首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gangdese batholith in the southern Lhasa block is a key location for exploring the Tibetan Plateau uplift and exhumation history. We present the new low-temperature thermochronological data from two north–south traverses in the central Gangdese batholith to reveal their cooling histories and corresponding controls. Zircon fission track ages show prominent clusters ranging from 23.7 to 51.6 Ma, apatite fission track ages from 9.4 to 36.9 Ma, apatite (U–Th)/He ages between 9.5 and 12.3 Ma, and one zircon (U–Th)/He age around 77.8 Ma. These new data and thermal modeling, in combination with the regional geological data, suggest that the distinct parts of Gangdese batholith underwent different cooling histories resulted from various dynamic mechanisms. The Late Eocene–Early Oligocene exhumation of northern Gangdese batholith, coeval with the magmatic gap, might be triggered by crust thickening followed by the breakoff of Neotethyan slab, while this stage of exhumation in southern Gangdese batholith cannot be clearly elucidated probably because the most of plutonic rocks with the information of this cooling event were eroded away. Since then, the northern Gangdese batholith experienced a slow and stable exhumation, while the southern Gangdese batholith underwent two more stages of exhumation. The Late Oligocene–Early Miocene rapid cooling might be a response to denudation caused by the Gangdese Thrust or related to the regional uplift and exhumation in extensional background. By the early Miocene, the rapid exhumation was associated with localized river incision or intensification of Asian monsoon, or north–south normal fault.  相似文献   

2.
A combination of four thermochronometers [zircon fission track (ZFT), zircon (U–Th)/He (ZHe), apatite fission track (AFT) and apatite (U–Th–[Sm])/He (AHe) dating methods] applied to a valley to ridge transect is used to resolve the issues of metamorphic, exhumation and topographic evolution of the Nízke Tatry Mts. in the Western Carpathians. The ZFT ages of 132.1 ± 8.3, 155.1 ± 12.9, 146.8 ± 8.6 and 144.9 ± 11.0 Ma show that Variscan crystalline basement of the Nízke Tatry Mts. was heated to temperatures >210°C during the Mesozoic and experienced a low-grade Alpine metamorphic overprint. ZHe and AFT ages, clustering at ~55–40 and ~45–40 Ma, respectively, revealed a rapid Eocene cooling event, documenting erosional and/or tectonic exhumation related to the collapse of the Carpathian orogenic wedge. This is the first evidence that exhumation of crystalline cores in the Western Carpathians took place in the Eocene and not in the Cretaceous as traditionally believed. Bimodal AFT length distributions, Early Miocene AHe ages and thermal modelling results suggest that the samples were heated to temperatures of ~55–90°C during Oligocene–Miocene times. This thermal event may be related either to the Oligocene/Miocene sedimentary burial, or Miocene magmatic activity and increased heat flow. This finding supports the concept of thermal instability of the Carpathian crystalline bodies during the post-Eocene period.  相似文献   

3.
Apatite fission-track analysis performed on eighteen Mesozoic sediment samples of the Neuquén Basin from the Southern Central Andes orogenic front between 35°30′ and 37°S has revealed Campanian-Paleocene (75-55 Ma), late Eocene-early Oligocene (35-30 Ma) and middle Miocene (15-10 Ma) cooling episodes. Each cooling episode corresponds closely with major unconformities observed in the preserved sedimentary sequences, and is associated with kilometer-scale additional burial and subsequent exhumation. A similar degree of cooling is inferred from associated vitrinite reflectance data. Late Eocene-early Oligocene exhumation is recognized only near the eastern orogenic front adjacent to the foreland in the southernmost part of the study area and may be related partly to within-plate magmatism and associated extension in the Palaoco Basin. The Campanian-Paleocene and middle Miocene cooling episodes are recognized more widely in the fold and thrust belt and appear to coincide with periods of eastward arc expansion and mountain building processes.  相似文献   

