首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Seasonal netzplankton samples from stations in the Changjiang (Yangtze River) Estuary were collected from May, 2004 to February, 2005. The dominant species and their contribution to the total zooplankton abundance were determined. Moreover, the relationship between the salinity and abundance was studied with stepwise linear regression. During the whole year, the salinity was positively correlated with the abundance, while the temperature, negatively. Linear regression analysis showed also a high positive correlation with salinity for total abundance in August and November, while in February and May, no obvious relations were found. The most abundant community was composed of neritic and brackish-water species. The North Passage (NP) (salinity <5) was greatly diluted by freshwater while the North Branch (NB) was brackish water with salinity range of 12–28. Consequently, clear decline in abundance of zooplankton was along the estuarine haloclines from the maximum in the area of high salinity to the minimum in the limnetic zone. Total zooplankton abundance and biomass were lower in NP than the NB in all seasons. In short, the salinity influenced the abundance of each species of zooplankton, and ultimately determined the total abundance of zooplankton. Furthermore, a winter peak in the abundance existed, which might be caused by the flourishing of Sinocalanus sinensis, a widely distributed species in the Changjiang Estuary.  相似文献   

2.
The response of zooplankton to the ecological environment in Daya Bay is unclear under the influence of both climate changes and anthropogenic activities on a seasonal to inter-annual scale. Based on monthly surveys and historical data, we found the zooplankton community had changed temporally and spatially. A total of 134 species was recorded during the study, and copepods dominated numerically in terms of diversity and abundance. Both copepods and cladocerans were the main contributors to zooplankton abundance. The community structure of zooplankton was temporally classified into the warm and cold groups, and spatially into the three groups located in the marine cage-culture area(MCCA), the outflow of nuclear power plants(ONPP) and unpolluted waters(UPW). The zooplankton was characterized by low biomass(dry weight), high diversity and abundance in the warm period in contrast to that in the cold period. Compared with the other two groups, the MCCA group of zooplankton showed high abundance, low diversity and biomass. Variations in dominant species were closely related to temperature, salinity and chlorophyll a concentration.Species diversity and dry weight decreased in comparison with 30 years ago, while zooplankton abundance increased. The seasonal variation in zooplankton was affected mainly by temperature that was controlled by monsoon, while the spatial difference in the community structure was probably due to eutrophication in the MCCA and thermal water discharge from ONPP. The zooplankton community is undergoing great changes with the tendency of miniaturization and gelatinization in recent 30 years in Daya Bay.  相似文献   

3.
This study aims to analyze the spatial and temporal variations of the abundance and biodiversity of pelagic copepods and their relationships with the environmental factors in the North Yellow Sea(NYS). These variations were analyzed on the basis of the survey data of the NYS in four seasons from 2006 to 2007. A total of 31 copepod species that belong to 17 genera, 13 families and 4 orders were identified in the four seasons. Of these copepods, the species belonging to Calanoida is the most abundant component. The dominant species include Calanus sinicus, Centropages abdominalis, Paracalanus parvus, Acartia bifilosa, Oithona plumifera, and Corycaeus affinis. C. sinicus is the most important and widely distributed dominant species in all of the seasons. The dominant species have not shown any significant variation for the past 50 years. However, the richness of warm-water species increased. The abundance of copepods significantly varied among different seasons: the average abundance was higher in spring(608.2 ind m~(-3)) and summer(385.1 ind m~(-3)) than in winter(186.5 ind m~(-3)) and autumn(128.0 ind m~(-3)). Factor analyses showed a high correlation between the spatial distributions of dominant copepods and environmental parameters, and Chl-a was the most important factor that influenced the distribution of copepods. This research can provide the fundamental information related to zooplankton, especially pelagic copepods. This research is also beneficial for the long-term monitoring of zooplankton ecology in the NYS.  相似文献   

