首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
海岸带浅水和底质的成分复杂且分布不均,使遥感水深探测面临很大挑战。 尝试通过利用 Hydrolight 仿真建立的遥感反射率半分析模型来解决这个问题。 采用英属维尔京群岛彼得岛的高光谱影像,应用非线性优化的方法提取了水下地形。 从反演水深和海图标注水深拟合的趋势线斜率为 0. 9392,决定系数为 0. 8258。 试验结果证明,使用定标好的高光谱影像进行海岸带地区快速水深探测是可行的。  相似文献   

2.
本文基于海浪波折射现象和浅水波理论,提出了一种基于单景高分辨率光学遥感影像的浅海地形提取方法。首先,基于浅水波理论推导出适用于浅海区域的水深与海浪波长、频率的定量关系,针对近岸光学遥感图像复杂的海浪特征,讨论了两种海浪波长提取方法,即FFT方法和剖面线法。然后提出了基于长距离波长波动分析的海浪频率计算方法,解决了单景遥感影像的波浪频率计算难题。最后,利用单景QuickBird高分辨率光学遥感影像,以海南岛三亚湾为研究区域进行了应用实验,结果表明,对12m以浅的浅海区域,在不需要任何辅助参数的情况下,反演获得了浅海地形(DEM),经与1:25000比例尺海图的水深对比验证,地形趋势吻合良好,反演水深的均方根误差为1.07m,相对水深误差为16.2%,表明该方法适合于浅海水下地形的提取,且具有无需实测水深数据和环境参数的支持的优点。  相似文献   

3.
海岸带浅水和底质的成分复杂且分布不均,使遥感水深探测面临很大挑战.尝试通过利用Hydrolight 仿真建立的遥感反射率半分析模型来解决这个问题.采用英属维尔京群岛彼得岛的高光谱影像,应用非线性优化的方法提取了水下地形.从反演水深和海图标注水深拟合的趋势线斜率为0.939 2,决定系数为0.825 8.试验结果证明,使...  相似文献   

4.
Remote sensing bathymetry inversion can quickly obtain water depth data of large areas, but this process relies on a large number of in-situ depth data points. USV-based (Unmanned Surface Vehicle) technique can obtain the bathymetry data of shallow water where ordinary ships are inaccessible, but this technique is inefficient and generally only data along survey line can be collected. The combination of USV and high-resolution remote sensing provides a new solution for water depth surveying and mapping around an island. This paper focuses on the key techniques, using USV sounding data and GeoEye-1 multispectral remote sensing images covering the region of Wuzhizhou island in the experiment. The results show that the MAE (Mean Absolute Error) of USV sounding is 0.25 m, while the MRE (Mean Relative Error) is 1.41%, and the MRE of remote sensing bathymetry aided by USV sounding can be controlled within 20%. Errors are mainly from areas shallower than 5 m, and are also affected by the USV sounding position accuracy. It shows that it is feasible to combine the USV sounding and high-resolution remote sensing bathymetry, and this technique has broad application prospects in the field of bathymetry in large shallow areas.  相似文献   

5.
Regular surveys of coastal zone seabed deliver important information about geomorphologic processes such as silting of waterways. The recent introduction of the Sentinel series of sensors has allowed for the use of satellite sensing for shallow bathymetry morphology monitoring. In this context, this article presents a dedicated Geographic Information System for Baltic Sea shallow water depth monitoring on the basis of Sentinel-2 imagery. The system employs Geovisual Analytics for differential analysis of bathymetry changes as well as monitoring the visibility of known wrecks in the coastal waters of Southern Baltic Sea. Results are verified with regard to known changes in shallow water bathymetry between 28 June 2015 and 3 March 2017.  相似文献   