4.
 This integrated study of the sedimentology, magnetostratigraphic chronology and petrography of the mostly continental clastics of the Oligocene to Miocene Swiss Molasse Basin underpins a reconstruction of facies architecture and delineates relationships between the depositional evolution of a foreland-basin margin and exhumation phases and orogenic events in the adjacent orogen. A biostratigraphically based high-resolution magnetostratigraphy provides a detailed temporal framework and covers nearly the whole stratigraphic record of the Molasse Basin (31.5–13 Ma). Three transverse alluvial fan systems evolved at the southern basin margin. They are characterized by distinct petrographic compositions and document the exhumation and denudation history of the growing eastern Swiss Alps. Enhanced northward propagation of the orogenic wedge is interpreted to have occurred between 31.5 and 26 Ma. During the period 24–19 Ma, intense in-sequence and out-of-sequence thrusting took place as Molasse strata were accreted to the orogenic wedge. A third active tectonic phase, possibly caused by backthrusting of the Plateau Molasse, probably occurred between ca. 15 and 13 Ma. Fan head migration between 31.5 and 13 Ma is probably controlled by the structural evolution of the thrust front due to Molasse accretion and backthrusting. Received: 11 March 1998 / Accepted: 12 March 1999  相似文献   

5.
The Cretaceous-Eocene Xigaze forearc basin is a crucial data archive for understanding the tectonic history of the Asian continental margin prior to and following collision with India during the early Cenozoic Era. This study reports apatite and zircon(U-Th)/He thermochronologic data from fourteen samples from Albian-Ypresian Xigaze forearc strata to determine the degree and timing of heating(burial) and subsequent cooling(exhumation) of two localities along the Yarlung suture zone(YSZ) near the towns of Saga and Lazi. Thirty-seven individual zircon He ages range from 31.5 ± 0.8 Ma to6.06 ± 0.18 Ma,with the majority of grains yielding ages between 30 Ma and 10 Ma. Twenty apatite He ages range from 12.7 ± 0.5 Ma to 3.9 ± 0.3 Ma,with the majority of grains yielding ages between 9 Ma and 4 Ma. These ages suggest that the Xigaze forearc basin was heated to 140-200 ℃ prior to cooling in Oligocene-Miocene time. Thermal modeling supports this interpretation and shows that the samples were buried to maximum temperatures of ~140-200 0 C by 35-21 Ma, immediately followed by the onset of exhumation. The zircon He and apatite He dataset and thermal modeling results indicate rapid exhumation from ~21 Ma to 15 Ma, and at ~4 Ma. The 21-15 Ma thermochronometric signal appears to be regionally extensive, affecting all the lithotectonic units of the YSZ, and coincides with movement along the north-vergent Great Counter Thrust system. Thrusting, coupled with enhanced erosion possibly related to the paleo-Yarlung River, likely drove Early Miocene cooling of the Xigaze forearc basin.In contrast, the younger phase of rapid exhumation at ~4 Ma was likely driven by enhanced rock uplift in the footwall of north-striking rifts that cross-cut the YSZ.  相似文献   

6.
Independent geochronological and thermal modelling approaches are applied to a biostratigraphically exceptionally well‐controlled borehole, Alcsútdoboz‐3 (Ad‐3), in order to constrain the age of Cenozoic geodynamic events in the western Pannonian Basin and to test the efficacy of the methods for dating volcanic rocks. Apatite fission track and zircon U–Pb data show two volcanic phases of Middle Eocene (43.4–39.0 Ma) and Early Oligocene (32.72 ± 0.15 Ma) age respectively. Apatite (U–Th)/He ages (23.8–14.8 Ma) and independent thermal and subsidence history models reveal a brief period of heating to 55–70 °C at ~17 Ma caused by an increased heat‐flow related to crustal thinning and mantle upwelling. Our results demonstrate that, contrary to common perception, the apatite (U–Th)/He method is likely to record ‘apparent’ or ‘mixed’ ages resulting from subsequent thermal events rather than ‘cooling’ or ‘eruption’ ages directly related to distinct geological events. It follows that a direct conversion of ‘apparent’ or ‘mixed’ (U‐Th)/He ages into cooling, exhumation or erosion rates is incorrect.  相似文献   

