首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
2.
3.
4.
5.
6.
Tail emission of the prompt gamma-ray burst (GRB) is discussed using a multiple emitting sub-shell (inhomogeneous jet, sub-jets or mini-jets) model, where the whole GRB jet consists of many emitting sub-shells. One may expect that such a jet with angular inhomogeneity should produce spiky tail emission. However, we found that the tail is not spiky but is decaying roughly monotonically. The global decay slope of the tail is not so much affected by the local angular inhomogeneity but affected by the global sub-shell energy distribution. The fact that steepening GRB tail breaks appeared in some events prefers the structured jets. If the angular size of the emitting sub-shell is around 0.01–0.02 rad, some bumps or fluctuations appear in the tail emission observed frequently in long GRBs. If the parameter differences of sub-shell properties are large, the tail has frequent changes of the temporal slope observed in a few bursts. Therefore, the multiple emitting sub-shell model has the advantage of explaining the small-scale structure in the observed rapid decay phase.  相似文献   

7.
Based on nine BATSE GRBs with known redshifts, we found that the maximum spectral lag of all the pulses in a gamma-ray burst (GRB) appears to be anti-correlated with the redshift of the burst. In order to confirm this finding, we analyzed 10 GRBs detected by HETE-2 with known redshifts and found a similar relation. Using the relation, we estimated the redshifts of 878 long GRBs in the BATSE catalog, then we investigated the distributions of the redshifts and 869 Eiso of these GRBs. The distribution of the estimated redshifts is concentrated at z = 1.4 and the distribution of Eiso peaks at 1052.5 erg. The underlying physics of the correlation is unclear at present.  相似文献   

8.
9.
We continue the study of the properties of non-radial pulsations of strange dwarfs. These stars are essentially white dwarfs with a strange quark matter (SQM) core. We have previously shown that the spectrum of oscillations should be formed by several, well-detached clusters of modes inside which the modes are almost evenly spaced. Here, we study the relation between the characteristics of these clusters and the size of the SQM core. We do so assuming that, for a given cluster, the kinetic energy of the modes is constant. For a constant amplitude of the oscillation at the stellar surface, we find that the kinetic energy of the modes is very similar for the cases of models with Log Q SQM=−2, −3 and −4, while it is somewhat lower for  Log Q SQM=−5  (here   Q SQM≡ M SQM/ M ; M SQM  and M are the masses of the SQM core and the star, respectively). Remarkably, the shape (amplitude of the modes versus period of oscillation) of the clusters of periods is very similar. However, the number of modes inside each cluster is strongly (and non-monotonously) dependent upon the size of the SQM core.
The characteristics of the spectrum of oscillations of strange dwarf stars are very different from the ones corresponding to normal white dwarfs and should be, in principle, observable. Consequently, the stars usually considered as white dwarfs may indeed provide an interesting and affordable way to detect SQM in an astrophysical environment.  相似文献   

10.
We present a modified scenario of gamma-ray emission from pulsars within the framework of polar cap models. Our model incorporates the possible acceleration of electron–positron pairs created in magnetospheres, and their subsequent contribution to the gamma-ray luminosity L γ. It also reproduces the empirical trend in L γ for seven pulsars detected with Compton Gamma-Ray Observatory ( CGRO ) experiments. At the same time it avoids basic difficulties faced by theoretical models when confronted with observational constraints.   We show that the classical and millisecond pulsars form two distinct branches in the L γ— L sd diagram (where L sd is the spin-down luminosity). In particular, we explain why the millisecond pulsar J0437−4715 has not been detected with any of the CGRO instruments despite its very high position in the ranking list of spin-down fluxes (i.e. L sd/ D 2, where D is a distance). The gamma-ray luminosity predicted for this particular object is about one order of magnitude below the upper limit set by EGRET.  相似文献   

