首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Siruvani watershed with a surface area of 205.54 km2 (20,554 hectare), forming a part of the Western Ghats in Attapady valley, Kerala, was chosen for testing RUSLE methodology in conjunction with remote sensing and GIS for soil loss prediction and identifying areas with high erosion potential. The RUSLE factors (R, K, LS, C and P) were computed from local rainfall, topographic, soil classification and remote sensing data. This study proved that the integration of soil erosion models with GIS and remote sensing is a simple and effective tool for mapping and quantifying areas and rates of soil erosion for the development of better soil conservation plans. The resultant map of annual soil erosion shows a maximum soil loss of 14.917 t h−1 year−1 and the computations suggest that about only 5.76% (1,184 hectares) of the area comes under the severe soil erosion zone followed by the high-erosion zone (11.50% of the total area). The dominant high soil erosion areas are located in the central and southern portion of the watershed and it is attributed to the shifting cultivation, and forest degradation along with the combined effect of K, LS and C factor. The RUSLE model in combination with GIS and remote sensing techniques also enables the assessment of pixel based soil erosion rate.  相似文献   

2.
Estimation of soil erosion using RUSLE in Caijiamiao watershed,China   总被引:4,自引:1,他引:3  
Jinghu Pan  Yan Wen 《Natural Hazards》2014,71(3):2187-2205
Soil erosion is a serious environmental and production problem in China. In particular, natural conditions and human impact have made the Chinese Loess Plateau particularly prone to intense soil erosion area. To decrease the risk on environmental impacts, there is an increasing demand for sound, and readily applicable techniques for soil conservation planning in this area. This work aims at the assessment of soil erosion and its spatial distribution in hilly Loess Plateau watershed (northwestern China) with a surface area of approximately 416.31 km2. This study was conducted at the Caijiamiao watershed to determine the erosion hazard in the area and target locations for appropriate initiation of conservation measures using the revised universal soil loss equation (RUSLE). The erosion factors of RUSLE were collected and processed through a geographic information system (GIS)-based approach. The soil erosion parameters were evaluated in different ways: The R-factor map was developed from the rainfall data, the K-factor map was obtained from the soil map, the C-factor map was generated based on Landsat-5 Thematic Mapper image and spectral mixture analysis, and a digital elevation model with a spatial resolution of 25 m was derived from topographic map at the scale of 1:50,000 to develop the LS-factor map. Support practice P factor was from terraces that exist on slopes where crops are grown. By integrating the six-factor maps in GIS through pixel-based computing, the spatial distribution of soil loss in the study area was obtained by the RUSLE model. The results showed that spatial average soil erosion at the watershed was 78.78 ton ha?1 year?1 in 2002 and 70.58 ton ha?1 year?1 in 2010, while the estimated sediment yield was found to be 327.96 × 104 and 293.85 × 104 ton, respectively. Soil erosion is serious, respectively, from 15 to 35 of slope degree, elevation area from 1,126 to 1,395 m, in the particular area of soil and water loss prevention. As far as land use is concerned, soil losses are highest in barren land and those in waste grassland areas are second. The results of the study provide useful information for decision maker and planners to take appropriate land management measures in the area. It thus indicates the RUSLE–GIS model is a useful tool for evaluating and mapping soil erosion quantitatively and spatially at a river watershed scale on a cell basis in Chinese Loess Plateau and for planning of conservation practices.  相似文献   