7.
Detailed 40Ar/39Ar geochronology on single grains of muscovite was performed in the Variscan Tanneron Massif (SE France) to determine the precise timing of the post-collisional exhumation processes. Thirty-two plateau ages, obtained on metamorphic and magmatic rocks sampled along an east–west transect through the massif, vary from 302 ± 2 to 321 ± 2 Ma, and reveal a heterogeneous exhumation of the lower crust that lasted about 20 Ma during late Carboniferous. In the eastern part of the massif, the closure of the K–Ar isotopic system is at 311–315 Ma, whereas in the middle part of the massif it closes earlier at 317–321 Ma. These cooling paths are likely to be the result of differential exhumation processes of distinct crustal blocks controlled by a major ductile fault, the La Moure fault that separates both domains. In the western part of the massif, the ages decrease from 318 to 303 Ma approaching the Rouet granite, which provides the youngest age at 303.6 ± 1.2 Ma. This age distribution can be explained by the occurrence of a thermal structure spatially associated to the magmatic complex. These ages argue in favour of a cooling of the magmatic body at around 15 Ma after the country rocks in the western Tanneron. The emplacement of the Rouet granite in the core of an antiform is responsible for recrystallization and post-isotopic closure disturbances of the K–Ar chronometer in the muscovite from the host rocks. These new 40Ar/39Ar ages clearly outline that at least two different processes may contribute to the exhumation of the lower crust in the later stage of collision. During the first stage between 320 and 310 Ma, the differential motion of tectonic blocks limited by ductile shear zones controls the post-collisional exhumation. This event could be related to orogen parallel shearing associated with crustal-scale strike-slip faults and regional folding. The final exhumation stages at around 300 Ma take place within the tectonic doming associated to magmatic intrusions in the core of antiformal structures. Local ductile to brittle normal faulting is coeval to Upper Carboniferous intracontinental basins opening.  相似文献   

8.
Thermotectonic history of the Trans-Himalayan Ladakh Batholith in the Kargil area, N. W. India, is inferred from new age data obtained here in conjunction with previously published ages. Fission-track (FT) ages on apatite fall around 20±2 Ma recording cooling through temperatures of ∼100°C and indicating an unroofing of 4 km of the Ladakh Range since the Early Miocene. Coexisting apatite and zircon FT ages from two samples in Kargil show the rocks to have cooled at an average rate of 5–6°C/Ma in the past 40 Ma. Zircon FT ages together with mica K−Ar cooling ages from the Ladakh Batholith cluster around 40–50 Ma, probably indicating an Eocene phase of uplift and erosion that affected the bulk of the batholith after the continental collision of India with the Ladakh arc at 55 Ma. Components of the granitoids in Upper Eocene-Lower Oligocene sediments of the Indus Molasse in Ladakh supports this idea. Three hornblende K−Ar ages of 90 Ma, 55 Ma, and 35 Ma are also reported; these distinctly different ages probably reflect cooling through 500–550°C of three phases of I-type plutonism in Ladakh also evidenced by other available radiometric data: 102 Ma (mid-Cretaceous), 60 Ma (Palaeocene), and 40 Ma (Late Eocene); the last phase being localised sheet injections. The geodynamic implications of the age data for the India-Asia collision are discussed.  相似文献   