11.
12.
We analyzed a sample of 66 gamma-ray bursts (GRBs) and statistically confirmed the prediction on the time curve of the hardness ratio of GRBs made by Qin et al. based on the curvature effect. In their analysis, GRB pulses are divided into three types according to the shape of their raw hardness ratio (RHR) time curves, defined as to include the background counts to the signal counts, so as to make use of counts within small time intervals. Of the three types, very hard sources exhibit a perfect pulse-like profile (type 1), hard bursts possess a pulse-like profile with a dip in the decay phase (type 2), and soft bursts show no pulse-like profile but have only a dipped profile (type 3). In terms of the conventional hardness ratio, type 3 sources are indeed generally softer than those of type 1 and type 2, in agreement with the prediction. We found that the minimum value of RHR is sensitive in distinguishing the different types. We propose that GRB pulses can be classified according to the minimum value of RHR and that the different type sources may be connected with different strengths of the shock or/and the magnetic field.  相似文献   

13.
Recently, Shen et al. have studied the contributions of the curvature effect of fireballs to the spectral lag and have shown that the observed lags can be accounted for by the effect. Here, we check their results by performing a more precise calculation with both formulae presented by Shen et al. and Qin et al. Several other aspects which were not considered by Shen et al. are investigated. We find that in the case of ultrarelativistic motions, both formulae are identical as long as the whole fireball surface is concerned. In our analysis, the previous conclusion that the detected spectral lags can be accounted for by the curvature effect is confirmed, while the conclusion that the lag has no dependence on the radius of fireballs is not true. We find that introducing extreme physical parameters is not the only outlet to explain these observed large lags. Even for the larger lags (∼5 s), a wider local pulse  (Δ t θ,FWHM= 107 s)  can account for it. Some conclusions not presented in Shen et al. or those modified in our analysis are listed below: (i)  lag ∝Γ−ε  with  ε > 2  ; (ii) lag is proportional to the local pulse width and the full width at half-maximum of the observed light curves; (iii) a large lag requires a large α0 and a small β0 as well as a large   E 0,p  ; (iv) when the rest-frame spectrum varies with time, the lag would become larger; (v) lag decreases with the increase of   Rc   ; (vi) lag ∝ E within the certain energy range for a given Lorentz factor; (vii) lag is proportional to the opening angle of uniform jets when  θj < 0.6Γ−1  .  相似文献   

14.
In the advent of next generation gamma-ray missions, we present general properties of spectral features of high-energy emission above 1 MeV expected for a class of millisecond, low magnetic field (∼109 G) pulsars. We extend polar-cap model calculations of Rudak & Dyks by including inverse Compton scattering events in an ambient field of thermal X-ray photons and by allowing for two models of particle acceleration. In the range between 1 MeV and a few hundred GeV, the main spectral component is the result of curvature radiation of primary particles. The synchrotron component arising from secondary pairs becomes dominant only below 1 MeV. The slope of the curvature radiation spectrum in the energy range from 100 MeV to 10 GeV strongly depends on the model of longitudinal acceleration, whereas below ∼100 MeV all slopes converge to a unique value of 4/3 (in a ν ℱ ν convention). The thermal soft X-ray photons, which come either from the polar cap or from the surface, are Compton upscattered to a very high energy domain and form a separate spectral component peaking at ∼1 TeV. We discuss the observability of millisecond pulsars by future high‐energy instruments and present two rankings relevant for GLAST and MAGIC. We point to the pulsar J0437−4715 as a promising candidate for observations.  相似文献   

15.
We study time-resolved spectra of the prompt emission of Swift γ-ray bursts (GRB). Our goal is to see if previous BATSE claims of the existence of a large amount of spectra with the low-energy photon indices harder than 2/3 are consistent with Swift data. We perform a systematic search of the episodes of the spectral hardening down to the photon indices  ≤2/3  in the prompt emission spectra of Swift GRBs. We show that the data of the Burst Alert Telescope (BAT) instrument on board of Swift are consistent with BATSE data, if one takes into account differences between the two instruments. Much lower statistics of the very hard spectra in Swift GRBs are explained by the smaller field of view and narrower energy band of the BAT telescope.  相似文献   