3.
This study was aimed at predicting soil erosion risk in the Buyukcekmece Lake watershed located in the western part of Istanbul, Turkey, by using Revised Universal Soil Loss Equation (RUSLE) model in a GIS framework. The factors used in RUSLE were computed by using different data obtained or produced from meteorological station, soil surveys, topographic maps, and satellite images. The RUSLE factors were represented by raster layers in a GIS environment and then multiplied together to estimate the soil erosion rate in the study area using spatial analyst tool of ArcGIS 9.3. In the study, soil loss rate below 1 t/ha/year was defined as low erosion, while those >10 t/ha/year were defined as severe erosion. The values between low and severe erosion were further classified as slight, moderate, and high erosion areas. The study provided a reliable prediction of soil erosion rates and delineation of erosion-prone areas within the watershed. As the study revealed, soil erosion risk is low in more than half of the study area (54%) with soil loss <1 t/ha/year. Around one-fifth of the study area (19%) has slight erosion risk with values between 1 and 3 t/ha/year. Only 11% of the study area was found to be under high erosion risk with soil loss between 5 and 10 t/ha/year. The severe erosion risk is seen only in 5% of the study area with soil loss more than 10 t/ha/year. As the study revealed, nearly half of the Buyukcekmece Lake watershed requires implementation of effective soil conservation measures to reduce soil erosion risk.  相似文献   

4.
This paper examines the soil loss spatial patterns in the Keiskamma catchment using the GIS-based Sediment Assessment Tool for Effective Erosion Control (SATEEC) to assess the soil erosion risk of the catchment. SATEEC estimates soil loss and sediment yield within river catchments using the Revised Universal Soil Loss Equation (RUSLE) and a spatially distributed sediment delivery ratio. Vegetation cover in protected areas has a significant effect in curtailing soil loss. The effect of rainfall was noted as two pronged, higher rainfall amounts received in the escarpment promote vegetation growth and vigour in the Amatole mountain range which in turn positively provides a protective cover to shield the soil from soil loss. The negative aspect of high rainfall is that it increases the rainfall erosivity. The Keiskamma catchment is predisposed to excessive rates of soil loss due to high soil erodibility, steep slopes, poor conservation practices and low vegetation cover. This soil erosion risk assessment shows that 35% of the catchment is prone to high to extremely high soil losses higher than 25 ton ha−1 year−1 whilst 65% still experience very low to moderate levels of soil loss of less than 25 ton ha−1 year−1. Object based classification highlighted the occurrence of enriched valley infill which flourishes in sediment laden ephemeral stream channels. This occurrence increases gully erosion due to overgrazing within ephemeral stream channels. Measures to curb further degradation in the catchment should thrive to strengthen the role of local institutions in controlling conservation practice.  相似文献   

5.
A simplified regression model is here calibrated on the basis of rainfall data records of Sicily (southern Italy), in order to show the model reliability in assessing the R-factor of the Universal Soil Loss Equation and its revised version (RUSLE) and to provide an estimate of long-term rainfall erosivity at medium-regional scale. The proposed model is a rearrangement of a former simplified model, formulated for the Italian environment, grouping three easily available rainfall variables on various time scales, which has been shown to be more successful than others in reproducing the rainfall erosive power over different locations of Italy. A geostatistical interpolation procedure is then applied for generating the regional long-term erosivity map with associated standard error. Areas with severe erosive rainfalls (from 2,000 up to more than 6,000 MJ mm ha−1 h−1) are pointed out which will correspond to areas suffering from severe soil erosion. Solving the problem of calculating the R-factor value in the RUSLE equation by means of such a simplified model here formulated will allow to predict the related soil loss. Moreover, given the availability of long time-series of concerned rainfall data, it will be possible to analyse the variability of rainfall erosivity within the last 50 years, and to investigate the application of RUSLE or similar soil erosion models with forecasting purposes of soil erosion risk.  相似文献   

