首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A new method of determination of distances to stellar associations is proposed. This method is based on the measurements of mean thicknesses of globules of the systems of dark globules connected with that association. It is shown that the method is in good agreement with other known methods. A new grouping of OB stars in Pup-CMa is found. It is shown that this grouping has properties characteristic for OB-associations: the stars of that grouping have similar distances, similar radial velocities, the grouping is connected with molecular clouds, with Herbig-Haro objects, and cometary nebulae. All these results are in favour of this grouping to be a new OB-association. We named that association OB-association Pup-CMa. The preliminary results of12CO observations of molecular clouds connected with that association are also given. The radial velocities of these clouds are in good agreement with the mean radial velocity of stars in the association in Pup-CMa. Translated from Astrofizika, Vol. 42, No. 2, pp. 179–188, April–June, 1999.  相似文献   

2.
We present the first results of a submillimetre continuum survey of Lynds dark clouds. Submillimetre surveys of star-forming regions are an important tool with which to obtain representative samples of the very first phases of star formation. Maps of 24 small clouds were obtained with SCUBA, the bolometer array receiver at the James Clerk Maxwell Telescope, and 19 clouds were detected. The total dark cloud area surveyed was ∼130 arcmin2, and a total gas mass of 90 M was detected. The dust emission is in general in good agreement with the extinction of optical starlight. The observed clouds contain a newly discovered protostar in L944, and a previously known protostar IRAS 23228+4320 in L1246. Another eight starless cores, either gravitationally unbound or pre-stellar in nature, were also detected. All starless cores and protostars were detected in only seven clouds, and the remaining 17 clouds seem quiescent and do not show any signs of recent star formation activity. The 850-μm images of all detected clouds are presented, as well as 450-μm images of L328, L944, L1014 and L1262. The outflows of the protostars in L944 and L1246 were also discovered and were mapped in 12CO J =2→1. The detection of the young protostar in L944, which is not present in the IRAS Point Source Catalog, shows the capacity of submillimetre surveys to detect unknown protostars.  相似文献   

3.
It is generally accepted that the lifetime of molecular clouds does not exceed 3×107 yr due to disruption by stellar feedback. We put together some arguments giving evidence that a substantial fraction of molecular clouds (primarily in the outer regions of a disc) may avoid destruction process for at least 108 yr or even longer. A molecular cloud can live long if massive stars are rare or absent. Massive stars capable to destroy a cloud may not form for a long time if a cloud is low massive, or stellar initial mass function is top-light, or if there is a delay of the beginning of active star formation. A long duration of the inactive phase of clouds may be reconciled with the low amount of the observed starless giant molecular clouds if to propose that they were preceded by slowly contraction phase of the magnetized dark gas, non-detected in CO-lines.  相似文献   

4.
A simple, spherically-symmetric, centrally-condensed model is constructed for a dense core in a molecular cloud. Optical depths and peak brightness temperatures are calculated for the 10 lowest rotational transitions of carbon monoxide. The cloud, using parameters given by observation for dark condensations in molecular clouds, turns out to be optically thin in these transitions, which allows the maximum density and density distribution to be estimated.  相似文献   

5.
We study the connection between radial systems of dark globules and stellar associations. It is shown that of the 17 systems of type 1 in Table 1 of [1] 16 radial systems are connected with known associations. A new association is found (missing from the catalogs) connected with the remaining system (System No. 2). Four systems of the six systems of type 2 (Table 2 of [1]) are connected with known associations. A new method of determining the distance to associations is proposed, using the mean linear thickness of dark globules of radial systems connected with these associations as the criterion for distance. Using this method we make the distance to the association Cyg OB 9 more precise and answer the question whether several radial systems belong to the corresponding stellar associations.Translated fromAstrofizika, Vol. 37, No. 4, 1994.The authors are grateful to Academician V. A. Ambartsumyan for constant attention to this work.  相似文献   

6.
Infrared dark clouds (IRDCs) are cold, dense molecular clouds identified as extinction features against the bright mid-infrared Galactic background. Our recent 1.2 mm continuum emission survey of IRDCs reveals many compact (<0.5 pc) and massive (10–2100 M) cores within them. These prestellar cores hold the key to understanding IRDCs and their role in star formation. Here, we present high angular resolution spectral-line and mm/sub-mm continuum images obtained with the IRAM Plateau de Bure Interferometer and the Sub-Millimeter Array towards three high-mass IRDC cores. The high angular resolution images reveal that two of the cores are resolved into multiple, compact protostellar condensations, while the remaining core contains a single, compact protostellar condensation with a very rich molecular spectrum, indicating that it is a hot molecular core. The derived gas masses for these condensations suggest that each core is forming at least one high-mass protostar, while two of the cores are also forming lower-mass protostars. The close proximity of multiple protostars of disparate mass indicates that these IRDCs are in the earliest evolutionary states in the formation of stellar clusters.  相似文献   