4.
Keibul Lamjao National Park(KLNP), a floating park in Loktak Lake, Manipur(India) was studied from Winter(WIN) to Post Monsoon(POM) for its zooplankton composition and some selected water parameters. The resultant data were subjected to multivariate techniques ? Principal Component Analysis(PCA) and Canonical Correspondence Analysis(CCA). Analyses of water parameters with PCA revealed that the first PC axis(PC1) accounts for maximum variance in the seasonal data, explaining a variability of 91%. The PCA revealed that the seasonal variability in water parameters was due to the wet and dry cycle of seasons and the stations were distinguished on the basis of transparency and turbidity. Zooplankton abundance was dominated by copepods followed by cladocerans. Temporally, abundance of copepods reached a maximum during Post-monsoon(POM)(3 880 ind./L). Spatially, S6 was found to be most abundant of the other stations in zooplankton. Copepodites and nauplii larvae were the major components of zooplankton. The Rotifera were the least abundant among the three zooplankton groups. Brachionus formed the major component of Rotifera zooplankton at all the stations during the study period. In the Cladocera, Macrothrix was present during all the four seasons, while Pleuroxus, Oxyurella, Kurzia and, Diaphanosoma were rare. The CCA shows that maximal temporal variability in zooplankton abundance was explained by temperature and rainfall. ANOVA revealed no significant difference in mean zooplankton abundance among the seasons, but there was a statistically significant difference among the sites.  相似文献   

5.
Samples were collected monthly from the sea area around Zhangzi Island,northern Yellow Sea,from July 2009 to June 2010.Vertical net towing was used to examine spatial and temporal variability in zooplankton abundance and biomass.Overall,C alanus sinicus and Saggita crassa were the dominant species found during the study period,while the amphipod T hemisto gracilipes was dominant in winter and spring.Vast numbers of the ctenophore species of the genus Beroe were found in October and November.It was not possible to count them,but they constituted a large portion of the total zooplankton biomass.Zooplankton species diversity was highest in October,and species evenness was highest in April.Zooplankton abundance(non-jellyfi sh)and biomass were highest in June and lowest in August,with annual averages of 131.3 ind./m3and 217.5 mg/m3,respectively.Water temperature may be responsible for the variations in zooplankton abundance and biomass.B eroe biomass was negatively correlated with other zooplankton abundance.Longterm investigations will be carried out to learn more about the infl uence of the environment on zooplankton assemblages.  相似文献   

6.
Abstracts Species abundance and seasonal succession of copepods in saline-alkaline ponds were studied in Zhaodian Fish Farm, Gaoqing County, Shandong Province, from 5 April 1997 to 1 September 1998. The results indicated that in the conditions of salinity ranging from 1.36 to 20 g/L, total alkalinity changing from 2.4 to 7.2 mmol/L and pH 8-9, zooplankton in saline-alkaline ponds was composed of freshwater salt-tolerated species or halophile species, some of which are halobiont species and usually occurs in freshwater. In our study, copepods were predominant in many fish-culture ponds and all control ponds without fishes in spring, late autumn and early winter. Dominant species of copepods were Sinocalanus tenellus, Cyclops vicinus, Thermocyclops taihokuensis. The biomass of copepods in the control ponds without fishes was higher than that of the fish-culture ponds.  相似文献   

7.
Crustacean zooplankton form the keystone link between primary producers and fish stocks in marine and estuary ecosystems. We have established a multi-generation cultivation system for zooplankton with which future experiments on the biological effects of pollutants in marine and estuary environments can be better performed. A population of calanoid copepod, Schmakeria poplesia, was collected in December 2003 and maintained in a static system through all stages (eggs to adults). The population exhibited an average developmental time of 13.6 d in conditions corresponding to the natural environment (water temperature 20°C, salinity 15). A series of experiments were performed to examine copepod egg production and hatching success as functions of food type and feeding concentration. Results in our study showed that Isochrysis galbana was more favored for the reproduction of copepods than Phaeodactylum tricornutum, and 10×104cells mL−1 was the most practical algae concentration. We have demonstrated that the Schmakeria poplesia population can be maintained in the laboratory through multiple generations. In addition, methods to control egg production through changes in food concentration have been established, making it feasible to control the start date of exposure experiments or the timing of the collection of offspring to initiate a new generation.  相似文献   

8.
Spatial distribution and temporal dynamics of phytoplankton community and their relationships with environmental factors were studied in the Pearl River Estuary (PRE), South China, in three seasons. Salinity was considered as the key environmental variable controlling horizontal distributions of phytoplankton community composition. A transition from dominance of freshwater diatoms (Aulacoseira granulata and A. granulata v. angustissima) to estuarine species (Skeletonema costatum and Pseudonitzschia delicatissima) was observed in the high flow season (summer) along the estuary gradient; in the low flow season (spring), the inner estuary was relatively homogeneous and some typical estuarine species could be found near the river mouth. In the normal flow season (autumn), a potentially toxic bluegreen species, Microcystis spp. was predominant in the middle reaches of the estuary, which should be seeded from upstream and transported downstream by river discharges. Phytoplankton abundance was negatively correlated with suspended solid content and nutrient concentration in the PRE, suggesting that turbidity and nutrient availability were the crucial factors regulating the algal biomass. Phytoplankton abundance in the outer estuary was enhanced by increasing irradiance and continued to be enhanced until phosphorus-limitation.  相似文献   

