首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arsenic and Antimony in Groundwater Flow Systems: A Comparative Study   总被引:3,自引:0,他引:3  
Arsenic (As) and antimony (Sb) concentrations and speciation were determined along flow paths in three groundwater flow systems, the Carrizo Sand aquifer in southeastern Texas, the Upper Floridan aquifer in south-central Florida, and the Aquia aquifer of coastal Maryland, and subsequently compared and contrasted. Previously reported hydrogeochemical parameters for all three aquifer were used to demonstrate how changes in oxidation–reduction conditions and solution chemistry along the flow paths in each of the aquifers affected the concentrations of As and Sb. Total Sb concentrations (SbT) of groundwaters from the Carrizo Sand aquifer range from 16 to 198 pmol kg−1; in the Upper Floridan aquifer, SbT concentrations range from 8.1 to 1,462 pmol kg−1; and for the Aquia aquifer, SbT concentrations range between 23 and 512 pmol kg−1. In each aquifer, As and Sb (except for the Carrizo Sand aquifer) concentrations are highest in the regions where Fe(III) reduction predominates and lower where SO4 reduction buffers redox conditions. Groundwater data and sequential analysis of the aquifer sediments indicate that reductive dissolution of Fe(III) oxides/oxyhydroxides and subsequent release of sorbed As and Sb are the principal mechanism by which these metalloids are mobilized. Increases in pH along the flow path in the Carrizo Sand and Aquia aquifer also likely promote desorption of As and Sb from mineral surfaces, whereas pyrite oxidation mobilizes As and Sb within oxic groundwaters from the recharge zone of the Upper Floridan aquifer. Both metalloids are subsequently removed from solution by readsorption and/or coprecipitation onto Fe(III) oxides/oxyhydroxides and mixed Fe(II)/Fe(III) oxides, clay minerals, and pyrite. Speciation modeling using measured and computed Eh values predicts that Sb(III) predominate in Carrizo Sand and Upper Floridan aquifer groundwaters, occurring as the Sb(OH)30 species in solution. In oxic groundwaters from the recharge zones of these aquifers, the speciation model suggests that Sb(V) occurs as the negatively charged Sb(OH)6 species, whereas in sufidic groundwaters from both aquifers, the thioantimonite species, HSb2S4 and Sb2S4 2−, are predicted to be important dissolved forms of Sb. The measured As and Sb speciation in the Aquia aquifer indicates that As(III) and Sb(III) predominate. Comparison of the speciation model results based on measured Eh values, and those computed with the Fe(II)/Fe(III), S(-II)/SO4, As(III)/As(V), and Sb(III)/Sb(V) couples, to the analytically determined As and Sb speciation suggests that the Fe(II)/Fe(III), S(-II)/SO4 couples exert more control on the in situ redox condition of these groundwaters than either metalloid redox couple.  相似文献   

2.
《Chemical Geology》2006,225(1-2):156-171
Groundwater samples were collected along a groundwater flow path in the Carrizo Sand aquifer in south Texas, USA. Field measurements that included pH, specific conductivity, temperature, dissolved oxygen (DO), oxidation–reduction potentials (Eh in mV), alkalinity, iron speciation, and H2S concentrations were also conducted on site. The geochemistry (i.e., concentrations, shale-normalized patterns, and speciation) of dissolved rare element elements (REEs) in the Carrizo groundwaters are described as a function of distance along a flow path. Eh and other redox indicators (i.e., DO, Fe speciation, H2S, U, and Re) indicate that redox conditions change along the flow path in the Carrizo Sand aquifer. Within the region of the aquifer proximal to the recharge zone, groundwaters exhibit both highly oxidizing and localized mildly reducing conditions. However, from roughly 10 km to the discharge zone, groundwaters are reducing and exhibit a progressive decrease in redox conditions. Dissolved REE geochemical behavior exhibits regular variations along the groundwater flow path in the Carrizo Sand aquifer. The changes in REE concentrations, shale-normalized patterns, and speciation indicate that REEs are not conservative tracers. With flow down-gradient, redox conditions, pH and solution composite, and adsorption modify groundwater REE concentrations, fractionation patterns, and speciation.  相似文献   