7.
We present our recently developed 3-dimensional chemodynamical code for galaxy evolution. This code follows the evolution of different galactic components like stars, dark matter and different components of the interstellar medium (ISM), i.e. a diffuse gaseous phase and the molecular clouds. Stars and dark matter are treated as collisionless N-body systems. The ISM is numerically described by a smoothed particle hydrodynamics (SPH) approach for the diffuse gas and a sticky particle scheme for the molecular clouds. Additionally, the galactic components are coupled by several phase transitions like star formation, stellar death or condensation and evaporation processes within the ISM. As an example we show the dynamical and chemical evolution of a star forming dwarf galaxy with a total baryonic mass of 2 ċ 109 M. After a moderate collapse phase the stars and the molecular clouds follow an exponential radial distribution, whereas the diffuse gas shows a central depression as a result of stellar feedback. The metallicities of the galactic components behave quite differently with respect to their temporal evolution as well as their radial distribution. Especially, the ISM is at no stage well mixed. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

8.
We consider a disk-like dark matter model for the Milky Way andcompare a few predictions with observations. The observed gaseousflaring for HI and molecular gas fits the model predictions indetail. The global HI distribution in the Milky Way needs to beexplained by a multiphase medium. The dark matter distribution in theGalactic halo is traced by a low density component of halogas. High-velocity clouds with distances up to ~ 50 kpc may beexplained as condensations which originate from instabilities withinthe gaseous halo. Our model explains also ‘beards’ and ‘forbiddenvelocities’ as observed in the rotation curves of externalgalaxies. A disk-like dark matter model is self-consistent and inexcellent agreement with observations.  相似文献   

9.
To better understand the conditions under which ice mantles form on grains in molecular clouds, three globules in the Southern Coalsack have been searched for the presence of H2O ice. Given the total lack of star formation in the Coalsack, it is an ideal site for studying unprocessed icy molecular mantles. In our sample of eight field stars lying behind the Coalsack we detect strong H2O ice absorption in the lines of sight to two stars and possible weak absorption in four others. We estimate H2O ice column densities or upper limits for these lines of sight. Compared to dark clouds such as Taurus, the Coalsack H2O ice column densities are lower than expected given the quiescent nature of the Coalsack region. It is possible that the chemical evolution of the Coalsack may simply be at too early a stage for significant ice mantles to appear on the grains, except perhaps in the densest parts of some of the globules. Alternatively, the presence or absence of ice absorption may be related to the distribution of dust along each line of sight, specifically, the relative contributions of dense globules and a more extended diffuse component. For example, our observations are consistent with an ice threshold extinction similar to that observed in the Taurus dark cloud if extinction amounting to   A V∼5  towards Globules 2 and 3 arises in the extended component. Globule 1 appears to have no extended component.  相似文献   

10.
Lack of reliable estimates of distances to most of the local dark clouds has, so far, prevented a quantitative study of their kinematics. Using a statistical approach, we have been able to extract the average spatial distribution as well as the kinematical behaviour of the local dark clouds from their measured radial velocities. For this purpose, we have obtained radial velocities for 115 southern clouds and used the data from the literature for the northern ones. In this paper we present this new data, analyse the combined data and compare our results with those arrived at by earlier studies. The local clouds are found to be expanding at a speed of ∼ 4 kms-1 which is in general agreement with the estimates from optical and HI studies. However, it is found that the kinematics of the local clouds is not described by the model proposed for the local HI gas where a ring of gas expanding from a point gets sheared by the galactic rotation. Rather, the observed distribution of their radial velocities is best understood in terms of a model in which the local clouds are participating in circular rotation appropriate to their present positions with a small expansion also superimposed. This possibly implies that cloud-cloud collisions are important. The spatial distribution of clouds derived using such a model is in good agreement with the local dust distribution obtained from measurements of reddening and extinction towards nearby stars. In particular, a region of size ∼ 350 pc in diameter enclosing the Sun is found to be devoid of clouds. Intriguingly, most clouds in the longitude range 100‡ to 145‡ appear to have negative radial velocities implying that they are approaching us. Carried out under the auspices of the Joint Astronomy Program, Department of Physics, Indian Institute of Science, Bangalore in partial fulfillment of the requirements for the Degree of Doctor of Philosophy.  相似文献   

