首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We discuss the integrated kinematic parameters of 20 M 51-type binary galaxies. A comparison of the orbital masses of the galaxies with the sum of the individual masses suggests that moderately massive dark halos surround bright spiral galaxies. The relative velocities of the galaxies in binary systems were found to decrease with increasing relative luminosity of the satellite. We obtained evidence that the Tully-Fisher relation for binary members could be flatter than that for local field galaxies. An enhanced star formation rate in the binary members may be responsible for this effect. In most binary systems, the direction of the orbital motion of the satellite coincides with the direction of the rotation of the main galaxy. Seven candidates for distant M 51-type objects were found in the Northern and Southern Hubble Deep Fields. A comparison of this number with the statistics of nearby galaxies provides evidence for the rapid evolution of the space density of M 51-type galaxies with redshift z. We assume that M 51-type binary systems could be formed through the capture of a satellite by a massive spiral galaxy. It is also possible that the main galaxy and its satellite in some of the systems have a common cosmological origin.  相似文献   

2.
N -body/hydrodynamical simulations of the formation and evolution of galaxy groups and clusters in a Λ cold dark matter (ΛCDM) cosmology are used in order to follow the building-up of the colour–magnitude relation in two clusters and in 12 groups. We have found that galaxies, starting from the more massive, move to the red sequence (RS) as they get aged over times and eventually set upon a 'dead sequence' (DS) once they have stopped their bulk star formation activity. Fainter galaxies keep having significant star formation out to very recent epochs and lie broader around the RS. Environment plays a role as galaxies in groups and cluster outskirts hold star formation activity longer than the central cluster regions. However, galaxies experiencing infall from the outskirts to the central parts keep star formation on until they settle on to the DS of the core galaxies. Merging contributes to mass assembly until z ∼ 1, after which major events only involve the brightest cluster galaxies.
The emerging scenario is that the evolution of the colour–magnitude properties of galaxies within the hierarchical framework is mainly driven by star formation activity during dark matter haloes assembly. Galaxies progressively quenching their star formation settle to a very sharp 'red and dead' sequence, which turns out to be universal, its slope and scatter being almost independent of the redshift (since at least z ∼ 1.5) and environment.
Differently from the DS, the operatively defined RS evolves more evidently with z , the epoch when it changes its slope being closely corresponding to that at which the passive galaxies population takes over the star-forming one: this goes from z ≃ 1 in clusters down to 0.4 in normal groups.  相似文献   

3.
Stellar populations in spiral bulges are investigated using the Lick system of spectral indices. Long-slit spectroscopic observations of line strengths and kinematics made along the minor axes of four spiral bulges are reported. Comparisons are made between central line strengths in spiral bulges and those in other morphological types [elliptical, spheroidal (Sph) and S0]. The bulges investigated are found to have central line strengths comparable to those of single stellar populations of approximately solar abundance or above. Negative radial gradients are observed in line strengths, similar to those exhibited by elliptical galaxies. The bulge data are also consistent with correlations between Mg2, Mg2 gradient and central velocity dispersion observed in elliptical galaxies. In contrast to elliptical galaxies, central line strengths lie within the loci defining the range of 〈Fe〉 and Mg2 achieved by Worthey's solar abundance ratio, single stellar populations (SSPs). The implication of solar abundance ratios indicates significant differences in the star formation histories of spiral bulges and elliptical galaxies. A 'single zone with infall' model of galactic chemical evolution, using Worthey's SSPs, is used to constrain the possible star formation histories of our sample. We show that the 〈Fe〉, Mg2 and H β line strengths observed in these bulges cannot be reproduced using primordial collapse models of formation but can be reproduced by models with extended infall of gas and star formation (2–17 Gyr) in the region modelled. One galaxy (NGC 5689) shows a central population with a luminosity-weighted average age of ∼5 Gyr, supporting the idea of extended star formation. Kinematic substructure, possibly associated with a central spike in metallicity, is observed at the centre of the Sa galaxy NGC 3623.  相似文献   

4.
Direct and indirect observational evidence leads to the conclusion that high-redshift QSOs did shine in the core of early-type protogalaxies during their main episode of star formation. Exploiting this fact, we derive the rate of formation of this kind of stellar system at high redshift by using the QSO luminosity function. The elemental proportions in elliptical galaxies, the descendants of the QSO hosts, suggest that the star formation was more rapid in more massive objects. We show that this is expected to occur in dark matter haloes, when the processes of cooling and heating are considered. This is also confirmed by comparing the observed submm counts with those derived by coupling the formation rate and the star formation rate of the spheroidal galaxies with a detailed model for their SED evolution. In this scenario SCUBA galaxies and Lyman-break galaxies are early-type protogalaxies forming the bulk of their stars before the onset of QSO activity.  相似文献   

