首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 978 毫秒
1.
Late Pleistocene glacial and lake history of northwestern Russia   总被引:1,自引:0,他引:1  
Five regionally significant Weichselian glacial events, each separated by terrestrial and marine interstadial conditions, are described from northwestern Russia. The first glacial event took place in the Early Weichselian. An ice sheet centred in the Kara Sea area dammed up a large lake in the Pechora lowland. Water was discharged across a threshold on the Timan Ridge and via an ice-free corridor between the Scandinavian Ice Sheet and the Kara Sea Ice Sheet to the west and north into the Barents Sea. The next glaciation occurred around 75-70 kyr BP after an interstadial episode that lasted c. 15 kyr. A local ice cap developed over the Timan Ridge at the transition to the Middle Weichselian. Shortly after deglaciation of the Timan ice cap, an ice sheet centred in the Barents Sea reached the area. The configuration of this ice sheet suggests that it was confluent with the Scandinavian Ice Sheet. Consequently, around 70-65 kyr BP a huge ice-dammed lake formed in the White Sea basin (the 'White Sea Lake'), only now the outlet across the Timan Ridge discharged water eastward into the Pechora area. The Barents Sea Ice Sheet likely suffered marine down-draw that led to its rapid collapse. The White Sea Lake drained into the Barents Sea, and marine inundation and interstadial conditions followed between 65 and 55 kyr BP. The glaciation that followed was centred in the Kara Sea area around 55-45 kyr BP. Northward directed fluvial runoff in the Arkhangelsk region indicates that the Kara Sea Ice Sheet was independent of the Scandinavian Ice Sheet and that the Barents Sea remained ice free. This glaciation was succeeded by a c. 20-kyr-long ice-free and periglacial period before the Scandinavian Ice Sheet invaded from the west, and joined with the Barents Sea Ice Sheet in the northernmost areas of northwestern Russia. The study area seems to be the only region that was invaded by all three ice sheets during the Weichselian. A general increase in ice-sheet size and the westwards migrating ice-sheet dominance with time was reversed in Middle Weichselian time to an easterly dominated ice-sheet configuration. This sequence of events resulted in a complex lake history with spillways being re-used and ice-dammed lakes appearing at different places along the ice margins at different times.  相似文献   

2.
The youngest ice marginal zone between the White Sea and the Ural mountains is the W-E trending belt of moraines called the Varsh-Indiga-Markhida-Harbei-Halmer-Sopkay, here called the Markhida line. Glacial elements show that it was deposited by the Kara Ice Sheet, and in the west, by the Barents Ice Sheet. The Markhida moraine overlies Eemian marine sediments, and is therefore of Weichselian age. Distal to the moraine are Eemian marine sediments and three Palaeolithic sites with many C-14 dates in the range 16-37 ka not covered by till, proving that it represents the maximum ice sheet extension during the Weichselian. The Late Weichselian ice limit of M. G. Grosswald is about 400 km (near the Urals more than 700 km) too far south. Shorelines of ice dammed Lake Komi, probably dammed by the ice sheet ending at the Markhida line, predate 37 ka. We conclude that the Markhida line is of Middle/Early Weichselian age, implying that no ice sheet reached this part of Northern Russia during the Late Weichselian. This age is supported by a series of C-14 and OSL dates inside the Markhida line all of >45 ka. Two moraine loops protrude south of the Markhida line; the Laya-Adzva and Rogavaya moraines. These moraines are covered by Lake Komi sediments, and many C-14 dates on mammoth bones inside the moraines are 26-37 ka. The morphology indicates that the moraines are of Weichselian age, but a Saalian age cannot be excluded. No post-glacial emerged marine shorelines are found along the Barents Sea coast north of the Markhida line.  相似文献   