3.
 An unconfined aquifer system suggests an open system in the study area. Hydrochemical evolution is related to the flow path of groundwater. The groundwaters are divided into two hydrochemical facies in the study area, 1) Ca–Mg–HCO3 and 2) Ca–Mg–SO4HCO3. Facies 1 has shallow (young) waters which dominate in recharge areas during rapid flow conditions, whereas facies 2 may show shallow and mixed waters which dominate intermediate or discharge areas during low flow conditions. Ionic concentrations, TDS, EC and water quality are related to groundwater residence time and groundwater types. The groundwaters in the plain are chemically potable and suitable for both domestic and agricultural purposes. Received: 20 May 1996 · Accepted: 30 July 1996  相似文献   

4.
High concentrations of fluoride (up to 7.6 mg/L) are a recognized feature of the Wailapally granitic aquifer of Nalgonda District, Andhra Pradesh, India. The basement rocks provide abundant sources of F in the form of amphibole, biotite, fluorite and apatite. The whole-rock concentrations of F in the aquifer are in the range 240–990 mg/kg. Calcretes from the shallow weathered horizons also contain comparably high concentrations of F (635–950 mg/kg). The concentrations of water-soluble F in the granitic rocks and the calcretes are usually low (1% of the total or less) but broadly correlate with the concentrations observed in groundwaters in the local vicinity. The water-soluble fraction of fluoride is relatively high in weathered calcretes compared to fresh calcretes.Groundwater major-ion composition shows a well-defined trend with flow downgradient in the Wailapally aquifer, from Na–Ca–HCO3-dominated waters in the recharge area at the upper part of the catchment, through to Na–Mg–HCO3 and ultimately to Na–HCO3 and Na–HCO3–Cl types in the discharge area in the lowest part. The evolution occurs over a reach spanning some 17 km. Groundwater chemistry evolves by silicate weathering reactions, although groundwaters rapidly reach equilibrium with carbonate minerals, favouring precipitation of calcite, and ultimately dolomite in the lower parts of the watershed. This precipitation is also aided by evapotranspiration. Decreasing Ca activity downgradient leads to a dominance of fluorite-undersaturated conditions and consequently to mobilisation of F. Despite the clear downgradient evolution of major-ion chemistry, concentrations of F remain relatively uniform in the fluorite-undersaturated groundwaters, most being in the range 3.0–7.6 mg/L. The rather narrow range is attributed to a mechanism of co-precipitation with and/or adsorption to calcrete in the lower sections of the aquifer. The model may find application in other high-F groundwaters from granitic aquifers of semi-arid regions.  相似文献   

5.
Arsenic concentrations in groundwaters from two areas in Ghana, the Obuasi area in the Ashanti region and the Bolgatanga area of the Upper East region vary from <1–64 μg 1−1 and <1–141 μg 1−1, respectively. Sulphide minerals such as arsenopyrite and pyrite are present in the Birimian basement rocks of both areas and these form the dominant As sources. The basement aquifer is overlain by a variable thickness (ranging from <10 m to >40 m) of weathered regolith and lateritic soil. Arsenic concentrations are low in the shallowest groundwaters, but increase at greater depths (40–70 m below ground level in Obuasi and 20–40 m in Bolgatanga). At depths greater than this, total As concentrations are relatively low. The lateral and vertical variations in dissolved As concentrations are controlled by ambient pH and redox conditions and by the relative influences of sulphide oxidation and sorption. In the weathered regolith and lateritic soils, oxidation has been extensive. Shallow groundwaters are oxidizing and acidic. Under these conditions, As is readily oxidized to As(V) and may precipitate as ferric arsenate or be sorbed onto ferric hydroxide surfaces. At greater depth, groundwaters have longer contact times with the aquifer minerals and pH values are therefore higher (>6.0 in Obuasi and >6.5 in Bolgatanga). The oxidation of sulphide minerals may proceed, but dissolved O is consumed during the process and mildly reducing conditions (Eh 200–300 mV) result. Sorption of As onto ferric hydroxide minerals is less favoured under such pH and redox conditions and the element is relatively mobile. At the greatest abstraction depths, groundwaters are more reducing (Eh ≤200 mV; dissolved O <0.1 mg 1−1) and few electron acceptors are available in the system to drive sulphide oxidation. Dissolved As concentrations therefore remain relatively low. The mildly reducing groundwaters in the sulphide-bearing basement aquifer are therefore of the poorest potable quality with respect to dissolved As concentrations.  相似文献   