9.
The Danish island of Bornholm is located at the southwestern margin of the Fennoscandian Shield, and features exposed Precambrian basement in its northern and central parts. In this paper, we present new U–Pb zircon and titanite ages for granites and orthogneisses from 13 different localities on Bornholm. The crystallization ages of the protolith rocks all fall within the range 1,475–1,445 Ma (weighted average 207Pb/206Pb ages of zircon). Minor age differences, however, may imply a multi-phase emplacement history of the granitoid complex. The presence of occasional inherited zircons (with ages of 1,700–1,800 Ma) indicates that the Bornholm granitoids were influenced by older crustal material. The east–west fabric observed in most of the studied granites and gneisses, presumably originated by deformation in close connection with the magmatism at 1,470–1,450 Ma. Most titanite U–Pb ages fall between 1,450 and 1,430 Ma, reflecting post-magmatic or post-metamorphic cooling. Granitoid magmatism at ca. 1.45 Ga along the southwestern margin of the East European Craton has previously been reported from southern Sweden and Lithuania. The ages obtained in this study indicate that the Bornholm magmatism also was part of this Mesoproterozoic event.  相似文献   

10.
Miocene Intrusives and Lower Cretaceous siliciclastic sedimentary rocks from the Basal Complex in western-Fuerteventura were analyzed with low-temperature thermochronometric methods such as fission-track, and (U–Th–Sm)/He dating, in order to reveal the evolution of the island’s exhumation history. The obtained thermochronometric data yields a very slow rate of cooling in the order of 1.5–3°C/Myr from ~50 to 20 Ma for the Early Cretaceous siliciclastic rocks. These sedimentary units have never been heated significantly above 240°C after deposition and still record the submarine onset of the island’s formation in the Eocene. Intrusive bodies associated with the early Miocene magmatic activity of the central volcanic complex of the island show rapid initial cooling rates of 50–70°C/Myr from ~20 to 14 Ma. Contemporaneous with the intrusions the cooling rate of the Cretaceous sedimentary units increased to 25–35°C/Myr and it is inferred that this increase is associated with enhanced uplift and erosion of the Central Volcanic Complex. After ~14 Ma rates slowed down to 3–6°C/Myr. Palaeosols overlying the sedimentary units are themselves covered by Pliocene basalt flows and reveal that the sedimentary rocks reached the surface before ~5 Ma. The thermochronometric data obtained in this study for central Fuerteventura is difficult to reconcile with the cooling history derived from previously obtained fission-track and K–Ar data from the north-western part of the island. This inconsistency is likely to indicate that the exhumation history of Fuerteventura is more complex and regionally subdivided than previously believed.  相似文献   

11.
We use 369 individual U–Pb zircon ages from 14 granitoid samples collected on five islands in the Cyclades in the Aegean Sea, Greece, for constraining the crystallisation history of I- and S-type plutons above the retreating Hellenic subduction zone. Miocene magmatism in the Cyclades extended over a time span from 17 to 11 Ma. The ages for S-type granites are systematically ~2 million years older than those for I-type granites. Considering plutons individually, the zircon data define age spectra ranging from simple and unimodal to complex and multimodal. Seven of the 14 investigated samples yield more than one distinct zircon crystallisation age, with one I-type granodiorite sample from Mykonos Island representing the most complex case with three resolvable age peaks. Two samples from S-type granites on Ikaria appear to have crystallised zircon over 2–3 million years, whereas for the majority of individual samples with multiple zircon age populations the calculated ages deviate by 1–1.5 million years. We interpret our age data to reflect a protracted history involving initial partial melting at deeper lithospheric levels, followed by crystallisation and cooling at shallower crustal levels. Our study corroborates published research arguing that pluton construction is due to incremental emplacement of multiple magma pulses over a few million years. Assuming that multiple age peaks of our 14 samples can indeed serve to quantify time spans for magmatic emplacement, our data suggest that Aegean plutons were constructed over a few million years. Our tectonic interpretation of the U–Pb ages is that the S-type granites resulted from partial melting and migmatisation of the lower crust, possibly starting at ~23 Ma. The I-type granites and associated mafic melts are interpreted to reflect the magmatic arc stage in the Cyclades starting at ~15 Ma.  相似文献   