9.
黄河入海口水域春季浮游动物群落特征研究   总被引:3,自引:0,他引:3  
对2008、2009年黄河入海口水域春季浮游动物进行调查,采用香农-威纳多样性指数(Shannon-Weiner index)、Pielou均匀度指数和McNaugton优势度指数对其浮游动物群落特征进行分析。结果表明:浮游动物鉴定出6大类44种,以甲壳动物种类最多;2008年5月黄河入海口水域浮游动物多样性指数范围为0.92~2.65,均匀度变化范围为0.25~0.66;2009年5月浮游动物多样性指数范围为0.76~2.87,均匀度变化范围为0.21~0.70。黄河入海口水域浮游动物时空分布较不均匀,群落特征(包括丰度、多样性指数、均匀度和优势度等)在同一时期同一水域各采样点间差异较大,同一采样点不同年份差异显著。  相似文献   

10.
Zooplankton was major indicator species of the environment. To explore the effect of marine environment on zooplankton distribution in the coast of China, the zooplankton samples from stations in Guanhe Estuary(GE), Changjiang(Yangtze River) Estuary(CE), Oujiang Estuary(OE), Jiulongjiang Estuary(JE) and Beilun Estuary(BE)(covering 14 latitudes) in spring were surveyed and the variation of zooplankton ecological group was researched. According to the adaptability temperature, the zooplankton was divided into two ecological groups: warm-temperate species and subtropical species. The warm-temperate species was the main dominant species and subtropical species was only dominant species in BE. Calanus sinicus, a warm-temperate species, was the only dominant species in all five estuaries. From north to south, the proportion of warm-temperate species in the five estuaries gradually decreased depends on the number, were 83.33%, 48.39%, 45.00%, 43.75% and 30.43%, respectively. In contrary, the proportion of subtropical species was gradually increased. The warm-temperate species predominated over the total abundance and the percentage was whopping high in the north estuaries, including GE(96.16%), CE(95.57%), OE(97.83%) and JE(95.53%). The abundance percentage of subtropical species have remarkably higher(82.39%) in BE. Five estuaries zooplankton community was subdivided into three zooplankton groups, which were the northern warm temperate zooplankton group, the southern subtropical zooplankton group and the estuarine brackish-water group. The water temperature and coastal current of China Sea are recognized as the main factors determining the distribution and community structure of estuarine zooplankton in spring.  相似文献   

11.
To assess the effects of hypoxia, macrobenthic communities along an estuarine gradient of the Changjiang estuary and adjacent continental shelf were analyzed. This revealed spatial variations in the communities and relationships with environmental variables during periods of reduced dissolved oxygen(DO) concentration in summer. Statistical analyses revealed significant differences in macrobenthic community composition among the three zones: estuarine zone(EZ), mildly hypoxic zone(MHZ) in the continental shelf, and normoxic zone(NZ) in the continental shelf(Global R =0.206, P =0.002). Pairwise tests showed that the macrobenthic community composition of the EZ was significantly different from the MHZ(pairwise test R =0.305, P =0.001) and the NZ(pairwise test R =0.259, P =0.001). There was no significant difference in macrobenthic communities between the MHZ and the NZ(pairwise test R =0.062, P =0.114). The taxa included small and typically opportunistic polychaetes, which made the greatest contribution to the dissimilarity between the zones. The effects of mild hypoxia on the macrobenthic communities are a result not only of reduced DO concentration but also of differences in environmental variables such as temperature, salinity, and nutrient concentrations caused by stratification.  相似文献   

12.
Fish assemblage structure in the hypoxic zone in the Changjiang (Yangtze River) estuary and its adjacent waters were analyzed based on data from bottom trawl surveys conducted on the R/V Beidou in June, August and October 2006. Four fish assemblages were identified in each survey using two-way indicator species analysis (TWIA). High fish biomass was found in the northern part, central part and coastal waters of the survey area; in contrast, high fish diversity was found in the southern part of the survey area and the Changjiang estuary outer waters. Therefore, it is difficult to maintain high fishery production when high fish diversity is evenly distributed in the fish community. Fish became smaller and fish size spectra tended to be narrower because of fish species variations and differences in growth characteristics. Fish diversity increased, the age to maturity was reduced and some migrant species were not collected in the surveys. Fish with low economic value, small size, simple age structure and low tropic level were predominant in fish assemblages in the Changjiang estuary and its adjacent waters. The lowest hypoxic value decreased in the Changjiang estuary and its adjacent waters.  相似文献   