6.
Determination of the water depths in coastal zones is a common requirement for the majority of coastal engineering and coastal science applications. However, production of high quality bathymetric maps requires expensive field survey, high technology equipment and expert personnel. Remotely sensed images can be conveniently used to reduce the cost and labor needed for bathymetric measurements and to overcome the difficulties in spatial and temporal depth provision. An Artificial Neural Network (ANN) methodology is introduced in this study to derive bathymetric maps in shallow waters via remote sensing images and sample depth measurements. This methodology provides fast and practical solution for depth estimation in shallow waters, coupling temporal and spatial capabilities of remote sensing imagery with modeling flexibility of ANN. Its main advantage in practice is that it enables to directly use image reflectance values in depth estimations, without refining depth-caused scatterings from other environmental factors (e.g. bottom material and vegetation). Its function-free structure allows evaluating nonlinear relationships between multi-band images and in-situ depth measurements, therefore leads more reliable depth estimations than classical regressive approaches. The west coast of the Foca, Izmir/Turkey was used as a test bed. Aster first three band images and Quickbird pan-sharpened images were used to derive ANN based bathymetric maps of this study area. In-situ depth measurements were supplied from the General Command of Mapping, Turkey (HGK). Two models were set, one for Aster and one for Quickbird image inputs. Bathymetric maps relying solely on in-situ depth measurements were used to evaluate resultant derived bathymetric maps. The efficiency of the methodology was discussed at the end of the paper. It is concluded that the proposed methodology could decrease spatial and repetitive depth measurement requirements in bathymetric mapping especially for preliminary engineering application.  相似文献   

7.
对水体光谱特征的研究是海洋水色遥感的基础工作之一。水体的光谱特征包括:表观光学特性和固有光学特性。在水体的表观光学特性研究方面,目前国际水色界推行的有:剖面法和水面之上法(也称表面法)。由于我国近岸水体混浊度较高,浅水区域较多,研究这类水体的表观光学特性应以水面之上法为主、剖面法为辅。介绍了水面之上法水体光谱的测量技术,就其中关键技术问题进行了讨论。  相似文献   

8.
利用多波段卫星数据进行浅海水深反演方法研究   总被引:18,自引:1,他引:18  
党福星  丁谦 《海洋通报》2003,22(3):55-60
以遥感反演水深的基本原理为基础,利用我国南海永暑礁景区的TM数据和实测水深资料,通过TM多波段数据辐射校正、图像与海图地理配推、底质类型分区、潮汐改正和实测水深数据与相应的图像辐射值回归分析,建立了浅海水深反演模型,并进行了浅海岛礁水深的实际计算,总标准误差为2.14m。对我国南海30m以浅岛礁水深地形研究有很好的应用价值。  相似文献   

9.
Abstract

Shallow water bathymetry has proved to be a challenging task for remote sensing applications. In this work, Green-Wavelength Terrestrial Laser Scanning (GWTLS) is employed to survey nearshore bathymetry under clear atmospheric and water conditions. First, the obtained seabed points were corrected for refraction and then geo-registration, and filtering processes were exerted to obtain an accurate bathymetric surface. Terrain analysis was performed with respect to a reference surface derived from classical surveying techniques. The overall analysis has shown that the best results stem from 35° to 50° incident angles, whereas for angles higher than 65° measurements are not acceptable, although for the same angle in front and close to the instrument accuracy is considered acceptable due to the high laser power. Also, high resolution micro-topography, shallower than 1?m water depth, was managed to be captured. Systematic experimental approaches are expected to improve the GWTLS technique to detect bathymetry, which is anticipated to assist in mapping very shallow foreshore, tidal, and deltaic environments, to contribute conceptual into developing hybrid observation systems for coastal monitoring, and also to be applied in various maritime applications.  相似文献   

10.
针对浅海测深的数据特点和应用需求,以我国南海甘泉岛为例,研究了利用ICESat-2(Ice,Cloud,and Land Elevation Satellite-2)激光卫星数据和光学遥感影像开展主被动融合水深测量的方法。首先通过信号点提取、水面/水底识别、水下点折射改正等步骤处理ICESat-2数据,获得水深值,随后以激光点作为控制,计算光学水深反演模型参数,最后由点及面地获取大范围高精度水深。实验表明,甘泉岛区域主被动融合测深中误差优于1.30m,基于激光卫星数据的主被动融合测深方法能够为浅水水深测量提供新手段。  相似文献   