12.
This review considers the magmatic processes in the Carpathian–Pannonian Region (CPR) from Early Miocene to Recent times, as well as the contemporaneous magmatism at its southern boundary in the Dinaride and Balkans regions. This geodynamic system was controlled by the Cretaceous to Neogene subduction and collision of Africa with Eurasia, especially by Adria that generated the Alps to the north, the Dinaride–Hellenide belt to the east and caused extrusion, collision and inversion tectonics in the CPR. This long-lived subduction system supplied the mantle lithosphere with various subduction components. The CPR contains magmatic rocks of highly diverse compositions (calc-alkaline, K-alkalic, ultrapotassic and Na-alkalic), all generated in response to complex post-collisional tectonic processes. These processes formed extensional basins in response to an interplay of compression and extension within two microplates: ALCAPA and Tisza–Dacia. Competition between the different tectonic processes at both local and regional scales caused variations in the associated magmatism, mainly as a result of extension and differences in the rheological properties and composition of the lithosphere. Extension led to disintegration of the microplates that finally developed into two basin systems: the Pannonian and Transylvanian basins. The southern border of the CPR is edged by the Adria microplate via Sava and Vardar zones that acted as regional transcurrent tectonic areas during Miocene–Recent times.Major, trace element and isotopic data of post-Early Miocene magmatic rocks from the CPR suggest that subduction components were preserved in the lithospheric mantle after the Cretaceous–Miocene subduction and were reactivated especially by extensional tectonic processes that allowed uprise of the asthenosphere. Changes in the composition of the mantle through time support geodynamic scenarios of post-collision and extension processes linked to the evolution of the main blocks and their boundary relations. Weak lithospheric blocks (i.e. ALCAPA and western Tisza) generated the Pannonian basin and the adjacent Styrian, Transdanubian and Z?rand basins which show high rates of vertical movement accompanied by a range of magmatic compositions. Strong lithospheric blocks (i.e. Dacia) were only marginally deformed, where strike–slip faulting was associated with magmatism and extension. At the boundary of Adria and Tisza–Dacia strike–slip tectonics and core complex extension were associated with small volume Miocene magmatism in narrow extensional sedimentary basins or granitoids in core-complex detachment systems along older suture zones (Sava and Vardar) accommodating the extension in the Pannonian basin and afterward Pliocene–Quaternary inversion. Magmas of various compositions appear to have acted as lubricants in a range of tectonic processes.  相似文献   

13.
14.
The Homestake gold deposit, located in the Black Hills, South Dakota, USA, is one of the largest known hydrothermal gold deposits globally, with total mining production exceeding 40 Moz Au. Rhenium–osmium geochronology of ore-associated arsenopyrite and pyrrhotite was performed in an effort to delineate the timing of gold mineralization in relation to known tectonothermal events in the northern Black Hills. Arsenopyrite yields a rhenium–osmium (Re–Os) age of 1,736 ± 8 Ma (mean squared weighted deviation = 1.6), consistent with existing age constraints for gold mineralization, whereas Re–Os pyrrhotite data are highly scattered and do not yield a meaningful mineralization age. This is taken to indicate that the Re–Os arsenopyrite chronometer is robust to at least 400°C, whereas the Re–Os pyrrhotite chronometer is likely disturbed by temperatures of 300–350°C. The Re–Os arsenopyrite age and initial Os ratio (0.28 ± 0.15) are interpreted to indicate that gold was introduced at ca. 1,730 Ma, coincident with the onset of exhumation of crustal blocks and, possibly, the earliest intrusive phases of Harney Peak granite magmatism. New in situ U–Pb monazite analyses from an aplite dike in the east-central Black Hills indicate that granite magmatism was a protracted event, persisting until at least ca. 1,690 Ma.  相似文献   