13.
To study the relationship between zooplankton community structure and environmental factors and water quality in the Harbin Section of the Songhua River, investigations were carried out in June, August, and October 2011. Canonical correspondence analysis (CCA) and saprobic indices were used to process and analyze the data. Seasonal variability was identified as a significant source of variation, which explains the fluctuation in zooplankton density. In autumn, the dry season, water residence time increased and zooplankton biomass and abundance accumulated in the slow flowing waters. Zooplankton abundance increased when food conditions improved. Therefore, the total zooplankton abundance in autumn is much higher than that in spring and summer. According to the saprobic indices, all the sample sites had mesosaprobic water and water quality was worse in autumn. CCA revealed that temperature accounted for most of the spatial variation in the zooplankton community. Moreover, pH, dissolved oxygen saturation, and turbidity were important factors affecting zooplankton community distribution.  相似文献   

14.
Zooplankton abundance, biovolume and taxonomic composition in Jiaozhou Bay and the adjacent coastal Yellow Sea were evaluated using ZooScan measurement of samples collected by net towing every August from 2005 to 2012. Zooplankton abundance and biovolume ranged from 1 938.5 to 24 800 ind./m~3 and 70.8 to 1 480.1 mm~3/m~3 in Jiaozhou Bay and 73.1 to 16 814.3 ind./m~3 and 19.6 to 640.7 mm~3/m~3 in the coastal Yellow Sea. Copepods were the most abundant group in both regions, followed by N octiluca scintillans and appendicularians in Jiaohzou Bay, and chaetognaths and N octiluca scintillans in adjacent coastal Yellow Sea. Over the study period, the most conspicuous hydrographic change was an increase in water temperature. Meanwhile, a general decrease in zooplankton abundance was observed, particularly in copepod populations. Based on redundancy analysis(RDA), the warming trend was the key environmental factor influencing to decrease of copepod abundance. The proportion of small-sized copepods increased while the mean size of all copepods decreased, in significant correlation with water temperature. Our results indicate that zooplankton, particularly copepods, are highly sensitive to change in water temperature, which is consistent with predicted impacts of warming on aquatic ectotherms. Due to their dominance in the zooplankton, the decline in copepod size and abundance could lead to an unfavourable decrease in energy availability for predators, particularly planktivorous fish.  相似文献   

15.
Decreasing fish resources in estuaries is a subject of anthropogenic activities.Studies of the spatiotemporal distribution of fish eggs and larvae can help identify the status and processes underlying recruitment in a fishery.As the fifth largest river estuary in the world,the Huanghe(Yellow)River estuary(HRE)is a typical estuary that has been seriously affected by human activities.Annual surveys on ichthyoplankton and environmental factors were conducted in the months of May of 2005 and 2009-2016 in the HRE to investigate the spatiotemporal distribution of fish eggs and larvae and the associated influencing factors.A total of 23 and 20 species of eggs and larvae,respectively,were collected.The dominant orders were Perciformes(51.2%)and Clupeiformes(25.6%).The average number of fish species eggs and larvae were 6.0 and 4.1 in average abundance of 0.91 and 0.13 ind./m~3,respectively.The dominant species were mainly low-commercial-value small-sized fishes,such as Clupanodon punctatus,Hare,ngula zutnasi,and Acanthogobius,whereas certain traditional commercial fishes,such as Trichiurus lepturus,and Clupea pallasii,were not seen.Analysis of the fish egg and larval community revealed four temporal assemblages and two spatial assemblages.Salinity was the main factor on the spatial distribution of ichthyoplankton communities,the species number and Shannon-Weiner diversity index(H')of the fish egg and larval community near the river mouth with lower salinity were significantly lower than the community far away from the river mouth with higher salinity.In addition,increases of water temperature promoted the number and abundance of fish species eggs,and the areas of abundant prey tended to have a more diversified and abundant of ichthyoplankton species.In overall,overfishing,dam construction,and other human activities were the main drivers that led to the substantial decline in fishery resources in the HRE.  相似文献   