5.
In this paper we present the stellar population synthesis results for a sample of 75 bulges in isolated spiral Sb-Sc galaxies, using the spectroscopic data from the Sloan Digital Sky Survey and the STARLIGHT code. We find that both pseudo-bulges and classical bulges in our sample are predominantly composed of old stellar populations, with mean mass-weighted stellar age around 10 Gyr. While the stellar population of pseudo-bulges is, in general, younger than that of classical bulges, the difference is not significant, which indicates that it is hard to distinguish pseudo-bulges from classical bulges, at least for these isolated galaxies, only based on their stellar populations. Pseudo-bulges have star formation activities with relatively longer timescale than classical bulges, indicating that secular evolution is more important in this kind of systems. Our results also show that pseudo-bulges have a lower stellar velocity dispersion than their classical counterparts, which suggests that classical bulges are more dispersion-supported than pseudo-bulges.  相似文献   

6.
We simulate the assembly of a massive rich cluster and the formation of its constituent galaxies in a flat, low-density universe. Our most accurate model follows the collapse, the star formation history and the orbital motion of all galaxies more luminous than the Fornax dwarf spheroidal, while dark halo structure is tracked consistently throughout the cluster for all galaxies more luminous than the SMC. Within its virial radius this model contains about     dark matter particles and almost 5000 distinct dynamically resolved galaxies. Simulations of this same cluster at a variety of resolutions allow us to check explicitly for numerical convergence both of the dark matter structures produced by our new parallel N -body and substructure identification codes, and of the galaxy populations produced by the phenomenological models we use to follow cooling, star formation, feedback and stellar aging. This baryonic modelling is tuned so that our simulations reproduce the observed properties of isolated spirals outside clusters. Without further parameter adjustment our simulations then produce a luminosity function, a mass-to-light ratio, luminosity, number and velocity dispersion profiles, and a morphology–radius relation which are similar to those observed in real clusters. In particular, since our simulations follow galaxy merging explicitly, we can demonstrate that it accounts quantitatively for the observed cluster population of bulges and elliptical galaxies.  相似文献   

7.
I review the origin of UV-radiation in galaxies of different morphological types. UV-excess in spectra of massive elliptical galaxies which have predominantly old stellar populations is traditionally explained by the contribution of low-mass stars at very late, poorly known stages of evolution—by so called ‘AGB-manqué’ stars or by the population of extended horizontal branch. However recent results from the GALEX survey of a large sample of nearby ellipticals have also demonstrated probable traces of recent star formation in a third of all ellipticals observed. In spiral galaxies extended UV-disks have been discovered by the GALEX; they are certainly illuminated by the current star formation, but what has provoked star formation in the areas of very low gas density, beyond the distribution of older stars, is a puzzle yet. The UV-spectra of starburst galaxies or starforming galactic nuclei are characterized by weak emission lines, if any, quite dissimilar to their optical spectra.  相似文献   

8.
The evolution of halos consisting of weakly self-interacting dark matter particles is investigated using a new numerical Monte Carlo N-body method. The halos initially contain kinematically cold, dense r-1 power-law cores. For interaction cross sections sigma*=sigmawsi&solm0;mp>/=10-100 cm2 g-1, weak self-interaction leads to the formation of isothermal, constant-density cores within a Hubble time as a result of heat transfer into the cold inner regions. This core structure is in good agreement with the observations of dark matter rotation curves in dwarf galaxies. The isothermal core radii and core densities are a function of the halo scale radii and scale masses which depend on the cosmological model. Adopting the currently popular LambdaCDM model, the predicted core radii and core densities are in good agreement with the observations. For large interaction cross sections, massive dark halos with scale radii rs>/=1.4x104 cm2 g-1 (sigma*)-1 kpc could experience core collapse during their lifetime, leading to cores with singular isothermal density profiles.  相似文献   

9.
Stellar population characteristics are presented for a sample of low-luminosity early-type galaxies (LLEs) in order to compare them with their more luminous counterparts. Long-slit spectra of a sample of 10 LLEs were taken with the ESO New Technology Telescope, selected for their low luminosities. Line strengths were measured on the Lick standard system. Lick indices for these LLEs were correlated with velocity dispersion (σ), alongside published data for a variety of Hubble types. The LLEs were found to fall below an extrapolation of the correlation for luminous ellipticals and were consistent with the locations of spiral bulges in plots of line strengths versus σ. Luminosity weighted average ages, metallicities and abundance ratios were estimated from  χ2  fitting of 19 Lick indices to predictions from simple stellar population models. The LLEs appear younger than luminous ellipticals and of comparable ages to spiral bulges. These LLEs show a bimodal metallicity distribution, consisting of a low-metallicity group (possibly misclassified dwarf spheroidal galaxies) and a high-metallicity group (similar to spiral bulges). Finally, they have low α-element to iron peak abundance ratios indicative of slow, extended star formation.  相似文献   