15.
Eocene to late Miocene magmatism in the central Peruvian high-plain (approx. between Cerro de Pasco and Huancayo; Lats. 10.2–12°S) and east of the Cordillera Occidental is represented by scattered shallow-level intrusions as well as subaerial domes and volcanic deposits. These igneous rocks are calc-alkalic and range from basalt to rhyolite in composition, and many of them are spatially, temporally and, by inference, genetically associated with varied styles of major polymetallic mineralization. Forty-four new 40Ar–39Ar and three U/Pb zircon dates are presented, many for previously undated intrusions. Our new time constraints together with data from the literature now cover most of the Cenozoic igneous rocks of this Andean segment and provide foundation for geodynamic and metallogenetic research.The oldest Cenozoic bodies are of Eocene age and include dacitic domes to the west of Cerro de Pasco with ages ranging from 38.5 to 33.5 Ma. South of the Domo de Yauli structural dome, Eocene igneous rocks occur some 15 km east of the Cordillera Occidental and include a 39.34 ± 0.28 Ma granodioritic intrusion and a 40.14 ± 0.61 Ma rhyolite sill, whereas several diorite stocks were emplaced between 36 and 33 Ma. Eocene mineralization is restricted to the Quicay high-sulfidation epithermal deposit some 10 km to the west of Cerro de Pasco.Igneous activity in the earliest Oligocene was concentrated up to 70 km east of the Cordillera Occidental and is represented by a number of granodioritic intrusions in the Milpo–Atacocha area. Relatively voluminous early Oligocene dacitic to andesitic volcanism gave rise to the Astabamba Formation to the southeast of Domo de Yauli. Some stocks at Milpo and Atacocha generated important Zn–Pb (–Ag) skarn mineralization. After about 29.3 Ma, magmatism ceased throughout the study region. Late Oligocene igneous activity was restricted to andesitic and dacitic volcanic deposits and intrusions around Uchucchacua (approx. 25 Ma) and felsic rocks west of Tarma (21–20 Ma). A relationship between the Oligocene intrusions and polymetallic mineralization at Uchucchacua is possible, but evidence remains inconclusive.Widespread magmatism resumed in the middle Miocene and includes large igneous complexes in the Cordillera Occidental to the south of Domo de Yauli, and smaller scattered intrusive centers to the north thereof. Ore deposits of modest size are widely associated with middle Miocene intrusions along the Cordillera Occidental, north of Domo de Yauli. However, small volcanic centers were also active up to 50 km east of the continental divide and include dacitic dikes and domes, spatially associated with major base and precious metal mineralization at Cerro de Pasco and Colquijirca. Basaltic volcanism (14.54 ± 0.49 Ma) is locally observed in the back-arc domain south of Domo de Yauli approximately 30 km east of the Cordillera Occidental.After about 10 Ma intrusive activity decreased throughout Central Perú and ceased between 6 and 5 Ma. Late Miocene magmatism was locally related to important mineralization including San Cristobal (Domo de Yauli), Huarón and Yauricocha.Overall, there is no evidence for a systematic eastward migration of the magmatic arc through time. The arc broadened in the late Eocene to early Oligocene, and thereafter ceased over wide areas until the early Miocene, when magmatism resumed in a narrow arc. A renewed widening and subsequent cessation of the arc occurred in the late middle and late Miocene. The pattern of magmatism probably reflects two cycles of flattening of the subduction in the Oligocene and late Miocene. Contrasting crustal architecture between areas south and north of Domo de Yauli probably account for the differences in the temporal and aerial distribution of magmatism in these areas.Ore deposits are most abundant between Domo de Yauli and Cerro de Pasco and were generally emplaced in the middle and late Miocene during the transition to flat subduction and prior to cessation of the arc. Eocene to early Oligocene mineralization also occurred, but was restricted to a broad east–west corridor from Uchucchacua to Milpo–Atacocha, indicating a major upper-plate metallogenetic control.  相似文献   