11.
We present a large-scale quantitative test of a hyperspectral remote-sensing reflectance algorithm. We show that coastal bathymetry can be adequately derived through model inversions using data from the Airborne Visible-Infrared Imaging Spectrometer instrument. Data are analyzed from a shore-perpendicular transect 5 km offshore Sarasota, Florida at water depths ranging from 10 m to 15.5 m. Derived bottom depths are compared to a high-resolution multibeam bathymetry survey. Model-derived depths are biased 4.9% shallower than the mean of the multibeam depths with an RMS error of 7.83%. These results suggest that the model performs well for retrieving bottom depths from hyperspectral data in subtropical coastal areas in water depths ranging from 10 m to 15.5 m.  相似文献   

12.
Synthetic Aperture Radar(SAR)has become one of the important tools for shallow water bathymetry surveys.This has significant economic efficiency compared with the traditional bathymetry surveys.Numerical models have been developed to simulate shallow water bathymetry SAR images.Inversion of these models makes it possible to assess the water depths from SAR images.In this paper,these numerical models of SAR technique are reviewed,and examples are illustrated including in the coastal areas of China.Some issues about SAR technique available and the research orientation in future are also discussed.  相似文献   

13.
A three-dimensional multi-level turbulence model is developed to simulate tide induced circulation in coastal waters. Based on the bathymetry data, the coastal waters are divided into a number of layers. In every layer, the velocities are integrated along the layer depth. The eddy viscosity and diffusivity are computed from the Prandtl mixing length turbulence model. This multi-level model solves for the water surface elevations and currents in different water depths. Comparison of numerical results with the measured data shows good conformity.  相似文献   

14.
根据遥感水深反演原理,利用海南岛龙湾港的WorldView-2多光谱卫星数据和海图水深资料,通过对水深进行0~2,2~5,5~10,10~15和15~20 m的分区处理、潮汐改正和海图水深数据与相应图像波段反射率值的相关性分析及回归分析,建立了浅海水深线性回归反演模型,开展了浅海水深的实际计算与精度分析。结果表明:对不同水深范围分别建立线性回归模型反演的水深精度要高于未分区建立的模型;分区模型中,多波段模型在0~5 m的反演精度最高,而双波段比值模型在5~20 m的反演精度最高,但是反演水深在最浅处的精度还有待提高。本文方法提取的水深与海图水深数据变化趋势基本相似,可以满足海洋科学研究对大范围浅水水下地形探测的要求。  相似文献   

15.
水深是重要的海洋要素,水深遥感反演是获取浅水水深的重要手段。当前水深遥感反 演应用以国外卫星数据为主,国产卫星数据的研究和应用较少。本文针对国产高分六号卫星 (GF-6) 数据,以三亚南山港为研究区域,分别建立单波段回归模型、双波段比值模型、多波段 回归模型,进行多光谱影像的水深反演能力研究,并与国外主流哨兵2 号卫星(Sentinel-2) 数 据进行实验比较。实验结果表明:GF-6 遥感影像具有较好的浅水水深反演能力和一定的反演精度,各波段水深探测能力依次为:绿波段跃蓝波段跃红波段跃近红外波段,反演方法效果依次为:多波段模型跃双波段模型跃单波段模型。相较于Sentinel-2 数据,GF-6 数据水深反演精度与其一致,这表明GF-6 影像具备替代国外遥感数据进行水深反演的能力和大规模应用的潜力。本文针对GF-6 影像水深反演能力的研究方法和分析,结果将为国产高分系列卫星数据的水深反演研究和应用提供有益的参考。  相似文献   

16.
含沙水体水深遥感方法的研究   总被引:8,自引:4,他引:4  
张鹰  张东  王艳姣  许勇 《海洋学报》2008,30(1):51-58
遥感测深技术是海岸、河口及其他水体水深测量的一种新方法,应用前景广阔。在海洋的近岸、河口处水体相对浑浊,利用可见光技术测深的精度依赖于建立合适的水深反演模型和考虑水体悬浮物质的影响。选择合适的水深反演因子和比较多种线性、非线性水深反演模型,通过对水体悬浮泥沙光谱特性的研究,建立了适于河口、近岸浅水浑浊水体并考虑悬沙浓度影响的水深反演模型。通过检验,由该模型反演的平均相对误差小于15%,在7~14 m的水深段反演效果更好,其平均相对误差小于8.5%。  相似文献   