6.
Soil erosion is a major environmental problem that threatens the sustainability and productivity of agricultural areas. Assessment and mapping of soil erosion are extremely important in the management and conservation of natural resources. The universal soil loss equation (USLE/RUSLE) is an erosion model that predicts soil loss as a function of soil erodibility (K-factor), as well as topographic, rainfall, cover, and management factors. The traditional approach assumes that one soil erodibility value represents the entire area of each soil series. Therefore, that approach does not account for spatial variability of soil series. This study was carried out to evaluate the use of the sequential Gaussian simulation (SGS) for mapping soil erodibility factor of the USLE/RUSLE methodology. Five hundred and forty-four surface soil samples (0–20 cm) were collected from the study area to determine the soil erodibility. A simulation procedure was carried out on 300 realizations, and histogram and semivariogram of the simulation were compared to the observed values. The results showed that the summary statistics, histogram, and semivariogram of the simulation results were close to the observed values. In contrary to the traditional approach and kriging, 95% confidence interval of the simulated realizations was formed in order to determine uncertainty standard deviation map, and the uncertainty was explained numerically. The SGS produced a more reliable soil erodibility map and it can be more successfully used for monitoring and improving effective strategies to prevent erosion hazards especially to improve site specific management plans.  相似文献   

7.
Soil water erosion (SWE) is an important global hazard that affects food availability through soil degradation, a reduction in crop yield, and agricultural land abandonment. A map of soil erosion susceptibility is a first and vital step in land management and soil conservation. Several machine learning (ML) algorithms optimized using the Grey Wolf Optimizer (GWO) metaheuristic algorithm can be used to accurately map SWE susceptibility. These optimized algorithms include Convolutional Neural Networks (CNN and CNN-GWO), Support Vector Machine (SVM and SVM-GWO), and Group Method of Data Handling (GMDH and GMDH-GWO). Results obtained using these algorithms can be compared with the well-known Revised Universal Soil Loss Equation (RUSLE) empirical model and Extreme Gradient Boosting (XGBoost) ML tree-based models. We apply these methods together with the frequency ratio (FR) model and the Information Gain Ratio (IGR) to determine the relationship between historical SWE data and controlling geo-environmental factors at 116 sites in the Noor-Rood watershed in northern Iran. Fourteen SWE geo-environmental factors are classified in topographical, hydro-climatic, land cover, and geological groups. We next divided the SWE sites into two datasets, one for model training (70% of the samples = 81 locations) and the other for model validation (30% of the samples = 35 locations). Finally the model-generated maps were evaluated using the Area under the Receiver Operating Characteristic (AU-ROC) curve. Our results show that elevation and rainfall erosivity have the greatest influence on SWE, while soil texture and hydrology are less important. The CNN-GWO model (AU-ROC = 0.85) outperformed other models, specifically, and in order, SVR-GWO = GMDH-GWO (AUC = 0.82), CNN = GMDH (AUC = 0.81), SVR = XGBoost (AUC = 0.80), and RULSE. Based on the RUSLE model, soil loss in the Noor-Rood watershed ranges from 0 to 2644 t ha–1yr?1.  相似文献   

8.
The present comparative study is multi-temporal in nature. The Revised Universal Soil Loss Equation (RUSLE), remote sensing, and GIS were used to model the soil loss estimation for soil conservation and vegetation rehabilitation in Nun Nadi watershed for the years 2000 and 2009. The estimated mean soil loss for the year 2000 and 2009 is 3,283.11 and 1,419.39 Mg?ha?1 year?1, respectively. The study finds that about 80 % area has low or least risk of erosion and about 7 % is exposed to high or very high risk which indicates the improvement in terms of soil loss if we compare the data of both the time periods. The findings show that the rainfall, LULC change, and elevation are the main responsible factors for the soil loss in Nun Nadi watershed. Conservation measures have been adopted; however, the problem still remains serious and demands urgent attention.  相似文献   

9.
Soil erosion modeling of a Himalayan watershed using RS and GIS   总被引:5,自引:1,他引:4  
Employing the remote sensing (RS) and geographical information system (GIS), an assessment of sediment yield from Dikrong river basin of Arunachal Pradesh (India) has been presented in this paper. For prediction of soil erosion, the Morgan-Morgan and Finney (MMF) model and the universal soil loss equation (USLE) have been utilized at a spatial grid scale of 100 m × 100 m, an operational unit. The average annual soil loss from the Dikrong river basin is estimated as 75.66 and 57.06 t ha−1 year−1 using MMF and USLE models, respectively. The watershed area falling under the identified very high, severe, and very severe zones of soil erosion need immediate attention for soil conservation.  相似文献   