3.
Glacial landforms in northern Russia, from the Timan Ridge in the west to the east of the Urals, have been mapped by aerial photographs and satellite images supported by field observations. An east-west trending belt of fresh hummock-and-lake glaciokarst landscapes has been traced to the north of 67°N. The southern boundary of these landscapes is called the Markhida Line, which is interpreted as a nearly synchronous limit of the last ice sheet that affected this region. The hummocky landscapes are subdivided into three types according to the stage of postglacial modification: Markhida, Harbei and Halmer. The Halmer landscape on the Uralian piedmont in the east is the freshest, whereas the westernmost Markhida landscape is more eroded. The west-east gradient in morphology is considered to be a result of the time-transgressive melting of stagnant glacier ice and of the underlying permafrost. The pattern of ice-pushed ridges and other directional features reflects a dominant ice flow direction from the Kara Sea shelf. Traces of ice movement from the central Barents Sea are only discernible in the Pechora River left bank area west of 50°E. In the Polar Urals the horseshoe-shaped end moraines at altitudes of up to 560 m a.s.l. reflect ice movement up-valley from the Kara Ice Sheet, indicating the absence of a contemporaneous ice dome in the mountains. The Markhida moraines, superimposed onto the Eemian strata, represent the maximum ice sheet extent in the western part of the Pechora Basin during the Weichselian. The Markhida Line truncates the huge arcs of the Laya-Adzva and Rogovaya ice-pushed ridges protruding to the south. The latter moraines therefore reflect an older ice advance, probably also of Weichselian age. Still farther south, fluvially dissected morainic plateaus without lakes are of pre-Eemian age, because they plunge northwards under marine Eemian sediments. Shorelines of the large ice-dammed Lake Komi, identified between 90 and 110 m a.s.l. in the areas south of the Markhida Line, are radiocarbon dated to be older than 45 ka. The shorelines, incised into the Laya-Adzva moraines, morphologically interfinger with the Markhida moraines, indicating that the last ice advance onto the Russian mainland reached the Markhida Line during the Middle or Early Weichselian, before 45 ka ago.  相似文献   

4.
The coastal cliffs of Cape Shpindler, Yugorski Peninsula, Arctic Russia, occupy a key position for recording overriding ice sheets during past glaciations in the Kara Sea area, either from the Kara Sea shelf or the uplands of Yugorski Peninsula/Polar Urals. This study on Late Quaternary glacial stratigraphy and glaciotectonic structures of the Cape Shpindler coastal cliffs records two glacier advances and two ice‐free periods older than the Holocene. During interglacial conditions, a sequence of marine to fluvial sediments was deposited. This was followed by a glacial event when ice moved southwards from an ice‐divide over Novaya Zemlya and overrode and disturbed the interglacial sediments. After a second period of fluvial deposition, under interstadial or interglacial conditions, the area was again subject to glacial overriding, with the ice moving northwards from an inland ice divide. The age‐control suggests that the older glacial event could possibly belong to marine oxygen isotope stage (MOIS) 8, Drenthe (300–250 ka), and that the underlying interglacial sediments might be Holsteinian (>300 ka). One implication of this is that relict glacier ice, buried in sediments and incorporated into the permafrost, may survive several interglacial and interstadial events. The younger glacial event recognised in the Cape Shpindler sequence is interpreted to be of Early‐to‐Middle Weichselian age. It is suggested to correlate to a regional glaciation around 90 or 60 ka. The Cape Shpindler record suggests more complex glacial dynamics during that glaciation than can be explained by a concentric ice sheet located in the Kara Sea, as suggested by recent geological and model studies. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
The ice sheet that once covered Ireland has a long history of investigation. Much prior work focussed on localised evidence-based reconstructions and ice-marginal dynamics and chronologies, with less attention paid to an ice sheet wide view of the first order properties of the ice sheet: centres of mass, ice divide structure, ice flow geometry and behaviour and changes thereof. In this paper we focus on the latter aspect and use our new, countrywide glacial geomorphological mapping of the Irish landscape (>39 000 landforms), and our analysis of the palaeo-glaciological significance of observed landform assemblages (article Part 1), to build an ice sheet reconstruction yielding these fundamental ice sheet properties. We present a seven stage model of ice sheet evolution, from initiation to demise, in the form of palaeo-geographic maps. An early incursion of ice from Scotland likely coalesced with local ice caps and spread in a south-westerly direction 200 km across Ireland. A semi-independent Irish Ice Sheet was then established during ice sheet growth, with a branching ice divide structure whose main axis migrated up to 140 km from the west coast towards the east. Ice stream systems converging on Donegal Bay in the west and funnelling through the North Channel and Irish Sea Basin in the east emerge as major flow components of the maximum stages of glaciation. Ice cover is reconstructed as extending to the continental shelf break. The Irish Ice Sheet became autonomous (i.e. separate from the British Ice Sheet) during deglaciation and fragmented into multiple ice masses, each decaying towards the west. Final sites of demise were likely over the mountains of Donegal, Leitrim and Connemara. Patterns of growth and decay of the ice sheet are shown to be radically different: asynchronous and asymmetric in both spatial and temporal domains. We implicate collapse of the ice stream system in the North Channel – Irish Sea Basin in driving such asymmetry, since rapid collapse would sever the ties between the British and Irish Ice Sheets and drive flow configuration changes in response. Enhanced calving and flow acceleration in response to rising relative sea level is speculated to have undermined the integrity of the ice stream system, precipitating its collapse and driving the reconstructed pattern of ice sheet evolution.  相似文献   