17.
Classical hydrographic mapping in shallow waters with surface craft is slow, hazardous, and expensive. The remarkable water penetration capability of several currently used film emulsions and their dramatic presentation of submerged detail provides an alternative tool and supplement for mapping the seabed in shoals and waters of moderate depth. Photogrammetric bathymetric surveys preceding hydrography can show many of the rocks, reefs, shallow areas, photogrammetrically observed depth measurements and depth curves, and other features and thereby assist the hydrographers whose work is more difficult because they do not have the overall view of the bottom to guide their operations in developing important details. The objective of this paper is to advance the comprehension of the potential of photogrammetric bathymetry to provide the following benefits: (1) improve the accuracy and completeness of the hydrographie survey; (2) reduce the cost and time of the field hydrographie survey; and, (3) reduce ship requirements for a particular hydrographic survey, thereby releasing some of the craft for other assignments and/or enlarging the size of the coastal water areas that can be surveyed within a given time frame. The investigation of the potential for accomplishing photogrammetric bathymetry was restricted to ten regions of high priority along the East Coast and the Gulf of Mexico. A five‐year photobathymetry program is envisaged that will require a maximum of 10,765 man‐days of work and cost $1,154,750. These figures can be substantially reduced by employing digitized stereoscopic plotting instruments and developing advanced, sophisticated photogrammetric analytic aerotriangulation procedures.  相似文献   

18.
漫衰减系数是一个重要的海洋光学参数,能够为水体环境变化、水质分析以及水产养殖等方面提供基础性数据。针对目前船载实地测量效率与分辨率低、卫星遥感反演精度与分辨率较低的局限性,本文提出一种基于机载LiDAR测深水体波形的漫衰减系数提取方法。该方法首先通过分层异构模型的机载LiDAR波形分解算法得到水体散射回波,利用激光在水体中的衰减特性,构建漫衰减系数提取模型,最终获取大面积水域漫衰减系数的空间分布。采用西沙甘泉岛与江苏连云港两个航次的实测数据对所提算法进行了验证,本算法无需每个测深点的水底底部回波强度和深度即可反演得到漫衰减系数,并且在浑浊水域也可取得较好的效果,表明在中国近海利用机载LiDAR测深系统能够有效获取高精度的漫衰减系数。  相似文献   

19.
黄河三角洲河口区滨海湿地面积动态变化与影响因素分析   总被引:2,自引:0,他引:2  
杨伟  陈沈良 《海洋科学》2011,35(7):61-66
采用遥感和地理信息系统技术,根据遥感影像数据和实测水深数据,分析了现代黄河三角洲河口区滨海湿地面积的变化规律,并计算了研究区湿地面积与黄河入海沙量之间的相关性。结果表明,黄河改道清水沟流路初期,三角洲河口区滨海湿地面积呈快速增长之势,但滩涂面积变化较复杂,1996年实施清8出汉工程后,低潮线至水下-2,-5和-6m湿地...  相似文献   

20.
Abstract

Studies of coastal bathymetry are important where littoral drift has implications on the planning of fishing and dredging operations. Also, there is a possibility of finding hitherto unknown bottom features in relatively less explored regions of the shallow seas around the globe. High resolution satellite imagery over oceans provides us with quantitative methods for estimating depth in shallow parts of the seas. One of the methods is the analysis of the refraction of coastal gravity waves observed on satellite imagery. A panchromatic image acquired by SPOT with 10 m resolution on March 22, 1986, over Bay of Bengal near Madras Coast, was used for this analysis. The image was enhanced to clearly bring out the wave structure seen on the sea surface. The image was then superimposed with a 1 km × 1 km grid. For each grid cell, 64 × 64 pixels at the center were considered for getting a Fast Fourier Transform to determine the wave spectrum and the dominant wavelength present there. The classical theory of gravity waves was used to relate the shallow water wavelengths obtained as above with the corresponding wavelengths in the deep water. The deep‐water wavelength was estimated to be 110 m using the known chart depths at a set of control points. The resulting depth estimates, when compared with standard bathymetric charts, were found, in general, to be well in agreement up to a depth of 30 m in the sea, with an r.m.s. error of 2.6 meters. The method seems to be very useful for remotely sensed bathymetric work. However, further research is required to reduce the error margin and operationalize the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号