16.
The Rodna Mountains afford the most internal structural window into the crystalline units of the Eastern Carpathians in Romania. The Rodna Mountains consist of Variscan metamorphic nappes that were restacked in the Alpine phase of Carpathian development forming the Subbucovinian and Infrabucovinian nappes. In order to evaluate age of deformation, ten samples were taken from the zone of greenschist facies mylonitic schist that marks the Alpine tectonic boundary between the Subbucovinian and Infrabucovinian nappes and 40Ar/39Ar laser single-grain ages determined for schistosity-forming muscovite. Microstructural assessment of quartz and muscovite distinguished two deformation events. Single-grain ages from the microstructurally most strongly reworked samples (four samples) give a tight clustering of ages at ca. 95 Ma. The least reworked schists have a broader clustering of ages spanning ca. 200–280 Ma with a late Permian peak and some samples showing outlier ages in the range 200–100 Ma. The relative development of the outliers, which correlates with evidence for increased microstructural reworking, is interpreted to mark progressive isotopic resetting. The ca. 95 Ma ages for the most reworked schists are estimates for the age of the Alpine nappe stacking. The ca. 200–280 Ma ages are similar to those of magmatism, metamorphism, and sedimentation thought to mark post-Variscan-pre-Alpine rifting and ocean basin formation in parts of the Alps and may be the thermal imprint of a related event in the Eastern Carpathians.  相似文献   

17.
Multi‐method thermochronology along the Vakhsh‐Surkhob fault zone reveals the thermotectonic history of the South Tian Shan–Pamirs boundary. Apatite U/Pb analyses yield a consistent age of 251 ± 2 Ma, corresponding to cooling below ~550–350°C, related to the final closure of the Palaeo‐Asian Ocean and contemporaneous magmatism in the South Tian Shan. Zircon (U–Th–Sm)/He ages constrain cooling below ~180°C to the end of the Triassic (~200 Ma), likely related either to deformation induced by the Qiangtang collision or to the closure of the Rushan Ocean. Apatite fission track thermochronology reveals two low‐temperature (<120°C) thermal events at ~25 Ma and ~10 Ma, which may be correlated with tectonic activity at the distant southern Eurasian margin. The late Miocene cooling is confirmed by apatite (U–Th–Sm)/He data and marks the onset of mountain building within the South Tian Shan that is ongoing today.  相似文献   

18.
The reworked Pre-Neoproterozoic and juvenile Neoproterozoic terrane of the Western Ethiopian Shield (WES) consists of three N–S trending terranes. These are the western migmatitic gneissic terrane, the central metavolcano sedimentary terrane (CVST) and the eastern migmatitic gneissic terrane. The eastern part of the CVST mostly consists of suture-related ultramafic-metasedimentary complexes, whereas metavolcanics predominate in the western part. Gabbroic to granitic intrusions frequently occur in the CVST and in adjacent areas. New zircon SHRIMP U–Pb ages for two gabbros and three diorites in the Ghimbi-Nedjo region of the WES indicate magmatic crystallization ages. Two pulses of magmatism, at 860–850 and 795–785 Ma, are documented with the former for the first time. The tholeiitic Kemashi diorite and Bikilal-Ghimbi gabbros have oceanic affinities and yield U/Pb zircon ages of 856.3 ± 9.8 and 846.0 ± 7.6 Ma, respectively. The calc-alkaline Gebeya Kemisa pyroxene diorite, and the Senbet Dura hornblende diorite plus the tholeiitic Wayu Meni gabbro, which collectively have arc-back arc characteristics are indistinguishable at ages of 794.3 ± 9.4, 787.7 ± 8.8 and 778.1 ± 6.3 Ma, respectively. Positive εNd (4.5–7.0) and low initial 87Sr/86Sr (0.7029 ± 0.0002) and a mean T DM model age of 0.95 Ga for the Ghimbi-Nedjo region (mean T DM model age of 0.95 Ga for the WES overall) indicate that the magmas were generated from juvenile Neoproterozoic depleted mantle sources, with no discernable involvement of pre-Neoproterozoic continental crust. The occurrence of gabbros and diorites with oceanic tholeiite affinities combined with the new ages suggests that the intrusions were emplaced in the earliest stages of the rifting of Rodinia. This event in the WES led to the development of a passive margin and associated plume-type magmatism at ~855 Ma. The two intrusive groups with differing magma chemistry and ages suggest that the earliest magmatism was tholeiitic and associated with the passive margin system followed by continental breakup to form the Mozambique Ocean. The combination of tholeiitic and calc-alkaline magmatism was related to arc and back-arc basin formation and later terrane accretion (~830–690 Ma).  相似文献   