6.
David J.A.  Chris D.  Wishart A. 《Earth》2005,70(3-4):253-312
This paper reviews the evidence presently available (as at December 2003) for the compilation of the Glacial Map of Britain (see [Clark C.D., Evans D.J.A., Khatwa A., Bradwell T., Jordan C.J., Marsh S.H., Mitchell W.A., Bateman, M.D. , 2004. Map and GIS database of glacial landforms and features related to the last British Ice Sheet. Boreas 33, 359–375] and http://www.shef.ac.uk/geography/staff/clark_chris/britice.html) in an effort to stimulate further research on the last British Ice Sheet and promote a reconstruction of ice sheet behaviour based on glacial geology and geomorphology. The wide range of evidence that has been scrutinized for inclusion on the glacial map is assessed with respect to the variability of its quality and quantity and the existing controversies in ice sheet reconstructions. Landforms interpreted as being of unequivocal ice-marginal origin (moraines, ice-contact glacifluvial landforms and lateral meltwater channels) and till sheet margins are used in conjunction with available chronological control to locate former glacier and ice-sheet margins throughout the last glacial cycle. Subglacial landforms (drumlins, flutings and eskers) have been used to demarcate former flow patterns within the ice sheet. The compilation of evidence in a regional map is crucial to any future reconstructions of palaeo-ice sheet dynamics and will provide a clearer understanding of ice sheet configuration, ice divide migration and ice thickness and coverage for the British Ice Sheet as it evolved through the last glacial cycle.  相似文献   

7.
《Quaternary Science Reviews》2004,23(11-13):1273-1283
Geological investigations undertaken through the Quaternary Environments of the Eurasian North programme established ice-sheet limits for the Eurasian Arctic at the Last Glacial Maximum (LGM), sedimentary records of palaeo-ice streams and uplift information relating to ice-sheet configuration and the pattern of deglaciation. Ice-sheet numerical modelling was used to reconstruct a history of the Eurasian Ice Sheet compatible with these geological datasets. The result was a quantitative assessment of the time-dependent behaviour of the ice sheet, its mass balance and climate, and predictions of glaciological products including sediments, icebergs and meltwater. At the LGM, ice cover was continuous from Scandinavia to the Arctic Ocean margin of the Barents Sea to the north, and the Kara Sea to the east. In the west, along the continental margin between the Norwegian Channel and Svalbard, the ice sheet was characterised by fast flowing ice streams occupying bathymetric troughs, which fed large volumes of sediment to the continental margin that were deposited as a series of trough mouth fans. Ice streams may also have been present in bathymetric troughs to the north between Svalbard and Franz Josef Land. Further east, however, the ice sheet was thinner. Across the Kara Sea, the ice thickness was predicted to be less than 300 m, while on Severnaya Zemlya the ice cover may have been thinner at the LGM than at present. It is likely that the Taymyr Peninsula was mainly free of ice at the LGM. In the south, the ice margin was located close to the shoreline of the Russian mainland. The climate associated with this ice sheet is maritime to the west and, in stark contrast, desert-like in the east. Atmospheric General Circulation Modelling has revealed that such a contrast is possible under relatively warm north Atlantic conditions because a circulation system develops across the Kara Sea, isolating it from the moisture-laden westerlies, which are diverted to the south. Ice-sheet decay began through enhanced iceberg calving in the deepest regions of the Barents Sea, which caused a significant ice embayment within the Bear Island Trough. By about 12,000 years ago, further iceberg calving reduced ice extent to the northern archipelagos and their surrounding shallow seas. Ice decay was complete by about 10,000 years ago.  相似文献   