10.
Interstellar magnetic fields are strong: up to 25μG in spiralarms and 40μG in nuclear regions.In the spiral galaxy NGC 6946 the average magnetic energy densityexceeds that of the thermal gas. Magnetic fields control the evolution of denseclouds and possibly the global star formation efficiency in galaxies.Gas flows and shocks in spiral arms and bars are modified by magneticfields. Magnetic forces instar-forming circumnuclear regions are able to drive mass inflow towardsthe active nucleus. Magnetic fields are essential for the propagationof cosmic rays and the formation of galactic winds and halos.  相似文献   

11.
This contribution describes results obtained with the GALICS model (for Galaxies In Cosmological Simulations), which is a hybrid model for hierarchical galaxy formation studies, combining the outputs of large cosmological N-body simulations with simple, semi-analytic recipes to describe the fate of the baryons within dark matter halos. Designed to predict the overall statistical properties of galaxies, with special emphasis on the panchromatic spectral energy distribution emitted by galaxies in the UV/optical and IR/submm wavelength ranges, such an approach can be used to predict the galaxy luminosity function evolution from the ultraviolet to far infrared, along with individual galaxies star formation histories. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

12.
Using the spectroscopic sample of the Sloan Digital Sky Survey Data Release 1 (SDSS DR1), we measure how gas was transformed into stars as a function of time and stellar mass: the baryonic conversion tree (BCT). There is a clear correlation between early star formation activity and present-day stellar mass: the more massive galaxies have formed approximately 80 per cent of their stars at   z > 1  , while for the less massive ones the value is only approximately 20 per cent. By comparing the BCT with the dark matter merger tree, we find indications that star formation efficiency at   z > 1  had to be approximately a factor of two higher than today (∼10 per cent) in galaxies with present-day stellar mass larger than  2 × 1011 M  , if this early star formation occurred in the main progenitor. Therefore, the λ cold dark matter (LCDM) paradigm can accommodate a large number of red objects. On the other hand, in galaxies with present-day stellar mass less than  1011 M  , efficient star formation seems to have been triggered at   z ∼ 0.2  . We show that there is a characteristic mass  ( M *∼ 1010 M)  for feedback efficiency (or lack of star formation). For galaxies with masses lower than this, feedback (or star formation suppression) is very efficient while for higher masses it is not. The BCT, determined here for the first time, should be an important observable with which to confront theoretical models of galaxy formation.  相似文献   

13.
We use semi-analytic techniques to study the formation and evolution of brightest cluster galaxies (BCGs). We show the extreme hierarchical nature of these objects and discuss the limitations of simple ways to capture their evolution. In a model where cooling flows are suppressed at late times by active galactic nucleus (AGN) activity, the stars of BCGs are formed very early (50 per cent at z ∼ 5, 80 per cent at z ∼ 3) and in many small galaxies. The high star formation rates in these high- z progenitors are fuelled by rapid cooling, not by merger-triggered starbursts. We find that model BCGs assemble surprisingly late: half their final mass is typically locked up in a single galaxy after   z ∼ 0.5  . Because most of the galaxies accreted on to BCGs have little gas content and red colours, late mergers do not change the apparent age of BCGs. It is this accumulation of a large number of old stellar populations – driven mainly by the merging history of the dark matter halo itself – that yields the observed homogeneity of BCG properties. In the second part of the paper, we discuss the evolution of BCGs to high redshifts, from both observational and theoretical viewpoints. We show that our model BCGs are in qualitative agreement with high- z observations. We discuss the hierarchical link between high- z BCGs and their local counterparts. We show that high- z BCGs belong to the same population as the massive end of local BCG progenitors, although they are not in general the same galaxies. Similarly, high- z BCGs end up as massive galaxies in the local Universe, although only a fraction of them are actually BCGs of massive clusters.  相似文献   