19.
U–Pb sensitive high resolution ion microprobe mass spectrometer (SHRIMP) ages of zircon, monazite and xenotime crystals from felsic intrusive rocks from the Rio Itapicuru greenstone belt show two development stages between 2,152 and 2,130 Ma, and between 2,130 and 2,080 Ma. The older intrusions yielded ages of 2,152±6 Ma in monazite crystals and 2,155±9 Ma in zircon crystals derived from the Trilhado granodiorite, and ages of 2,130±7 Ma and 2,128±8 Ma in zircon crystals derived from the Teofilândia tonalite. The emplacement age of the syntectonic Ambrósio dome as indicated by a 2,080±2-Ma xenotime age for a granite dyke probably marks the end of the felsic magmatism. This age shows good agreement with the Ar–Ar plateau age of 2,080±5 Ma obtained in hornblendes from an amphibolite and with a U–Pb SHRIMP age of 2,076±10 Ma in detrital zircon crystals from a quartzite, interpreted as the age of the peak of the metamorphism. The predominance of inherited zircons in the syntectonic Ambrósio dome suggests that the basement of the supracrustal rocks was composed of Archaean continental crust with components of 2,937±16, 3,111±13 and 3,162±13 Ma. Ar–Ar plateau ages of 2,050±4 Ma and 2,054±2 Ma on hydrothermal muscovite samples from the Fazenda Brasileiro gold deposit are interpreted as minimum ages for gold mineralisation and close to the true age of gold deposition. The Ar–Ar data indicate that the mineralisation must have occurred less than 30 million years after the peak of the metamorphism, or episodically between 2,080 Ma and 2,050 Ma, during uplift and exhumation of the orogen.Electronic supplementary material Supplementary material is available for this article at  相似文献   

20.
New laser ablation-inductive coupled plasma-mass spectrometry U-Pb analyses on oscillatory-zoned zircon imply Early Miocene crystallization (18.64 ± 0.11 Ma) of the Pohorje pluton at the southeastern margin of the Eastern Alps (northern Slovenia). Inherited zircon cores indicate two crustal sources: a late Variscan magmatic population (~270–290 Ma), and an early Neoproterozoic one (850–900 Ma) with juvenile Hf isotope composition close to that of depleted mantle. Initial εHf of Miocene zircon points to an additional, more juvenile source component of the Miocene magma, which could be either a juvenile Phanerozoic crust or the Miocene mantle. The new U-Pb isotope age of the Pohorje pluton seriously questions its attribution to the Oligocene age ‘Periadriatic’ intrusions. The new data imply a temporal coincidence with 19–15 Ma magmatism in the Pannonian Basin system, more specifically in the Styrian Basin. K-Ar mineral- and whole rock ages from the pluton itself and cogenetic shallow intrusive dacitic rocks (~18–16 Ma), as well as zircon fission track data (17.7–15.6 Ma), gave late Early to early Middle Miocene ages, indicating rapid cooling of the pluton within about 3 Million years. Medium-grade Austroalpine metamorphics north and south of the pluton were reheated and subsequently cooled together. Outcrop- and micro scale structures record deformation of the Pohorje pluton and few related mafic and dacitic dykes under greenschist facies conditions. Part of the solidstate fabrics indicate E–W oriented stretching and vertical thinning, while steeply dipping foliation and NW–SE trending lineation are also present. The E–W oriented lineation is parallel to the direction of subsequent brittle extension, which resulted in normal faulting and tilting of the earlier ductile fabric at around the Early / Middle Miocene boundary; normal faulting was combined with strike-slip faulting. Renewed N–S compression may be related to late Miocene to Quaternary dextral faulting in the area. The documented syn-cooling extensional structures and part of the strike-slip faults can be interpreted as being related to lateral extrusion of the Eastern Alps and/or to back-arc rifting in the Pannonian Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号