8.
Based on field investigations in northern Russia and interpretation of offshore seismic data, we have made a preliminary reconstruction of the maximum ice-sheet extent in the Barents and Kara Sea region during the Early/Middle Weichselian and the Late Weichselian. Our investigations indicate that the Barents and Kara ice sheets attained their maximum Weichselian positions in northern Russia prior to 50 000 yr BP, whereas the northeastern flank of the Scandinavian Ice Sheet advanced to a maximum position shortly after 17 000 calendar years ago. During the Late Weichselian (25 000-10 000 yr BP), much of the Russian Arctic remained ice-free. According to our reconstruction, the extent of the ice sheets in the Barents and Kara Sea region during the Late Weichselian glacial maximum was less than half that of the maximum model which, up to now, has been widely used as a boundary condition for testing and refining General Circulation Models (GCMs). Preliminary numerical-modelling experiments predict Late Weichselian ice sheets which are larger than the ice extent implied for the Kara Sea region from dated geological evidence, suggesting very low precipitation.  相似文献   

9.
Using glacial rebound models we have inverted observations of crustal rebound and shoreline locations to estimate the ice thickness for the major glaciations over northern Eurasia and to predict the palaeo-topography from late MIS-6 (the Late Saalian at c. 140 kyr BP) to MIS-4e (early Middle Weichselian at c. 64 kyr BP). During the Late Saalian, the ice extended across northern Europe and Russia with a broad dome centred from the Kara Sea to Karelia that reached a maximum thickness of c. 4500 m and ice surface elevation of c. 3500 m above sea level. A secondary dome occurred over Finland with ice thickness and surface elevation of 4000 m and 3000 m, respectively. When ice retreat commenced, and before the onset of the warm phase of the early Eemian, extensive marine flooding occurred from the Atlantic to the Urals and, once the ice retreated from the Urals, to the Taymyr Peninsula. The Baltic-White Sea connection is predicted to have closed at about 129 kyr BP, although large areas of arctic Russia remained submerged until the end of the Eemian. During the stadials (MIS-5d, 5b, 4) the maximum ice was centred over the Kara-Barents Seas with a thickness not exceeding c. 1200 m. Ice-dammed lakes and the elevations of sills are predicted for the major glacial phases and used to test the ice models. Large lakes are predicted for west Siberia at the end of the Saalian and during MIS-5d, 5b and 4, with the lake levels, margin locations and outlets depending inter alia on ice thickness and isostatic adjustment. During the Saalian and MIS-5d, 5b these lakes overflowed through the Turgay pass into the Aral Sea, but during MIS-4 the overflow is predicted to have occurred north of the Urals. West of the Urals the palaeo-lake predictions are strongly controlled by whether the Kara Ice Sheet dammed the White Sea. If it did, then the lake levels are controlled by the topography of the Dvina basin with overflow directed into the Kama-Volga river system. Comparisons of predicted with observed MIS-5b lake levels of Komi Lake favour models in which the White Sea was in contact with the Barents Sea.  相似文献   