6.
The hydrogeochemical and isotopic evolution of groundwaters in the Mio–Pliocene sands of the Complexe Terminal (CT) aquifer in central Algeria are described. The CT aquifer is located in the large sedimentary basin of the Great Oriental Erg. Down-gradient groundwater evolution is considered along the main representative aquifer cross section (south–north), from the southern recharge area (Tinrhert Plateau and Great Oriental Erg) over about 700 km. Groundwater mineralisation increases along the flow line, from 1.5 to 8 g l?1, primarily as a result of dissolution of evaporite minerals, as shown by Br/Cl and strontium isotope ratios. Trends in both major and trace elements demonstrate a progressive evolution along the flow path. Redox reactions are important and the persistence of oxidising conditions favours the increase in some trace elements (e.g. Cr) and also NO3 ?, which reaches concentrations of 16.8 mg l?1 NO3-N. The range in 14C, 0–8.4 pmc in the deeper groundwaters, corresponds with late Pleistocene recharge, although there then follows a hiatus in the data with no results in the range 10–20 pmc, interpreted as a gap in recharge coincident with hyper-arid but cool conditions across the Sahara; groundwater in the range 24.7–38.9 pmc signifies a distinct period of Holocene recharge. All δ18O compositions are enriched relative to deuterium and are considered to be derived by evaporative enrichment from a parent rainfall around ?11‰ δ18O, signifying cooler conditions in the late Pleistocene and possibly heavy monsoon rains during the Holocene.  相似文献   

7.
Hydrogeological investigations conducted by the Geological Survey of Canada in the Lake Saint-Martin region of Manitoba have confirmed earlier reports of naturally elevated F and B concentrations in local groundwaters. Fluoride and B concentrations are highly correlated (r2 = 0.905) and reach 15.1 mg/L and 8.5 mg/L, respectively. Virtually all groundwaters with F concentrations greater than the drinking water limit of 1.5 mg/L are from wells within the Lake Saint-Martin impact structure, a 208 Ma complex crater 23 km in diameter underlying a large part of the study area. The high-F groundwaters can be classified into two groups according to their anionic and isotopic compositions. Group I samples consist of Na-mixed anion groundwaters, with Cl greater than 100 mg/L and highly depleted 18O compositions indicative of recharge under much cooler climatic conditions than at present. Samples belonging to this group exhibit a striking relationship to crater morphology, and are found in an arcuate belt within the southern rim of the impact structure. Group II high-F samples consist of Na–HCO3–SO4 groundwaters, with little Cl, and less depleted 18O compositions. Samples belonging to this group are associated with groundwaters recharged locally, on a low ridge within the impact structure. This paper traces the probable source of high-F groundwaters to phosphatic pellets in shales of the Winnipeg Formation, a regional basal clastic unit which sub-crops at shallow depth beneath the crater rim as a result of more than 200 m of structural uplift associated with the impact event. This extensive aquifer is known elsewhere in southern Manitoba for its naturally-softened groundwaters and locally elevated F concentrations. Group I groundwaters are interpreted as discharge from the Winnipeg Formation where it abuts against crater-fill deposits. Group II high-F groundwaters are interpreted as modern recharge from within the impact structure, displacing Group I groundwaters. Thus, elevated F and B concentrations observed in groundwaters of the Lake Saint-Martin area represent the geochemical signature of upwelling from a deep regional aquifer. The previously unsuspected discharge zone occurs within an isolated sub-crop of the aquifer formed as a result of structural uplift caused by the impact event.  相似文献   