10.
Soil erosion and associated sedimentation are a threat to the sustainable use of surface water resources through the loss of volume storage capacity and conveyance of pollutants to receiving water bodies. The RUSLE2 empirical model and isotopic sediment core analyses were used to evaluate watershed erosion and reservoir sediment accumulation rates for Lake Anna, in Central Virginia. A sediment flux rate of 66,000 Mg/year was estimated from the upper basin and land use was determined to be the primary factor contributing to soil erosion. Barren lands and agricultural activities were estimated to contribute the most sediment (>20 Mg/ha/year), whereas forested and herbaceous landscapes were less likely to erode (<0.3 Mg/ha/year). Eleven separate 210Pb-based estimates of sediment accumulation were used to construct reservoir-scale sedimentation rates. Sedimentation rates in the upper reaches of the reservoir were variable, ranging from 2.3 to 100 Mg/ha/year, with a median rate of 8.4 Mg/ha/year. Historical sedimentation showed an increase in annual accumulation from 1972 to present. Based on these data the reservoir has experienced a 2% loss of volume storage capacity since impoundment in 1972. Results from this study indicate that Lake Anna is not currently experiencing excessive sedimentation and erosion problems. However, the predominance of highly erosive soils (soil erodibility factor >0.30) within the watershed makes this system highly vulnerable to future anthropogenic stressors.  相似文献   

11.
Water erosion is a serious and continuous environmental problem in many parts of the world. The need to quantify the amount of erosion, sediment delivery, and sediment yield in a spatially distributed form has become essential at the watershed scale and in the implementation of conservation efforts. In this study, an effort to predict potential annual soil loss and sediment yield is conducted by using the Revised Universal Soil Loss Equation (RUSLE) model with adaptation in a geographic information system (GIS). The rainfall erosivity, soil erosivity, slope length, steepness, plant cover, and management practice and conservation support practice factors are among the basic factors that are obtained from monthly and annual rainfall data, soil map of the region, 50-m digital elevation model, remote sensing (RS) techniques (with use of Normalized Difference Vegetation Index), and GIS, respectively. The Ilam dam watershed which is located southeast part of Ilam province in western Iran is considered as study area. The study indicates that the slope length and steepness of the RUSLE model are the most effective factors controlling soil erosion in the region. The mean annual soil loss and sediment yield are also predicted. Moreover, the results indicated that 45.25%, 12.18%, 12.44%, 10.79%, and 19.34% of the study area are under minimal, low, moderate, high, and extreme actual erosion risks, respectively. Since 30.13% of the region is under high and extreme erosion risk, adoption of suitable conservation measures seems to be inevitable. So, the RUSLE model integrated with RS and GIS techniques has a great potential for producing accurate and inexpensive erosion and sediment yield risk maps in Iran.  相似文献   

12.
Quantitative evaluation of the spatial distribution of the erosion risk in any watershed or ecosystem is one of the most important tools for environmentalists, conservationists and engineers to plan natural resource management for the sustainable environment in a long term. This study was performed in the semi-arid catchment of the Saraykoy II Irrigation Dam, Cankiri, located in the transition zone between the Central Anatolia Steppe and the Black Sea Forests of Turkey. The total area of the catchment is 262.31 ha. The principal objectives were to quantify both potential and actual soil erosion risks by the Revised Universal Soil Loss Equation (RUSLE) and to estimate the amount of sediments to be delivered from the hillslope of the catchment to the reservoir of the dam using the sediment delivery ratio (SDR) in combination with the RUSLE model. All factor and sub-factor calculations required for solving the RUSLE model and SDR in the catchment were made spatially using DEM, GIS and Geostatistics. As the main catchment was divided into twenty-five sub-catchments, the predicted actual soil loss (by the model) was 146,657.52 m3 year?1 and the weighted average of SDR estimated by areal distribution (%) of the sub-watersheds was 0.344 for whole catchment, resulted in 50,450.19 m3 year?1 sediment arriving to the reservoir. Since the Dam has a total storage capacity of 509 × 103 m3, the life expectancy of the Dam is estimated as 10.09 year. This estimation indicated that the dam has a relatively short economic life and there is a need for water-catchment management and soil conservation measures to reduce erosion.  相似文献   

