?1 and the salinity in topsoil was higher than that in subsoil in the YRD, indicating that the salt in subsoil moved up and accumulated in topsoil as a function of evaporation. There was a significant difference among soil salinity spatial variances from different soil depths in the YRD. Generally, soil salinity of the topsoil was higher than that of the subsoil. Meanwhile, there were significant positive correlations in soil salinity between different soil depths. In addition, landforms, land uses, soil types and soil texture were important factors affecting soil salinity. The current distribution of soil salinity resulted from the comprehensive effects of anthropogenic activities and natural processes. The present study results suggest that the impacts of human activities were critical factors for salt redistribution in the coastal wetlands, which should be valuable for agricultural management and ecological restoration in the YRD.  相似文献   

12.
通过对一块面积为1hm2麦田内的98个观测点取样分析,测定了两个时期的土壤水分和盐分含量。结果表明两个时期的土壤含水量均服从正态分布,底层盐分均服从对数正态分布,而表层的盐分分布具有不确定性。两个时期土壤水分和盐分的变异系数分别属于弱变异和中等变异强度。通过结构分析,发现两个时期的水分和盐分均在一定范围内存在空间相关性。对两个时期土壤水分和盐分空间分布的动态变化进行了比较,同时采用CoKriging方法进行估值,与Kriging法相比,其估计方差减少百分数最大达到了136.3%。  相似文献   

13.
Rising saline shallow groundwater and associated soil salinization problems are widespread especially in arid and semiarid areas. There have been numerous studies on groundwater-associated salinity, but more information is required on the effects of groundwater frequent and high fluctuations on soil salinization. In the present study, laboratory experiments and numerical simulations using HYDRUS-1D model were carried out for this purpose. The experimental and modeling results showed that groundwater fluctuation caused not only the accumulation of more salt in the soil profile compared to stable groundwater, but also an enhancement of the mechanism. Water table fluctuation induced a much greater spreading of the bromide (Br) tracer within the column than the constant water table. The Br content was on average five orders of magnitude greater under a fluctuating water table than under a constant one. Further, the numerical simulations showed that an increase in the groundwater fluctuation frequency brought about an increase in soil surface salinization under the same evaporation boundary conditions. Additional simulations with HYDRUS-1D were used to study the effects of various management strategies on soil salinization induced by shallow groundwater. Hence, by reducing the evaporation rate through the application of surface mulching, a significant reduction of salt concentration at the soil surface was observed. Moreover, frequent irrigations with small quantities were effective to reduce soil surface salt accumulation induced by saline shallow groundwater.  相似文献   

14.
In the arid irrigated lands, understanding the impact of shallow groundwater fluctuation on soil salinization has become crucial. Thus, investigation of the possible options for maintaining the groundwater depth for improving land productivity is of great importance. In this study, under saline irrigation condition, the effects of shallow groundwater depth on water and salt dynamics in the root-zone of date palms were analyzed through a particular field and modeling (SWAP) investigation in a Tunisian Saharan oasis (Dergine Oasis). The model was calibrated and validated against the measured soil water content through the date palm root-zone. The good agreement between measured and estimated soil water content demonstrated that the SWAP model is an effective tool to accurately simulate the water and salt dynamics in the root-zone of date palm. Multiple groundwater depth scenarios were performed, using the calibrated SWAP model, to achieve the optimal groundwater depth. The simulation results revealed that the shallow groundwater with a depth of ~80 cm coupled with frequent irrigation (20 days interval) during the summer season is the best practice to maintain the adequate soil water content (>0.035 (cm3 cm?3) and safe salinity level (<4 dS m?1) in the root-zone layer. The results of field investigation and numerical simulation in the present study can lead to a better management of lands with shallow water table in the Saharan irrigated areas.  相似文献   

15.
There has been growing interest in the use of reflectance spectroscopy as a rapid and inexpensive tool for soil characterization. In this study, 53 soil samples were collected from the oasis in the Weigan and Kuqa River delta along the middle reaches of Tarim River to investigate the level of soil chemical components in relation to soil spectral. An approach combining spectral technology and multi-variant statistical analysis was used to determine the reflectance spectral features of saline soil. The spectral data was first pretreated to remove noises and absorption bands from water, which eliminated influence from instrument errors and other external background factors. Several spectral absorption features were calculated for several saline soil samples to confirm that soil at the same salinity level had similar absorption spectral properties. Secondly, a correlation relationship between reflectance spectra and salinity factors was estimated by bivariate correlation method. Fourteen salinity factors including eight major ions and soil electrical conductivity (EC), soil salt content (SSC), pH, and total dissolved solid (TDS) in the saline soil were evaluated. Datasets of the salinity factors that correlated significantly with field data measurements of reflectance rate and the corresponding spectrum data were used to construct quantitative regression models. According to the multiple linear regression analysis, SSC, SO4 2?, TDS, and EC had a correlation coefficient at 0.746, 0.908, 0.798, and 0.933 with the raw spectral data, respectively, which confirmed strong correlation between salinity factors and soil reflectance spectrum. Findings from this study will have significant impact on characterization of spectral features of saline soil in oasis in arid land.  相似文献   