8.
Detailed hydrogeochemical and isotopic data of groundwaters from the Hammamet–Nabeul unconfined aquifer are used to provide a better understanding of the natural and anthropogenic processes that control the groundwater mineralization as well as the sources of different groundwater bodies. It has been demonstrated that groundwaters, which show Na–Cl and Ca–SO4–Cl water facies, are mainly influenced by the dissolution of evaporates, the dedolomitization and the cation-exchange process; and supplementary by anthropogenic process in relation with return flow of irrigation waters. The isotopic signatures permit to classify the studied groundwaters into two different groups. Non-evaporated groundwaters that are characterized by depleted δ 18O and δ 2H contents highlighting the importance of modern recharge at higher altitude. Evaporated groundwaters with enriched contents reflecting the significance infiltration of return flow irrigation waters. Tritium data in the studied groundwaters lend support to the existence of pre-1950 and post-1960 recharge. Carbon-14 activities in shallow wells that provide evidence to the large contamination by organic 14C corroborate the recent origin of the groundwaters in the study area.  相似文献   

9.
The Guadalupe Valley aquifer is the only water source for one of the most important wine industries in Mexico, and also the main public water supply for the nearby city of Ensenada. This groundwater is monitored for major ion, N-NO3, P-PO4, Fe, As, Se, Mo, Cd, Cu, Pb, Zn and Sb concentrations, as well as TDS, pH, dissolved oxygen and temperature. High concentrations of N-NO3 (26 mg l−1), Se (70 μg l−1), Mo (18 μg l−1) and Cu (4.3 μg l−1) suggest that groundwater is being polluted by the use of fertilizers only in the western section of the aquifer, known as El Porvenir graben. Unlike the sites located near the main recharge area to the East of the aquifer, the water in El Porvenir graben has low tritium concentrations (<1.9 TU), indicating a pre-modern age, and thus longer water residence time. No significant variations in water quality (generally <10%) were detected throughout 2001–2002 in the aquifer, suggesting that reduced rainfall and recharge during this dry period did not significantly affect water quality. However, the wells nearest to the main recharge area in the Eastern aquifer show a slight but constant increase in TDS with time, probably as a result of the high (∼200 L S−1) uninterrupted extraction of water at this specific recharge site. Relatively high As concentrations for the aquifer (10.5 μg l−1) are only found near the northern limit of the basin associated with a geological fault.  相似文献   

10.
The hydrochemistry of major ions and environmental isotope compositions (18O, 2H and tritium) of water samples have been used to investigate the characteristics of rainfalls, surface water and groundwater in the Damascus Ghotta basin. The groundwater salinity in the Damascus Ghotta basin gradually increases, as the groundwater moves from western to south-eastern and north-eastern parts of the basin. A strong relationship exists between the Barada river and the surrounded groundwaters, mainly in terms of recharge by infiltration of surface waters. The groundwater quality in the Adra region has clearly become less saline as a result of establishment of the sewage-water-treatment station in this area since 1997. The uncommon depleted stable isotope concentrations in the vicinity of Al-Ateibeh Lake and Adra valley could be interpreted as a result of sub-flow recharge from the Cenomanian–Turonian aquifer, mostly prolonged along the Damascus Fault, which forms direct contact between this complex and the Quaternary alluvium aquifers. The extensive exploitation of water from the Cenomanian–Turonian aquifer for drinking water supply would shortly be reflected by a gradual decline of the groundwater table in the Damascus Ghotta basin. Amelioration of water quality in the Damascus basin still requires further management strategies and efforts to be taken within the forthcoming years.  相似文献   

