首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider the restricted circular three-body problem in which the main bodies have variable masses but the sum of their masses always remains constant. For this problem, we have obtained the possible regions of motions of the small body and the previously unknown surfaces of minimum energy that bound them using the Jacobi quasi-integral. For constant masses, these surfaces transform into the well-known surfaces of zero velocity. We consider the applications of our results to close binary star systems with conservative mass transfer.  相似文献   

2.
The present work is concerned with the two-body problem with varying mass in case of isotropic mass loss from both components of the binary systems. The law of mass variation used gives rise to a perturbed Keplerian problem depending on two small parameters. The problem is treated analytically in the Hamiltonian frame-work and the equations of motion are integrated using the Lie series developed and applied, separately by Delva (1984) and Hanslmeier (1984). A second order theory of the two bodies eject mass is constructed, returning the terms of the rate of change of mass up to second order in the small parameters of the problem.  相似文献   

3.
In the n-body problem a central configuration is formed if the position vector of each particle with respect to the center of mass is a common scalar multiple of its acceleration vector. We consider the problem: given a collinear configuration of four bodies, under what conditions is it possible to choose positive masses which make it central. We know it is always possible to choose three positive masses such that the given three positions with the masses form a central configuration. However for an arbitrary configuration of four bodies, it is not always possible to find positive masses forming a central configuration. In this paper, we establish an expression of four masses depending on the position x and the center of mass u, which gives a central configuration in the collinear four body problem. Specifically we show that there is a compact region in which no central configuration is possible for positive masses. Conversely, for any configuration in the complement of the compact region, it is always possible to choose positive masses to make the configuration central.  相似文献   

4.
The restricted problem of three bodies with variable masses is considered. It is assumed that the infinitesimal body is axisymmetric with constant mass and the finite bodies are spherical with variable masses such that the ratio of their masses remains constant. The motion of the finite bodies are determined by the Gyldén-Meshcherskii problem. It is seen that the collinear, triangular, and coplanar solutions not exist, but these solutions exist when the infinitesimal body be a spherical.  相似文献   

5.
We have two mass points of equal masses m 1=m 2 > 0 moving under Newton’s law of attraction in a non-collision parabolic orbit while their center of mass is at rest. We consider a third mass point, of mass m 3=0, moving on the straight line L perpendicular to the plane of motion of the first two mass points and passing through their center of mass. Since m 3=0, the motion of m 1 and m 2 is not affected by the third and from the symmetry of the motion it is clear that m 3 will remain on the line L. The parabolic restricted three-body problem describes the motion of m 3. Our main result is the characterization of the global flow of this problem.  相似文献   

6.
The restricted 2+2 body problem is considered. The infinitesimal masses are replaced by triaxial rigid bodies and the equations of motion are derived in Lagrange form. Subsequently, the equilibrium solutions for the rotational and translational motion of the bodies are detected. These solutions are conveniently classified in groups according to the several combinations which are possible between the translational equilibria and the constant orientations of the bodies.  相似文献   

7.
We consider the problem of the motion of a zero-mass body in the vicinity of a system of three gravitating bodies forming a central configuration.We study the case where two gravitating bodies of equal mass lie on the same straight line and rotate around the central body with the same angular velocity. Equations for calculating the equilibrium positions in this system have been derived. The stability of the equilibrium points for a system of three gravitating bodies is investigated. We show that, as in the case of libration points for two bodies, the collinear points are unstable; for the triangular points, there exists a ratio of the mass of the central body to the masses of the extreme bodies, 11.720349, at which stability is observed.  相似文献   

8.
We consider the problem: given a collinear configuration of n bodies, find the masses which make it central. We prove that for n ≤ 6, each configuration determines a one-parameter family of masses (after normalization of the total mass). The parameter is the center of mass when n is even and the square of the angular velocity of the corresponding circular periodic orbit when n is odd. The result is expected to be true for any n. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The differential equations of motion of the elliptic restricted problem of three bodies with decreasing mass are derived. The mass of the infinitesimal body varies with time. We have applied Jeans' law and the space-time transformation of Meshcherskii. In this problem the space-time transformation is applicable only in the special case whenn=1,k=0,q=1/2. We have applied Nechvile's transformation for the elliptic problem. We find that the equations of motion of our problem differ from that of constant mass only by a small perturbing force.  相似文献   

10.
In this paper we have deduced the differential equations of motion of the restricted problem of three bodies with decreasing mass, under the assumption that the mass of the satellite varies with respect to time. We have applied Jeans law and the space time transformation contrast to the transformation of Meshcherskii. The space time transformation is applicable only in the special casen=1,k=0,q=1/2. The equations of motion of our problem differ from the equations of motion of the restricted three body problem with constant mass only by small perturbing forces.  相似文献   

11.
We locate members of an important category of periodic orbits in the Newtonian four-body problem. These systems perform an interplay motion similar to that of the periodic three-body orbit discovered by Schubart. Such orbits, when stable, have been shown to be a key feature and influence on the dynamics of few-body systems. We consider the restricted case where the masses are collinear and are distributed symmetrically about their centre of mass. A family of orbits is generated from the known (three-dimensionally) unstable equal masses case by varying the mass ratio, whilst maintaining the symmetry. The stability of these orbits to perturbation is studied using linear stability analysis, analytical approximation of limiting cases and nonlinear simulation. We answer the natural question: are there any stable periodic orbits of this kind? Three ranges of the mass ratio are found to have stable orbits and three ranges have unstable orbits for three-dimensional motion. The systems closely resemble their three-body counterparts. Here the family of interplay orbits is simpler requiring just one parameter to characterise the mass ratio. Our results provide a further insight into three-body orbits studied previously.  相似文献   