16.
17.
Gamma-Ray Bursts in the Swift Era   总被引:1,自引:0,他引:1  
1 INTRODUCTION Gamma-ray bursts (GRBs) are fascinating celestial objects. These short, energetic bursts of gamma-rays mark the most violent, cataclysmic explosions in the universe, likely associated with the births of stellar- size black holes or rapidly spinning, highly magnetized neutron stars. Since the detections of their long- wavelength afterglows (Costa et al. 1997; van Paradijs et al. 1997; Frail et al. 1997), GRBs are observa- tionally accessible in essentially all electromagn…  相似文献   

18.
We present the first statistical analysis of 27 Ultraviolet Optical Telescope (UVOT) optical/ultraviolet light curves of gamma-ray burst (GRB) afterglows. We have found, through analysis of the light curves in the observer's frame, that a significant fraction rise in the first 500 s after the GRB trigger, all light curves decay after 500 s, typically as a power law with a relatively narrow distribution of decay indices, and the brightest optical afterglows tend to decay the quickest. We find that the rise could be either produced physically by the start of the forward shock, when the jet begins to plough into the external medium, or geometrically where an off-axis observer sees a rising light curve as an increasing amount of emission enters the observers line of sight, which occurs as the jet slows. We find that at 99.8 per cent confidence, there is a correlation, in the observed frame, between the apparent magnitude of the light curves at 400 s and the rate of decay after 500 s. However, in the rest frame, a Spearman rank test shows only a weak correlation of low statistical significance between luminosity and decay rate. A correlation should be expected if the afterglows were produced by off-axis jets, suggesting that the jet is viewed from within the half-opening angle θ or within a core of a uniform energy density  θc  . We also produced logarithmic luminosity distributions for three rest-frame epochs. We find no evidence for bimodality in any of the distributions. Finally, we compare our sample of UVOT light curves with the X-ray Telescope (XRT) light-curve canonical model. The range in decay indices seen in UVOT light curves at any epoch is most similar to the range in decay of the shallow decay segment of the XRT canonical model. However, in the XRT canonical model, there is no indication of the rising behaviour observed in the UVOT light curves.  相似文献   

19.
The Swift mission has discovered an intriguing feature of gamma-ray burst (GRBs) afterglows, a phase of shallow decline of the flux in the X-ray and optical light curves. This behaviour is typically attributed to energy injection into the burst ejecta. At some point this phase ends, resulting in a break in the light curve, which is commonly interpreted as the cessation of the energy injection. In a few cases, however, while breaks in the X-ray light curve are observed, optical emission continues its slow flux decline. This behaviour suggests a more complex scenario. In this paper, we present a model that invokes a double component outflow, in which narrowly collimated ejecta are responsible for the X-ray emission while a broad outflow is responsible for the optical emission. The narrow component can produce a jet break in the X-ray light curve at relatively early times, while the optical emission does not break due to its lower degree of collimation. In our model both components are subject to energy injection for the whole duration of the follow-up observations. We apply this model to GRBs with chromatic breaks, and we show how it might change the interpretation of the GRBs canonical light curve. We also study our model from a theoretical point of view, investigating the possible configurations of frequencies and the values of GRB physical parameters allowed in our model.  相似文献   

20.
There is increasing evidence of a local population of short duration gamma-ray bursts (sGRB), but it remains to be seen whether this is a separate population to higher redshift bursts. Here we choose plausible luminosity functions (LFs) for both neutron star binary mergers and giant flares from soft gamma repeaters (SGR), and combined with theoretical and observed Galactic intrinsic rates we examine whether a single progenitor model can reproduce both the overall Burst and Transient Source Experiment (BATSE) sGRB number counts and a local population, or whether a dual progenitor population is required. Though there are large uncertainties in the intrinsic rates, we find that at least a bimodal LF consisting of lower and higher luminosity populations is required to reproduce both the overall BATSE sGRB number counts and a local burst distribution. Furthermore, the best-fitting parameters of the lower luminosity population agree well with the known properties of SGR giant flares, and the predicted numbers are sufficient to account for previous estimates of the local sGRB population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号