10.
The efficiency of subglacial drainage is known to have a profound influence on subglacial deformation and glacier dynamics with, in particular, high meltwater contents and/or pressures aiding glacier motion. The complex sequence of Middle Pleistocene tills and glacial outwash sediments exposed along the north Norfolk coast (Eastern England) were deposited in the ice-marginal zone of the British Ice Sheet and contain widespread evidence for subglacial deformation during repeated phases of ice advance and retreat. During a phase of easterly directed ice advance, the glacial and pre-glacial sequences were pervasively deformed leading to the development of a thick unit of glacitectonic mélange. Although the role of pressurised meltwater has been recognised in facilitating deformation and mélange formation, this paper provides evidence for the subsequent development of a channelised subglacial drainage system beneath this part of the British Ice Sheet filled by a complex assemblage of sands, gravels and mass flow deposits. The channels are relatively undeformed when compared to the host mélange, forming elongate, lenticular to U-shaped, flat-topped bodies (up to 20–30 m thick) located within the upper part of this highly deformed unit. This relatively stable channelised system led to an increase in the efficiency of subglacial drainage from beneath the British Ice Sheet and the collapse of the subglacial shear zone, potentially slowing or even arresting the easterly directed advance of the ice sheet.  相似文献   

11.
Advance of the Late Weichselian (Valdaian) Scandinavian Ice Sheet (SIS) in northwestern Russia took place after a period of periglacial conditions. Till of the last SIS, Bobrovo till, overlies glacial deposits from the previous Barents and Kara Sea ice sheets and marine deposits of the Last Interglacial. The till is identified by its contents of Scandinavian erratics and it has directional properties of westerly provenance. Above the deglaciation sediments, and extra marginally, it is replaced by glaciofluvial and glaciolacustrine deposits. At its maximum extent, the last SIS was more restricted in Russia than previously outlined and the time of termination at 18-16 cal. kyr BP was almost 10 kyr delayed compared to the southwestern part of the ice sheet. We argue that the lithology of the ice sheets' substrate, and especially the location of former proglacial lake basins, influenced the dynamics of the ice sheet and guided the direction of flow. We advocate that, while reaching the maximum extent, lobe-shaped glaciers protruded eastward from SIS and moved along the path of water-filled lowland basins. Ice-sheet collapse and deglaciation in the region commenced when ice lobes were detached from the main ice sheet. During the Lateglacial warming, disintegration and melting took place in a 200-600 km wide zone along the northeastern rim of SIS associated with thick Quaternary accumulations. Deglaciation occurred through aerial downwasting within large fields of dead ice developed during successively detached ice lobes. Deglaciation led to the development of hummocky moraine landscapes with scattered periglacial and ice-dammed lakes, while a sub-arctic flora invaded the region.  相似文献   

12.
《Quaternary Science Reviews》2005,24(1-2):173-194
The climate history and dynamics of the Greenland Ice Sheet are studied using a coupled model of the depositional provenance and transport of glacier ice, allowing simultaneous prediction of the detailed isotopic stratigraphy of ice cores at all the major Greenland sites. Adopting a novel method for reconstructing the age–depth relationship, we greatly improve the accuracy of semi-Lagrangian tracer tracking schemes and can readily incorporate an age-dependent ice rheology. The larger aim of our study is to impose new constraints on the glacial history of the Greenland Ice Sheet. Leading sources of uncertainty in the climate and dynamic history are encapsulated in a small number of parameters: the temperature and elevation isotopic sensitivities, the glacial–interglacial precipitation contrast and the effective viscosity of ice in the flow law. Comparing predicted and observed ice layering at ice core sites, we establish plausible ranges for the key model parameters, identify climate and dynamic histories that are mutually consistent and recover the past depositional elevation of ice cores to ease interpretation of their climatic records. With the coupled three-dimensional model of ice dynamics and provenance transport we propose a method to place all the ice core records on a common time scale and use discrepancies to adjust the reconstructed climate history. Analysis of simulated GRIP ice layering and borehole temperature profiles confirms that the GRIP record is sensitive to the dynamic as well as to the climatic history, but not enough to strongly limit speculation on the state of the Greenland Ice Sheet during the Eemian. In contrast, our study indicates that the Dye 3 and Camp Century ice cores are extremely sensitive to ice dynamics and greatly constrain Eemian ice sheet reconstructions. We suggest that the maximum Eemian sea-level contribution of the ice sheet was in the range of 3.5–4.5 m.  相似文献   