16.
In the rocky mountain area of North China, soil fertility has decreased with severe soil and water losses under various land uses. Land use has been proven to affect soil fertility spatial distribution patterns at larger scales. However, less information is available about these effects in field scale plots. Soil samples were collected at 2-m intervals by grid sampling from an area (18?×?18 m) within three land use types (poplar woodland, rotation cropland with peanut and sweet potato, and peach orchard). Soil properties including soil particle composition, soil organic matter, total nitrogen (TN), nitrate nitrogen (NO3 ?-N), total phosphorus (TP), and available phosphorus (AP) were measured for each sample. The spatial variability and spatial pattern of the soil properties were assessed for the three contrasting land use types. NH4 +-N, NO3 ?-N, and AP in the peach orchard and NO3 ?-N in the poplar woodland exhibited strong variation (coefficient of variance >100 %). Other properties showed moderate variations. With annual plowing and fertilization, soil properties in the rotation cropland had less variability and greater spatial autocorrelated ranges. The spatial dependences of sand content, TN, NO3 ?-N, and SWC in both the peach orchard and the rotation cropland were weaker than those in the poplar woodland, but the spatial dependences of TP and AP in the peach orchard were stronger than those in either the rotation cropland or the poplar woodland. Human activities such as plowing, fertilization, and harvesting had obvious effects on the spatial variability and spatial pattern of soil properties.  相似文献   

17.
旱—半干旱高寒地区土壤盐渍化,对区域农牧业发展及地质环境造成较大的影响。本文在西藏扎西康矿集区环境地质调查的基础上,通过对宿麦朗沟盐渍化3处土壤剖面系统采样分析,查明土壤盐分的空间分布及盐渍化成因。结果表明:相同层位土壤电导率与水溶性盐分总量之间呈正相关关系,0~80cm之间,土壤中盐分离子含量变化较大;80cm之下,土壤盐分含量趋于稳定;因子分析进一步揭示,研究区土壤盐分主要由氯离子、钠离子组成,两者之间相关性较强(R2=0.9592);维美组地层以高硅、高钠为特征,三角洲及河流相的沉积环境及地下水活动等共同造成该区域土壤盐渍化。在此基础上,针对性地提出了降低地下水位、定期人工喷淋洗盐及施入有机肥料等方法是干旱区土壤盐渍化防治的有利措施。  相似文献   

18.
盐渍土是江苏沿海地区开发建设需关注的地质环境问题之一。本文系统采集5 m以浅的土样,开展易溶盐试验,研究了江苏沿海盐渍土分布规律、盐渍化程度及影响因素。研究结果表明:全区盐渍土平行于海岸线分布;以中、弱盐渍土为主,强盐渍土零星分布。受沉积环境、气候、水文地质条件、人类活动等共同影响,盐渍化程度空间差异明显。平面上,盐渍化程度呈北强南弱、向海岸线方向延伸有逐渐增强的趋势,强盐渍土分布于连云港黏性土区,岩性、地下水矿化度为主导影响因素。垂向上,表层普遍积盐,连云港地区分带不明显,大丰和南通地区自地表而下可划分为三带,表层土蒸发积盐、中层盐动态变化、下层土饱水盐稳定,地下水位、土体结构为主导影响因素。随着沿海大开发的快速推进,为防止次生盐渍化问题,需关注地面沉降导致的地面高程损失诱发海水入侵加重表层土盐渍化,工程建设中可设置隔离层截断高矿化度地下水的毛细作用。  相似文献   

19.
电磁感应仪EM38用于土壤盐渍剖面分类与评价研究   总被引:9,自引:0,他引:9  
结合电磁感应仪EM38测量与田间采样,文章分析了黄河三角洲典型区域土壤电导率的剖面分布特征,建立了磁感式表观电导率与土壤电导率间的(多元)回归解译模型,探讨了不同分类方法对土壤盐渍剖面分类结果的准确性,并对典型盐渍剖面类型进行了评价。结果表明:研究区土壤盐分具有较强的表聚性与变异强度;土壤电导率与磁感表观电导率EMh、EMv间呈极显著的相关关系,EMh对浅层土壤电导率的解译精度较高,而EMv对深层土壤电导率的解译精度较高;EMv/EMh法和理论函数法对土壤盐渍剖面的分类结果均具有较高的精度,且理论函数法分类结果的准确性明显优于EMv/EMh法;研究区土壤盐渍剖面可划分为表聚型、底聚型与均匀型,在数量上以表聚型及底聚型为主,其中表聚型与均匀型属于积盐型剖面,底聚型属于脱盐型剖面。该结果对研究黄河三角洲地区土壤盐渍化的发生、机理、预测与评估该地区土壤盐渍化的发生、发展具有重要意义。  相似文献   

20.
Desert–oasis ecotone is an interactive area between desert and oasis ecosystems which plays an important role in ensuring oasis ecological security and maintaining oasis internal stabilization. The studied region had experienced dramatic landscape change and soil degradation during the 20th century, especially in the last two decades. To document the status and evaluate this degradation process, geostatistics and GIS map algebra were used to quantify the temporal–spatial changes in landscape pattern and soil degradation from 1983 to 2005. The results showed that: (1) the change of landscape pattern due to human activities was the key reason responsible for the increasing of landscape diversity and fragmentation; (2) the extent of soil degradation was higher near desert ecosystem than oasis, and human activities were the major driving forces in ameliorating the soil properties; and (3) soil degradation is weaker in regions of bad soil quality than regions of good soil quality due to both human activities and natural processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号