11.
Groundwater is a very important natural resource in Khanyounis Governorate (the study area) for water supply and development. Historically, the exploitation of aquifers in Khanyounis Governorate has been undertaken without proper concern for environmental impact. In view of the importance of quality groundwater, it might be expected that aquifer protection to prevent groundwater quality deterioration would have received due attention. In the long term, however, protection of groundwater resources is of direct practical importance because, once pollution of groundwater has been allowed to occur, the scale and persistence of such pollution makes restoration technically difficult and costly. In order to maintain basin aquifer as a source of water for the area, it is necessary to find out, whether certain locations in this groundwater basin are susceptible to receive and transmit contamination. This study aims to: (1) assess the vulnerability of the aquifer to contamination in Khanyounis governorate, (2) find out the groundwater vulnerable zones to contamination in the aquifer of the study area, and (3) provide a spatial analysis of the parameters and conditions under which groundwater may become contaminate. To achieve that, DRASTIC model within geographic information system (GIS) environment was applied. The model uses seven environmental parameters: depth of water table, net recharge, aquifer media, soil media, topography, impact of vadose zone, and hydraulic conductivity to evaluate aquifer vulnerability. Based on this model and by using ArcGIS 9.3 software, an attempt was made to create vulnerability maps for the study area. According to the DRASTIC model index, the study has shown that in the western part of the study area the vulnerability to contamination ranges between high and very high due to the relatively shallow water table with moderate to high recharge potential, and permeable soils. To the east of the previous part and in the south-eastern part, vulnerability to contamination is moderate. In the central and the eastern part, vulnerability to contamination is low due to depth of water table. Vulnerability analysis of the DRASTIC Model indicates that the highest risk of contamination of groundwater in the study area originates from the soil media. The impact of vadose zone, depth to water level, and hydraulic conductivity imply moderate risks of contamination, while net recharge, aquifer media, and topography impose a low risk of aquifer contamination. The coefficient of variation indicates that a high contribution to the variation of vulnerability index is made by the topography. Moderate contribution is made by the depth to water level, and net recharge, while impact of vadose zone, hydraulic conductivity, soil media, and Aquifer media are the least variable parameters. The low variability of the parameters implies a smaller contribution to the variation of the vulnerability index across the study area. Moreover, the “effective” weights of the DRASTIC parameters obtained in this study exhibited some deviation from that of the “theoretical” weights. Soil media and the impact of vadose zone were the most effective parameters in the vulnerability assessment because their mean “effective” weights were higher than their respective “theoretical” weights. The depth of water table showed that both “effective” and “theoretical” weights were equal. The rest of the parameters exhibit lower “effective” weights compared with the “theoretical” weights. This explains the importance of soil media and vadose layers in the DRASTIC model. Therefore, it is important to get the accurate and detailed information of these two specific parameters. The GIS technique has provided an efficient environment for analysis and high capabilities of handling large spatial data. Considering these results, DRASTIC model highlights as a useful tool that can be used by national authorities and decision makers especially in the agricultural areas applying chemicals and pesticides which are most likely to contaminate groundwater resources.  相似文献   

12.
Ayadi  Rahma  Trabelsi  Rim  Zouari  Kamel  Saibi  Hakim  Itoi  Ryuichi  Khanfir  Hafedh 《Hydrogeology Journal》2018,26(4):983-1007