13.
Due to the existence of fragile karst geo-ecological environments, such as environments with extremely poor soil cover, low soil-forming velocity, and fragmentized terrain and physiognomy, as well as inappropriate and intensive land use, soil erosion is a serious problem in Guizhou Province, which is located in the centre of the karst areas of southwestern China; evaluation of soil loss and spatial distribution for conservation planning is urgently needed. This study integrated the revised universal soil loss equation (RUSLE) with a GIS to assess soil loss and identify risk erosion areas in the Maotiao River watershed of Guizhou. Current land use/cover and management practices were evaluated to determine their effects on average annual soil loss and future soil conservation practices were discussed. Data used to generate the RUSLE factors included a Landsat Thematic Mapper image (land cover), digitized topographic and soil maps, and precipitation data. The results of the study compare well with the other studies and local data, and provide useful information for decision makers and planners to take appropriate land management measures in the area. It thus indicates the RUSLE–GIS model is a useful tool for evaluating and mapping soil erosion quantitatively and spatially at a larger watershed scale in Guizhou.  相似文献   

14.
The installation of a rural settlement complex in the watershed stream Indaiá has promoted changes in land-use and vegetation cover dynamics; however, the effects of intensive agriculture and cattle farming in rural settlements on soil loss rates are not well known. Predictive models implemented in geographic information systems have proven to be effective tools for estimating erosive processes. The erosion predictive model Revised Universal Soil Loss Equation (RUSLE) is a useful tool for analyzing, establishing and managing soil erosion. RUSLE has been widely used to estimate annual averages of soil loss, by both interrill and rill erosion, worldwide. Therefore, the aim of this work was to estimate the soil loss in the watershed stream Indaiá, using the RUSLE model and geoprocessing techniques. To estimate soil loss, the following factors were spatialized: erosivity (R), erodibility (K), topography (LS), land-use and management (C) and conservation practices (P); the annual soil loss values were calculated using the RUSLE model equation. The estimated value of soil loss in the hydrographic basin ranged from 0 to 4082.16 Mg ha?1 year?1 and had an average value of 47.81 Mg ha?1 year?1. These results have demonstrated that 68.16 % of the study area showed little or no soil loss based on the Food and Agriculture Organization’s (FAO 1980) classification. When comparing the average value of soil loss obtained using the RUSLE model with the Natural Potential for Erosion, a 16-fold reduction in soil was found, which highlighted the fact that vegetation cover (C factor) has a greater influence than other factors (R, K and LS) on soil loss prediction attenuation. These results lead to the conclusion that soil loss occurs by different methods in each settlement in the basin and that erosive processes modeled by geoprocessing have the potential to contribute to an orderly land management process.  相似文献   

15.
Soil erosion is a growing problem in southern Greece and particularly in the island of Crete, the biggest Greek island with great agricultural activity. Soil erosion not only decreases agricultural productivity, but also reduces the water availability. In the current study, an effort to predict potential annual soil loss has been conducted. For the prediction, the Revised Universal Soil Loss Equation (RUSLE) has been adopted in a Geographical Information System framework. The RUSLE factors were calculated (in the form of raster layers) for the nine major watersheds which cover the northern part of the Chania Prefecture. The R-factor was calculated from monthly and annual precipitation data. The K-factor was estimated using soil maps available from the Soil Geographical Data Base of Europe at a scale of 1:1,000,000. The LS-factor was calculated from a 30-m digital elevation model. The C-factor was calculated using Remote Sensing techniques. The P-factor in absence of data was set to 1. The results show that an extended part of the area is undergoing severe erosion. The mean annual soil loss is predicted up to ∼200 (t/ha year−1) for some watersheds showing extended erosion and demanding the attention of local administrators.  相似文献   