12.
We study the motion of an infinitesimal mass point under the gravitational action of three mass points of masses μ, 1–2μ and μ moving under Newton's gravitational law in circular periodic orbits around their center of masses. The three point masses form at any time a collinear central configuration. The body of mass 1–2μ is located at the center of mass. The paper has two main goals. First, to prove the existence of four transversal ejection–collision orbits, and second to show the existence of an uncountable number of invariant punctured tori. Both results are for a given large value of the Jacobi constant and for an arbitrary value of the mass parameter 0<μ≤1/2. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
We consider sets of natural vectorial orbital elements of the Milankovitch type for perturbed Keplerian motion. These elements are closely related to the two vectorial first integrals of the unperturbed two-body problem; namely, the angular momentum vector and the Laplace–Runge–Lenz vector. After a detailed historical discussion of the origin and development of such elements, nonsingular equations for the time variations of these sets of elements under perturbations are established, both in Lagrangian and Gaussian form. After averaging, a compact, elegant, and symmetrical form of secular Milankovitch-like equations is obtained, which reminds of the structure of canonical systems of equations in Hamiltonian mechanics. As an application of this vectorial formulation, we analyze the motion of an object orbiting about a planet (idealized as a point mass moving in a heliocentric elliptical orbit) and subject to solar radiation pressure acceleration (obeying an inverse-square law). We show that the corresponding secular problem is integrable and we give an explicit closed-form solution.  相似文献   

14.
Seeking a possible explanation for recent data indicating a space-time variation of the electron-to-proton mass ratio within the Milky Way, we consider a phenomenological model where the effective fermion masses depend on the local value of the Weyl tensor. We contrast the required values of the model’s free parameters with bounds obtained from modern tests on the violation of the weak equivalence principle and we find that these quantities are incompatible. This result indicates that the variation of nucleon and electron masses through a coupling with the Weyl tensor is not a viable model.  相似文献   

15.
The circular restricted problem of three bodies is investigated analytically with respect to the problem of deriving a second integral of motion besides the well known Jacobian Integral. The second integral is searched for as a correction the angular momentum integral valid in the two body case. A partial differential equation equivalent to the problem is derived and solved approximately by an asymptotic Fourier method assuming either sufficiently small values for the dimensionless mass parameter or sufficiently large distances from the barycentre. The solution of the partial equation then leads to a function of the coordinates, velocities and time being nearly constant, which means that its variation with time is about 40–300 times less than that of the pure angular momentum. By averaging over the remaining fluctuating part of the quasi-integral we are able to integrate the first order equations using a renormalization transformation. This leads to an explicit expression for the approximate solution of the circular problem which describes the motion of the third body orbiting both primaries with nonvanishing initial eccentricity (eccentric planetary type orbits). One of the main results is an explicit formula for the frequency of the perihelion motion of the third body which depends on the mass parameter, the initial distance of the third body from the barycentre and the initial eccentricity. Finally we study orbits of the P-Type, being defined as solutions of the restricted problem with circular initial conditions (vanishing initial eccentricity).  相似文献   

16.
We consider Hill's lunar problem as a perturbation of the integrable two-body problem. For this we avoid the usual normalization in which the angular velocity of the rotating frame of reference is put equal to unity and consider as the perturbation parameter. We first express the Hamiltonian H of Hill's lunar problem in the Delaunay variables. More precisely we deduce the expressions of H along the orbits of the two-body problem. Afterwards with the help of the conserved quantities of the planar two-body problem (energy, angular momentum and Laplace–Runge–Lenz vector) we prove that Hill's lunar problem does not possess a second integral of motion, independent of H, in the sense that there exist no analytic continuation of integrals, which are linear functions of in the rotating two-body problem. In connection with the proof of this main result we give a further restrictive statement to the nonintegrability of Hill's lunar problem.  相似文献   

17.
In this paper we consider a restricted equilateral four-body problem where a particle of negligible mass is moving under the Newtonian gravitational attraction of three masses (called primaries) which move on circular orbits around their center of masses such that their configuration is always an equilateral triangle (Lagrangian configuration). We consider the case of two bodies of equal masses, which in adimensional units is the parameter of the problem. We study numerically the existence of families of unstable periodic orbits, whose invariant stable and unstable manifolds are responsible for the existence of homoclinic and heteroclinic connections, as well as of transit orbits traveling from and to different regions. We explore, for three different values of the mass parameter, what kind of transits and energy levels exist for which there are orbits with prescribed itineraries visiting the neighborhood of different primaries.  相似文献   

18.
An appropriate generalization of the Jacobi equation of motion for the polar moment of inertia I is considered in order to study the N-body problem with variable masses. Two coupled ordinary differential equations governing the evolution of I and the total energy E are obtained. A regularization scheme for this system of differential equations is provided. We compute some illustrative numerical examples, and discuss an average method for obtaining approximate analytical solutions to this pair of equations. For a particular law of mass loss we also obtain exact analytical solutions. The application of these ideas to other kind of perturbed gravitational N-body systems involving drag forces or a different type of mass variation is also considered. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
We attempt to derive the conditions for which the motion of a system of two deformable (fluid or not) bodies can be reduced to the well-known two-body problem. The new condition is discussed for some pairs of such bodies existing in the natural world.  相似文献   

20.
We intend to present two approximate analytic solutions of the two-body problem with slowly decreasing mass which are obtained through the integration of the Hamilton equations. The law of mass variation used was m = -αn on the first case, and mi = αimin(i); i = 1,2 on the second which gives rise to a perturbed Keplerian problem dependent on one and two small parameters respectively. Practical applications are included. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号