11.
The hypothesis advanced by V. A. Ambartsumyan according to which stars are formed from prestellar superdense objects-- protostars-- was an alternative to the hypothesis of the 1950's (and even now, not much changed) according to which stars are formed by accretion with subsequent collapse (in various modifications). Ambartsumyan's basic inferences were based on an analysis of the observational data available at that time. This paper presents both Ambartsumyan's pioneering ideas and some modern hypotheses of star formation. Some results from studies of molecular clouds and star formation regions are also discussed. One of the distinctive features of young stellar objects (YSO) is the outflow of matter from these objects (molecular, in the form of jets, etc.), a phenomenon whose importance for the evolution of stars was noted by Ambartsumyan as long ago as 1937. Radial systems of dark globules are examined, as well as H-H objects associated with star formation regions, cometary nebulae, and close Trapeziumtype systems (consisting of YSO). Translated from Astrofizika, Vol. 52, No. 2, pp. 185–202 (May 2009).  相似文献   

12.
This work deals with a CCD imaging study at optical and near‐infrared wavelength oftwo giant molecular clouds (plus a control field) in the southern region of the Large Magellanic Cloud, one ofwhich shows multiple signs of star formation, whereas the other does not. The observational data from VLT FORS2 (R band) and NTT SOFI (Ks band) have been analyzed to derive luminosity functions and color‐magnitude diagrams. The young stellar content of these two giant molecular clouds is compared and confirmed to be different, in the sense that the apparently “starless” cloud has so far formed only low‐luminosity, low‐mass stars (fainter than mKs ∽ 16.5 mag, not seen by 2MASS), while the other cloud has formed both faint low‐mass and luminous high‐mass stars. The surface density excess oflow‐luminosity stars (∽2 per square arcmin) in the “starless” cloud with respect to the control field is about 20% whereas the excess is about a factor of 3 in the known star‐forming cloud. The difference may be explained theoretically by the gravo‐turbulent evolution of giant molecular clouds, one being younger and less centrally concentrated than the other (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
In this article we extend the study performed in our previous article of the collapse of primordial objects. We here analyse the behaviour of the physical parameters for clouds ranging from 107 to 1015 M. We study the dynamical evolution of these clouds in two ways: as purely baryonic clouds and as clouds with non-baryonic dark matter included. We start the calculations at the beginning of the recombination era, following the evolution of the structure until the collapse (which we defined as the time when the density contrast of the baryonic matter is greater than 104). We analyse the behaviour of several physical parameters of the clouds (e.g. the density contrast and the velocities of the baryonic matter and the dark matter) as a function of time and radial position in the cloud. In this study all physical processes that are relevant to the dynamical evolution of the primordial clouds, such as for example photon drag (due to the cosmic background radiation) and hydrogen molecular production, besides the expansion of the Universe, are included in the calculations. In particular we find that the clouds with dark matter collapse at higher redshift when we compare the results with the purely baryonic models. As a general result we find that the distribution of the non-baryonic dark matter is more concentrated than the baryonic one. It is important to stress that we do not take into account the putative virialization of the non-baryonic dark matter; we just follow the time and spatial evolution of the cloud, solving its hydrodynamical equations. We also studied the role of cooling–heating processes in the purely baryonic clouds.  相似文献   

14.
Gravitational settling of dust grains in dark clouds has been considered. It has been shown that such a process gives rise to a modification of the grain size distribution. Starting with a simple model of uniform spherical cloud and normal interstellar grain size distribution for the dust we derive expressions for the modified grain size distribution function, average grain size and extinction as functions of distance from the cloud's center and the age of the cloud. The mean grain size increases towards the center of the cloud as does the extinction. Results of the numerical evaluation of these quantities have been discussed with their implications for the observations of anomalous reddening and polarization within dark clouds and Bok globules.  相似文献   

15.
Massive stars have significant influence on the evolution of the interstellar medium. Bright rims, cometary morphology of clouds, as well as their motion are some examples of the influence of massive stars on nearby molecular clouds. The cometary clouds in the Gum-Vela region are very good examples. In an attempt to understand the kinematics of the clouds in such regions we have carried out CO line observations towards bright-rimmed clouds near the OB Association Cep OB2. The radial velocities of the clouds are consistent with an expansion of the system at ≈ 4kms?1 away from the dominant O6.5V star in the association, HD206267. We find the rocket mechanism to be the most likely cause for expansion as found for both the Gum-Vela and the Rosette globules. We conclude that such expanding motions are quite common in regions near massive stars and make a brief comparison of the Cepheus system with the Gum-Vela system.  相似文献   