Major element concentrations and stable (δ18O and δ2H) and radiogenic (3H and 14C) isotopes in groundwater have proved useful tracers for understanding the geochemical processes that control groundwater mineralization and for identifying recharge sources in the semi-arid region of Sfax (southeastern Tunisia). Major-ion chemical data indicate that the origins of the salinity in the groundwater are the water–rock interactions, mainly the dissolution of evaporitic minerals, as well as the cation exchange with clay minerals. The δ18O and δ2H relationships suggest variations in groundwater recharge mechanisms. Strong evaporation during recharge with limited rapid water infiltration is evident in the groundwater of the intermediate aquifer. The mixing with old groundwater in some areas explains the low stable isotope values of some groundwater samples. Groundwaters from the intermediate aquifer are classified into two main water types: Ca-Na-SO4 and Ca-Na-Cl-SO4. The high nitrate concentrations suggest an anthropogenic source of nitrogen contamination caused by intensive agricultural activities in the area. The stable isotopic signatures reveal three water groups: non-evaporated waters that indicate recharge by recent infiltrated water; evaporated waters that are characterized by relatively enriched δ18O and δ2H contents; and mixed groundwater (old/recent) or ancient groundwater, characterized by their depleted isotopic composition. Tritium data support the existence of recent limited recharge; however, other low tritium values are indicative of pre-nuclear recharge and/or mixing between pre-nuclear and contemporaneous recharge. The carbon-14 activities indicate that the groundwaters were mostly recharged under different climatic conditions during the cooler periods of the late Pleistocene and Holocene.

  相似文献   

13.
Differences in the degree of confinement, redox conditions, and dissolved organic carbon (DOC) are the main factors that control the persistence of nitrate and pesticides in the Upper Floridan aquifer (UFA) and overlying surficial aquifer beneath two agricultural areas in the southeastern US. Groundwater samples were collected multiple times from 66 wells during 1993–2007 in a study area in southwestern Georgia (ACFB) and from 48 wells in 1997–98 and 2007–08 in a study area in South Carolina (SANT) as part of the US Geological Survey National Water-Quality Assessment Program. In the ACFB study area, where karst features are prevalent, elevated nitrate-N concentrations in the oxic unconfined UFA (median 2.5 mg/L) were significantly (p = 0.03) higher than those in the overlying oxic surficial aquifer (median 1.5 mg/L). Concentrations of atrazine and deethylatrazine (DEA; the most frequently detected pesticide and degradate) were higher in more recent groundwater samples from the ACFB study area than in samples collected prior to 2000. Conversely, in the SANT study area, nitrate-N concentrations in the UFA were mostly <0.06 mg/L, resulting from anoxic conditions and elevated DOC concentrations that favored denitrification. Although most parts of the partially confined UFA in the SANT study area were anoxic or had mixed redox conditions, water from 28 % of the sampled wells was oxic and had low DOC concentrations. Based on the groundwater age information, nitrate concentrations reflect historic fertilizer N usage in both the study areas, but with a lag time of about 15–20 years. Simulated responses to future management scenarios of fertilizer N inputs indicated that elevated nitrate-N concentrations would likely persist in oxic parts of the surficial aquifer and UFA for decades even with substantial decreases in fertilizer N inputs over the next 40 years.  相似文献   

14.
On the basis of the isotopic composition of water in the northern part of Epirus, Greece, from springs at different altitudes with well-defined recharge areas, the altitude effect on the δ18O value of groundwater is –0.142±0.003ö (100?m)–1 and is uniform over the entire study area. Using the δ18O composition of surface water and groundwaters, the contribution of Ioannina Lake and the channel draining the lake water to the Kalamas River to the recharge of springs and boreholes was confirmed and quantitatively defined. In contrast, the Voidomatis and Vikos Rivers are not sources for recharge of the big springs along their banks. However, water from the Aoos River does replenish the aquifer in the unconsolidated deposits underlying the plain of Konitsa. In addition, limestones of Senonian–Late Eocene ages, dolomites, and limestones of the "Vigles" facies are hydraulically interconnected, and the limestones of the "Pantokrator" facies are hydraulically isolated from the other carbonate formations.  相似文献   