16.
The abundance and biomass of benthic heterotrophic bacteria were investigated for the 4 typical sampling stations in the northern muddy part of Jiaozhou Bay, estuary of the Dagu River, raft culturing and nearby areas of Huangdao in March, June, August and December, 2002. The abundance and biomass range from 0.98×107 to 16.87×107 cells g−1 sediment and 0.45 to 7.08 μg C g−1 sediment, respectively. Correlation analysis showed that heterotrophic bacterial abundance and biomass are significantly correlated to water temperature (R=0.79 and 0.83, respectively,P<0.01).  相似文献   

17.
PostlarvalPenaeus orientalis kishinouye were simultaneously sampled at three fixed stations near the mouth of the Dagu River estuary in northwestern Jiaozhou Bay, China, at hourly intervals over a 49-h period in mid-June, 1984. The purpose of this sampling was to investigate the prawn’s recruitment into estuaries from coastal areas. The abundance of the postlarvae varied considerably between stations and time, but they tended to concentrate at the surface. Maximum entropy spectral analysis was first applied in the study of prawn recruitment and it revealed that variations in abundance involved a pronounced 12.4 hr cycle. It was concluded that natural tidal cycles had a strong influence on the changes of postlarval abundance, in contrast with the minor effects of diet and other environmental cycles. A tidally varying cross-river gradient of postlarval density was found. During flood tides the postlarvae were more abundant in the axis of the channel than over the banks. The opposite held true during ebb tides. Mechanisms of the postlarval recruitment are discussed in terms of alternating movements of the postlarvae between the banks and the channels in response to tidal cycles. Contribution No. 1485 from the Institute of Oceanology, Academia Sinica  相似文献   

18.
The size-fractionated phytoplankton biomass, and the spatial and temporal variations in abundance of Synechococcus (SYN) and picoeukaryotes (PEUK) were measured in the Taiwan Strait during three cruises (August 1997, February-March 1998, and August 1998). The results show that picophytoplankton and nanophytoplankton dominate the phytoplankton biomass, in average of 38% and 40%, respectively. SYN and PEUK varied over time in abundance and carbon biomass, greater in summer than in winter, in range of (7.70–20...  相似文献   

19.
Variations in physical-chemical factors, species composition, abundance and biomass of nano- and micro-phytoplankton assemblages, as well as their responses to environmental factors, were investigated over a complete cycle (6 months) in a semi-enclosed shrimp-farming pond near Qingdao, northern China. The aim was to establish the temporal patterns of phytoplankton communities and to evaluate protists as suitable bioindicators to water quality in mariculture systems. A total of 34 taxa with nine dominant species were identified, belonging to six taxonomic groups (dinoflagellates, diatoms, cryptophyceans, chlorophyceans, euglenophyceans and chrysophyceans). A single peak of protist abundance occurred in October, mainly due to chlorophyceans, diatoms and chrysophyceans. Two biomass peaks in July and October were primarily due to dinoflagellates and diatoms. Temporal patterns of the phytoplankton communities significantly correlated with the changes in nutrients, temperature and pH, especially phosphate, either alone or in combination with NO3-N and NH3-N. Species diversity, evenness and richness indices were clearly correlated with water temperature and/or salinity, whereas the biomass/abundance ratio showed a significant correlation with NO3-N. The results suggest that phytoplankton are potentially useful bioindicators to water quality in semi-enclosed mariculture systems.  相似文献   

20.
Macrobenthic community in the Xiaoqing River Estuary in Laizhou Bay, China   总被引:1,自引:0,他引:1  
The macrobenthic community of the Xiaoqing River Estuary and the adjacent sea waters was investigated in May and November 2008, August 2009, and May and September 2010, respectively. A total of 95 species of macrobenthos were identified in the five cruises and most of them were polychaetes (46.39%), mollusks (28.86%) and crustaceans (20.62%). The Shannon-Wiener index of macrobenthos was lower than 2 in 67% sites. Along the stream channel, estuary and the coastal waters, the species of polychaetes reduced gradually, while the abundance increased at first and then decreased. The abundance was the biggest at regions with salinity of 5–20 in the estuary. The species and abundance of mollusks and crustaceans increased gradually. As for seasonal distribution, the species, abundance and biomass were higher in spring and lower in summer and autumn. Contemporaneously compared with Laizhou Bay and Yellow River Estuary, the species of macrobenthos appeared in the Xiaoqing River Estuary were much less, while the percentage of polychaetes was higher. Abundance and biomass were higher in Xiaoqing River estuary, then consequently followed by Laizhou Bay and Yellow River Estuary. The dominant species in Xiaoqing River Estuary was polychaete, and Layzhou Bay mollusk. The community structure characteristics of macrobenthos in the Xiaoqing River Estuary revealed a significant pollution status in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号