16.
In recent times, soil erosion interlocked with land use and land cover (LULC) changes has become one of the most important environmental issues in developing countries. Evaluation of this complex interaction between LULC change and soil erosion is indispensable in land use planning and conservation works. This paper analysed the impact of LULC change on soil erosion in the north-western highland Ethiopia over the period 1986–2016. Rib watershed, the area with dynamic LULC change and severe soil erosion problem, was selected as a case study site. Integrated approach that combined geospatial technologies with revised universal soil loss equation model was utilized to evaluate the spatio-temporal dynamics of soil loss over the study period. Pixel-based overlay of soil erosion intensity maps with LULC maps was carried out to understand the change in soil loss due to LULC change. Results showed that the annual soil loss in the study area varied from 0 to 236.5 t ha?1 year?1 (tons per hectare per year) in 1986 and 0–807 t ha?1 year?1 in 2016. The average annual soil loss for the entire watershed was estimated about 40 t ha?1 year?1 in 1986 comparing with 68 t ha?1 year?1 in 2016, a formidable increase. Soil erosion potential that was estimated to exceed the average soil loss tolerance level increased from 34.5% in 1986 to 66.8% in 2016. Expansion of agricultural land at the expense of grassland and shrubland was the most detrimental factor for severe soil erosion in the watershed. The most noticeable change in soil erosion intensity was observed from cropland with mean annual soil loss amount increased to 41.38 t ha?1 year?1 in 2016 from 26.60 in 1986. Moreover, the most successive erosion problems were detected in eastern, south-eastern and northern parts of the watershed. Therefore, the results of this study can help identify the soil erosion hot spots and conservation priority areas at local and regional levels.  相似文献   

17.
Soil erosion is a serious environmental problem in Indravati catchment. It carries the highest amount of sediments compared with other catchments in India. This catchment spreading an area of 41,285 km2 is drained by river Indravati, which is one of the northern tributaries of the river Godavari in its lower reach. In the present study, USLE is used to estimate potential soil erosion from river Indravati catchment. Both magnitude and spatial distribution of potential soil erosion in the catchment is determined. The derived soil loss map from USLE model is classified into six categories ranging from slight to very severe risk depending on the calculated soil erosion amount. The soil erosion map is linked to elevation and slope maps to identify the area for conservation practice in order to reduce the soil loss. From the model output predictions, it is found that average erosion rate predicted is 18.00 tons/ha/year and sediment yield at the out let of the catchment is 22.30 Million tons per annum. The predicted sediment yield verified with the observed data.  相似文献   

18.
Climate change, particularly due to the changed precipitation trend, can have a severe impact on soil erosion. The effect is more pronounced on the higher slopes of the Himalayan region. The goal of this study was to estimate the impact of climate change on soil erosion in a watershed of the Himalayan region using RUSLE model. The GCM (general circulation model) derived emission scenarios (HadCM3 A2a and B2a SRES) were used for climate projection. The statistical downscaling model (SDSM) was used to downscale the precipitation for three future periods, 2011–2040, 2041–2070, and 2071–2099, at large scale. Rainfall erosivity (R) was calculated for future periods using the SDSM downscaled precipitation data. ASTER digital elevation model (DEM) and Indian Remote Sensing data – IRS LISS IV satellite data were used to generate the spatial input parameters required by RUSLE model. A digital soil-landscape map was prepared to generate spatially distributed soil erodibility (K) factor map of the watershed. Topographic factors, slope length (L) and steepness (S) were derived from DEM. Normalised difference vegetation index (NDVI) derived from the satellite data was used to represent spatial variation vegetation density and condition under various land use/land cover. This variation was used to represent spatial vegetation cover factor. Analysis revealed that the average annual soil loss may increase by 28.38, 25.64 and 20.33% in the 2020s, 2050s and 2080s, respectively under A2 scenario, while under B2 scenario, it may increase by 27.06, 25.31 and 23.38% in the 2020s, 2050s and 2080s, respectively, from the base period (1985–2013). The study provides a comprehensive understanding of the possible future scenario of soil erosion in the mid-Himalaya for scientists and policy makers.  相似文献   