14.
15.
An update of the set of low surface brightness galaxies is presented which can be used to set constraints on the otherwise ambiguous decompositions of their rotation curves into contributions due to the various components of the galaxies. The selected galaxies show all clear spiral structure and arguments of density wave theory of galactic spiral arms are used to estimate the masses of the galactic disks. Again these estimates seem to indicate that the disks of low surface brightness galaxies might be much more massive than currently thought. This puzzling result contradicts stellar population synthesis models. This would mean also that low surface brightness galaxies are not dominated by dark matter in their inner parts. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
There are a number of theoretical and observational hints that large numbers of low-mass galaxies composed entirely of dark matter exist in the field. The theoretical considerations follow from the prediction of cold dark matter theory that there exist many low-mass galaxies for every massive one. The observational considerations follow from the observed paucity of these low-mass galaxies in the field but not in dense clusters of galaxies; this suggests that the lack of small galaxies in the field is due to the inhibition of star formation in the galaxies as opposed to the fact that their small dark matter haloes do not exist. In this work we outline the likely properties of low-mass dark galaxies, and describe observational strategies for finding them, and where in the sky to search. The results are presented as a function of the global properties of dark matter, in particular the presence or absence of a substantial baryonic dark matter component. If the dark matter is purely cold and has a Navarro, Frenk & White density profile, directly detecting dark galaxies will only be feasible with present technology if the galaxy has a maximum velocity dispersion in excess of 70 km s−1, in which case the dark galaxies could strongly lens background objects. This is much higher than the maximum velocity dispersions in most dwarf galaxies. If the dark matter in galaxy haloes has a baryonic component close to the cosmic ratio, the possibility of directly detecting dark galaxies is much more realistic; the optimal method of detection will depend on the nature of the dark matter. A number of more indirect methods are also discussed.  相似文献   

17.
18.
Starbursts are systems with very high star formation rate per unit area. They are the preferred place where massive stars form; the main source of thermal and mechanical heating in the interstellar medium, and the factory where the heavy elements form. Thus, starbursts play an important role in the origin and evolution of galaxies. The similarities between the physical properties of local starbursts and high-z star-forming galaxies, highlight the cosmological relevance of starbursts. On the other hand, nearby starbursts are laboratories where to study violent star formation processes and their interaction with the interstellar and intergalactic media, in detail and deeply. Starbursts are bright at ultraviolet (UV) wavelengths, as they are in the far-infrared, due to the ‘picket-fence’ interstellar dust distribution. After the pioneering IUE program, high spatial and spectral resolution UV observations of local starburst galaxies, mainly taken with HST and FUSE, have made relevant contributions to the following issues:
  • The determination of the initial mass function (IMF) in violent star forming systems in low and high metallicity environments, and in dense (e.g. in stellar clusters) and diffuse environments: A Salpeter IMF with high-mass stars constrains well the UV properties.
  • The modes of star formation: Starburst clusters are an important mode of star formation. Super-stellar clusters have properties similar to globular clusters.
  • The role of starbursts in AGN: Nuclear starbursts can dominate the UV light in Seyfert 2 galaxies, having bolometric luminosities similar to the estimated bolometric luminosities of the obscured AGN.
  • The interaction between massive stars and the interstellar and intergalactic media: Outflows in cold, warm and coronal phases leave their imprints on the UV interstellar lines. Outflows of a few hundred km s?1 are ubiquitous phenomena in starbursts. These metal-rich outflows and the ionizing radiation can travel to the halo of galaxies and reach the intergalactic medium.
  • The contribution of starbursts to the reionization of the universe: In the local universe, the fraction of ionizing photons that escape from galaxies and reach the intergalactic medium is of a few percent. However, in high-z star-forming galaxies, the results are more controversial.
  • Despite the very significant progress over the past two decades in our understanding of the starburst phenomenon through the study of the physical processes revealed at satellite UV wavelengths, there are important problems that still need to be solved. High-spatial resolution UV observations of nearby starbursts are crucial to further progress in understanding the violent star formation processes in galaxies, the interaction between the stellar clusters and the interstellar medium, and the variation of the IMF. High-spatial resolution spectra are also needed to isolate the light from the center to the disk in UV luminous galaxies at z = 0.1–0.3 found by GALEX. Thus, a new UV mission furnished with an intermediate spectral resolution long-slit spectrograph with high spatial resolution and high UV sensitivity is required to further progress in the study of starburst galaxies and their impact on the evolution of galaxies.  相似文献   

    19.
    20.
    《New Astronomy Reviews》2000,44(4-6):365-367
    Two different paths can be followed by the ejecta of correlated supernovae as a result of the size of the starburst, and the mass and density of the parent galaxy. In the case of the nuclei of massive ellipticals and bulges of spirals, as well as for nuclear starbursts in spiral galaxies, it is quite clear that most of the metals produced by massive bursts of star formation are dumped onto the intergalactic medium. This happens once the resultant superbubble reaches the outskirts of a galaxy, causing a superwind. The product of less massive starbursts is, however, retained by galaxies, even in the case of blue compact dwarfs, leading, after 100 Myr, to an enhanced abundance of the ISM. Here, I review the steps required for a rapid and a slow mixing of heavy elements with the ISM and show under which conditions they apply.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号