13.
The extent of glacier ice in the Canadian High Arctic during the Last Glacial Maximum (LGM) has been debated for decades. One school proposed a regional Innuitian Ice Sheet whereas another proposed a smaller, non-contiguous Franklin Ice Complex. Research throughout western Nares Strait supports coalescent Innuitian and Greenland ice during the LGM, based on widespread glacial and marine deposits dated by 14C and amino acid analyses. This coalescence likely promoted a vigorous regional ice flow westward across Ellesmere Island to Eureka Sound. Post-glacial emergence in Eureka Sound suggests a former ice thickness at least as great as that in Nares Strait (≥ 1 km). Recently, independent field studies elsewhere in the High Arctic also support an Innuitian Ice Sheet during the LGM. Collectively, these studies resolve a long-standing debate, and initiate new opportunities concerning the reconstruction of high-latitude palaeoenvironmental and palaeoclimatic change. © 1998 John Wiley & Sons, Ltd.  相似文献   

14.
New marine geological evidence provides a better understanding of ice-sheet dynamics along the western margin of the last Svalbard/Barents Sea Ice Sheet. A suite of glacial sediments in the Kongsfjordrenna cross-shelf trough can be traced southwards to the shelf west of Prins Karls Forland. A prominent moraine system on the shelf shows minimum Late Weichselian ice extent, indicating that glacial ice also covered the coastal lowlands of northwest Svalbard. Our results suggest that the cross-shelf trough was filled by a fast-flowing ice stream, with sharp boundaries to dynamically less active ice on the adjacent shelves and strandflats. The latter glacial mode favoured the preservation of older geological records adjacent to the main pathway of the Kongsfjorden glacial system. We suggest that the same model may apply to the Late Weichselian glacier drainage along other fjords of northwest Svalbard, as well as the western margin of the Barents Ice Sheet. Such differences in glacier regime may explain the apparent contradictions between the marine and land geological record, and may also serve as a model for glaciation dynamics in other fjord regions.  相似文献   

15.
Bedrock surfaces exposed around Llyn Llydaw, North Wales demonstrate contrasting styles of erosion beneath a Late Devensian ice sheet and a Loch Lomond Stadial (LLS) valley glacier. Ice sheet erosion involved lee-side fracturing, surface fracture wear and abrasive wear, while LLS erosion was primarily by abrasive wear. Preservation of ice sheet erosional features indicates limited rates of erosion during the LLS. Analysis of the geometry and distribution of erosional markings suggests that the low erosional capacity of the LLS glacier was due to a low basal sliding velocity. This prevented the formation of lee-side cavities, reduced the debris flux over the bed and minimised particle-bed contact loads. Reconstructions of the mass balance and geometry of the LLS glacier indicate that most of its balance velocity could be achieved by internal deformation alone. A combination of low subglacial water pressures and an unusually rough substrate explain the low sliding velocities. High bed roughness is due to the absence of leeside cavities and a change in flow orientation between ice sheet and LLS times, which meant that the LLS glacier was in contact with roughness elements which were generated in cavities beneath the ice sheet.  相似文献   

16.
On the basis of geomorphological and sedimentological data, we believe that the entire Barents Sea was covered by grounded ice during the last glacial maximum. 14C dates on shells embedded in tills suggest marine conditions in the Barents Sea as late as 22 ka BP; and models of the deglaciation history based on uplift data from the northern Norwegian coast suggest that significant parts of the Barents Sea Ice Sheet calved off as early as 15 ka BP. The growth of the ice sheet is related to glacioeustatic fall and the exposure of shallow banks in the central Barents Sea, where ice caps may develop and expand to finally coalesce with the expanding ice masses from Svalbard and Fennoscandia.The outlined model for growth and decay of the Barents Sea Ice Sheet suggests a system which developed and existed under periods of maximum climatic deterioration, and where its growth and decay were strongly related to the fall and rise of sea level.  相似文献   