19.
The universal soil loss equation (USLE) is an erosion model to estimate average soil loss that would generally result from splash, sheet, and rill erosion from agricultural plots. Recently, use of USLE has been extended as a useful tool predicting soil losses and planning control practices by the effective integration of the GIS-based procedures to estimate the factor values on a grid cell basis. This study was performed for five different lands uses of Indağı Mountain Pass, Cankırı to predict the soil erosion risk by the USLE/GIS methodology for planning conservation measures in the site. Of the USLE factors, rainfall-runoff erosivity factor (USLE-R) and topographic factor (USLE-LS) were greatly involved in GIS. These were surfaced by correcting USLE-R site-specifically using DEM and climatic data and by evaluating USLE-LS by the flow accumulation tool using DEM and watershed delineation tool to consider the topographical and hydrological effects on the soil loss. The study assessed the soil erodibility factor (USLE-K) by randomly sampled field properties by geostatistical analysis. Crop management factor for different land-use/land cover type and land use (USLE-C) was assigned to the numerical values from crop and flora type, canopy and density of five different land uses, which are plantation, recreational land, cropland, forest and grassland, by means of reclassifying digital land use map available for the site. Support practice factor (USLE-P) was taken as a unit assuming no erosion control practices. USLE/GIS technology together with the geostatistics combined these major erosion factors to predict average soil loss per unit area per unit time. Resulting soil loss map revealed that spatial average soil loss in terms of the land uses were 1.99, 1.29, 1.21, 1.20, 0.89 t ha−1 year−1 for the cropland, grassland, recreation, plantation and forest, respectively. Since the rate of soil formation was expected to be so slow in Central Anatolia of Turkey and any soil loss of more than 1 ton ha−1 year−1 over 50–100 years was considered as irreversible for this region, soil erosion in the Indağı Mountain Pass, to the great extent, attained the irreversible state, and these findings should be very useful to take mitigation measures in the site.  相似文献   

20.
Expansion of agricultural at the cost of forested land is a common cause of watershed degradation in the mountain zones of developing countries. Many studies have been conducted to demonstrate land use changes in such regions. However, current knowledge regarding the changes, driving forces and implications of such change within the context of watershed development is limited. This study analyses changes in spatial patterns of agricultural land use and their consequences for watershed degradation during the 1976–2000 period along an altitude gradient in a watershed in Nepal, by means of remote sensing, GIS and the universal soil loss equation. Estimated soil loss ranged from 589 to 620 t ha−1 y−1, while areas of extreme hazard severity (>100 t ha−1) increased from 9 to 14.5% from 1990 to 2000. Spatial distribution of soil loss in 2000 was characterized by 88% of total soil losses being from upland agricultural areas. The study determined that without considering other forms of land degradation, only water erosion was responsible for erosion of a substantial area in a short timeframe. Areas under upland cultivation are in an extremely vulnerable state, with these areas potentially no longer cultivable within a period of 6 years. As sustainability of the watershed is dependent on forests, continued depletion of forest resources will result in poor economic returns from agriculture for local people, together with loss of ecosystem services. Thus, in order to achieve the goal of watershed development, remaining forest lands must be kept under strict protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号