16.
We evaluate the intrinsic three-dimensional shapes of molecular cores, by analysing their projected shapes. We use the recent catalogue of molecular line observations of Jijina et al. and model the data by the method originally devised for elliptical galaxies. Our analysis broadly supports the conclusion of Jones et al. that molecular cores are better represented by triaxial intrinsic shapes (ellipsoids) than biaxial intrinsic shapes (spheroids). However, we find that the best fit to all of the data is obtained with more extreme axial ratios (1:0.8:0.4) than those derived by Jones et al.
More surprisingly, we find that starless cores have more extreme axial ratios than protostellar cores – starless cores appear more 'flattened'. This is the opposite of what would be expected from modelling the freefall collapse of triaxial ellipsoids. The collapse of starless cores would be expected to proceed most swiftly along the shortest axis – as has been predicted by every modeller since Zel'dovich – which should produce more flattened cores around protostars, the opposite of what is seen.  相似文献   

17.
Distances to nine dark globules are determined by a method using optical ( VRI ) and near-infrared (near-IR) ( JHK ) photometry of stars projected towards the field containing the globules. In this method, we compute intrinsic colour indices of stars projected towards the direction of the globule by dereddening the observed colour indices using various trial values of extinction   A V   and a standard extinction law. These computed intrinsic colour indices for each star are then compared with the intrinsic colour indices of normal main-sequence stars and a spectral type is assigned to the star for which the computed colour indices best match with the standard intrinsic colour indices. Distances ( d ) to the stars are determined using the   A V   and absolute magnitude  ( MV )  corresponding to the spectral types thus obtained. A distance versus extinction plot is made and the distance at which   A V   undergoes a sharp rise is taken to be the distance to the globule. All the clouds studied in this work are in the distance range 160–400 pc. The estimated distances to dark globules LDN 544, LDN 549, LDN 567, LDN 543, LDN 1113, LDN 1031, LDN 1225, LDN 1252 and LDN 1257 are  180 ± 35, 200 ± 40, 180 ± 35, 160 ± 30, 350 ± 70, 200 ± 40, 400 ± 80, 250 ± 50  and 250 ± 50 pc, respectively. Using the distances determined, we have estimated the masses of the globules and the far-IR luminosity of the IRAS sources associated with them. The mass of the clouds studied are in the range  10–200 M  .  相似文献   

18.
A hot-gas halo is predicted by chemodynamical models during the early evolution of spheroidal galaxies. Cold condensations, arising from thermal instabilities in the hot gas, are expected to be embedded in the hot halo. In the early phases of the galaxy ( t ≲1 Gyr), a strong X-ray and EUV emission is produced by the extended hot-gas distribution, ionizing the cold clouds. This self-irradiating two-phase halo model successfully explains several line ratios observed in QSO absorption-line systems, and reproduces the temperature distribution of Lyman α clouds.  相似文献   

19.
The equations for a collisional disc permit solutions which represent small local condensations of matter in a uniform medium. With parameter values appropriate to the pre-planetary disc the clouds are 50 to 1500 times as dense as the surrounding region and have a mass of 1014 to 1015 g. The formation of clouds follows from collisional instability. They maintain their equilibrium by means of a mass exchange with the adjacent matter. The clouds are proposed to replace the solid planetesimals in the theory of planetary formation.  相似文献   

20.
We investigate the evolution of the magnetic flux density in a magnetically supported molecular cloud driven by Hall and Ohmic components of the electric field generated by the flows of thermal electrons. Particular attention is given to the wave transport of the magnetic field in a cloud whose gas dynamics is dominated by electron flows; the mobility of neutrals and ions is regarded as heavily suppressed. It is shown that electromagnetic waves penetrating such a cloud can be converted into helicons – weakly damped, circularly polarized waves in which the densities of the magnetic flux and the electron current undergo coherent oscillations. These waves are interesting in their own right, because for electron magnetohydrodynamics the low-frequency helicoidal waves have the same physical significance as the transverse Alfvén waves do for a single-component magnetohydrodynamics. The latter, as is known, are considered to be responsible for the widths of molecular lines detected in dark, magnetically supported clouds. From our numerical estimates for the group velocity and the rate of dissipation of helicons it follows that a possible contribution of these waves to the broadening of molecular lines is consistent with the conditions typical of dark molecular clouds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号