17.
During decline of the last British–Irish Ice Sheet (BIIS) down‐wasting of ice meant that local sources played a larger role in regulating ice flow dynamics and driving the sediment and landform record. At the Last Glacial Maximum, glaciers in north‐western England interacted with an Irish Sea Ice Stream (ISIS) occupying the eastern Irish Sea basin (ISB) and advanced as a unified ice‐mass. During a retreat constrained to 21–17.3 ka, the sediment landform assemblages lain down reflect the progressive unzipping of the ice masses, oscillations of the ice margin during retreat, and then rapid wastage and disintegration. Evacuation of ice from the Ribble valley and Lancashire occurred first while the ISIS occupied the ISB to the west, creating ice‐dammed lakes. Deglaciation, complete after 18.6–17.3 ka, was rapid (50–25 m a?1), but slower than rates identified for the western ISIS (550–100 m a?1). The slower pace is interpreted as reflecting the lack of a calving margin and the decline of a terrestrial, grounded glacier. Ice marginal oscillations during retreat were probably forced by ice‐sheet dynamics rather than climatic variation. These data demonstrate that large grounded glaciers can display complex uncoupling and realignment during deglaciation, with asynchronous behaviour between adjacent ice lobes generating complex landform records.
  相似文献   

18.
Heggen, H. P., Svendsen, J. I. & Mangerud, J. 2009: River sections at the Byzovaya Palaeolithic site – keyholes into the late Quaternary of northern European Russia. Boreas, 10.1111/j.1502‐3885.2009.00109.x. ISSN 0300‐9483. The geological history of northern European Russia over the past two glacial cycles is reconstructed from the stratigraphy in river bluffs along the upper reaches of the Pechora River. From a till bed near the base of the sections it is inferred that the Barents–Kara Ice Sheet covered the area during the late Saalian (MIS 6). After deglaciation, and prior to the last interglacial, the area was flooded by an ice‐dammed lake, suggesting that the Pechora Basin was blocked by a subsequent ice advance at the very end of the Saalian. Ice‐wedge casts and periglacial sediments reflect a pronounced cooling with formation of permafrost during the Early Weichselian (MIS 5d). An overlying thick sequence of shallow lacustrine sediments accumulated in the ice‐dammed Lake Komi, formed by the advancing Barents–Kara Ice Sheet 80–100 kyr BP (MIS 5b?). Following drainage of the lake, many of the older formations were eroded by fluvial activity. Animal remains found together with palaeolithic artefacts within debrisflow sediments at the base of one of the incised gullies yielded radiocarbon ages around 28 000–30 000 14C yr BP (33–34 cal. kyr BP). The surface with traces of human activities was subsequently covered by aeolian sediments representing the northern extension of the European belt of periglacial coversand that accumulated in the cold and dry climate during the late Weichselian (MIS 2). The results of this work confirm the assumption that the last shelf‐centred ice sheet that covered this part of Russia occurred during the late Saalian (MIS 6), but that this glaciation was followed by a younger and less extensive ice advance that has not been described before. There are no indications that local glaciers originating in the Ural Mountains reached the Pechora River valley throughout the last two glacial cycles.  相似文献   

19.
This is a synthesis of the glacial history of the northern Urals undertaken using published works and the results of geological surveys as well as recent geochronometric and remote sensing data. The conclusions differ from the classical model that considers the Urals as an important source of glacial ice and partly from the modern reconstructions. The principal supporting evidence for the conventional model – Uralian erratics found on the adjacent plains – is ambiguous because Uralian clasts were also delivered by a thick external ice sheet overriding the mountains during the Middle Pleistocene. Alternative evidence presented in this paper indicates that in the late Quaternary the Ural mountains produced only valley glaciers that partly coalesced in the western piedmont to form large piedmont lobes. The last maximum glaciation occurred in the Early Valdaian time at c. 70–90 ka when glacial ice from the Kara shelf invaded the lowlands and some montane valleys but an icecap over the mountains was not formed. The moraines of the alpine glaciation are preserved only beyond the limits of the Kara ice sheet and therefore cannot be younger than MIS 4. More limited glaciation during MIS 2 generated small alpine moraines around the cirques of the western Urals (Mangerud et al. 2008: Quaternary Science Reviews 27, 1047). The largest moraines of Transuralia were probably produced by the outlet glaciers of a Middle Pleistocene ice sheet that formed on the western plains and discharged across the Polar Urals. The resultant scheme of limited mountain glaciation is possibly also applicable as a model for older glacial cycles.  相似文献   

20.
Marine ice sheets are grounded on land which was below sea level before it became depressed under the ice-sheet load. They are inherently unstable and, because of bedrock topography after depression, the collapse of a marine ice sheet may be very rapid. In this paper equations are derived that can be used to make a quantitative estimate of the maximum size of a marine ice sheet and of when and how rapidly retreat would take place under prescribed conditions. Ice-sheet growth is favored by falling sea level and uplift of the seabed. In most cases the buttressing effect of a partially grounded ice shelf is a prerequisite for maximum growth out to the edge of the continental shelf. Collapse is triggered most easily by eustatic rise in sea level, but it is possible that the ice sheet may self-destruct by depressing the edge of the continental shelf so that sea depth is increased at the equilibrium grounding line.Application of the equations to a hypothetical “Ross Ice Sheet” that 18,000 yr ago may have covered the present-day Ross Ice Shelf indicates that, if the ice sheet existed, it probably extended to a line of sills parallel to the edge of the Ross Sea continental shelf. By allowing world sea level to rise from its late-Wisconsin minimum it was possible to calculate retreat rates for individual ice streams that drained the “Ross Ice Sheet.” For all the models tested, retreat began soon after sea level began to rise (~15,000 yr B.P.). The first 100 km of retreat took between 1500 and 2500 yr but then retreat rates rapidly accelerated to between 0.5 and 25 km yr?1, depending on whether an ice shelf was present or not, with corresponding ice velocities across the grounding line of 4 to 70 km yr?1. All models indicate that most of the present-day Ross Ice Shelf was free of grounded ice by about 7000 yr B.P. As the ice streams retreated floating ice shelves may have formed between promontories of slowly collapsing stagnant ice left behind by the rapidly retreating ice streams. If ice shelves did not form during retreat then the analysis indicates that most of the West Antarctic Ice Sheet would have collapsed by 9000 yr B.P. Thus, the present-day Ross Ice Shelf (and probably the Ronne Ice Shelf) serves to stabilize the West Antarctic Ice Sheet, which would collapse very rapidly if the ice shelves were removed. This provides support for the suggestion that the 6-m sea-level high during the Sangamon Interglacial was caused by collapse of the West Antarctic Ice Sheet after climatic warming had sufficiently weakened the ice shelves. Since the West Antarctic Ice Sheet still exists it seems likely that ice shelves did form during Holocene retreat. Their effect was to slow and, finally, to halt retreat. The models that best fit available data require a rather low shear stress between the ice shelf and its sides, and this implies that rapid shear in this region encouraged the formation of a band of ice with a preferred crystal fabric, as appears to be happening today in the floating portions of fast bounded glaciers.Rebound of the seabed after the ice sheet had retreated to an equilibrium position would allow the ice sheet to advance once more. This may be taking place today since analysis of data from the Ross Ice Shelf indicates that the southeast corner is probably growing thicker with time, and if this persists then large areas of ice shelf must become grounded. This would restrict drainage from West Antarctic ice streams which would tend to thicken and advance their grounding lines into the ice shelf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号