15.
Physico-chemical parameters, major ion chemistry and isotope composition of surface and groundwaters were determined in forested coastal catchments and adjacent coastal plains. Results showed obvious characterisation related to physical and hydrological setting, and highly variable spatial differences reflecting the complexities of these areas. All these coastal waters are dominated by Na–Cl and fall on a common dilution line; hydrochemical grouping is largely due to anionic differences (Cl, SO4 and HCO3), although Na and Mg ratios also vary. Six major hydrochemical facies were determined. For groundwaters, compositional differences are largely related to aquifer material and level of confinement; for coastal groundwaters important are tidal effects and proximity to the shoreline. Differentiation for surface waters is mainly by drainage morphology, flow regime plus proximity to the coast. Connectivity between water bodies is reflected by minor base flow to catchment streams, including with flood plain wetlands, but mostly occurs in low-lying zones where there is mixing of fresh and saline water within surface water and subterranean estuaries, or by seawater intrusion enhanced by overuse. Oxygen and hydrogen isotopic data for confined and semi-confined groundwaters along the coast indicates local recharge; fresh surface waters in the elevated catchments are shown to be sourced further inland plus have experienced evaporation.  相似文献   

16.
The spatial and temporal changes of the composition of the groundwater from the springs along the Wadi Qilt stream running from the Jerusalem–Ramallah Mountains towards the Jericho Plain is studied during the hydrological year 2006/2007. The residence time and the intensity of recharge play an important role in controlling the chemical composition of spring water which mainly depends on distance from the main recharge area. A very important factor is the oxidation of organics derived from sewage and garbage resulting in variable dissolved CO2 and associated HCO3 concentration. High CO2 yields lower pH values and thus under-saturation with respect to calcite and dolomite. Low CO2 concentrations result in over-saturation. Only at the beginning and at the end of the rainy season calcite saturation is achieved. The degradation of dissolved organic matter is a major source for increasing water hardness. Besides dissolution of carbonates dissolved species such as nitrate, chloride, and sulfate are leached from soil and aquifer rocks together with only small amounts of Mg. Mg not only originates from carbonates but also from Mg–Cl waters are leached from aquifer rocks. Leaching of Mg–Cl brines is particularly high at the beginning of the winter season and lowest at its end. Two zones of recharge are distinguishable. Zone 1 represented by Ein Fara and Ein Qilt is fed directly through the infiltration of meteoric water and surface runoff from the mountains along the eastern mountain slopes with little groundwater residence time and high flow rate. The second zone is near the western border of Jericho at the foothills, which is mainly fed by the under-groundwater flow from the eastern slopes with low surface infiltration rate. This zone shows higher groundwater residence time and slower flow rate than zone 1. Groundwater residence time and the flow rate within the aquifer systems are controlled by the geological structure of the aquifer, the amount of active recharge to the aquifer, and the recharge mechanism. The results of this study may be useful in increasing the efficiency of freshwater exploitation in the region. Some precautions, however, should be taken in future plans of artificial recharge of the aquifers or surface-water harvesting in the Wadi. Because of evaporation and associated groundwater deterioration, the runoff water should be artificially infiltrated in zones of Wadis with high storage capacity of aquifers. Natural infiltration along the Wadis lead to evaporation losses and less quality of groundwater.  相似文献   

17.
The scarcity of surface water resources in arid and semi-arid regions from North African countries contributes to the considerable increase of groundwater exploitation, which leads to the development of hydrogeological studies. However, due to the lack of hydrodynamic data in these regions, these studies focus more and more on the geochemical and environmental isotope techniques to insure a better understanding of the hydrodynamic functioning of subsurface systems. In this study, which interests an important unconfined aquifer in central Tunisia, tritium data and chloride mass balance (CMB) method were applied in order to (1) understand the mode of recharge of this aquifer and (2) obtain a reliable estimation of its recharge amount as well as (3) estimate its annual renewal rate. It has been demonstrated that the shallow groundwaters are classified into two groups according to their tritium contents. The first group includes wells located mainly downstream and highlights the significant role of the post-nuclear lineal recharge through Wadis courses. The second group encloses wells located practically overall the rest of the basin and refers to relatively modern waters originated from areal recharge of present-day rainfall. Based on the CMB method, the recharge to this unconfined aquifer is estimated to 31.7 mm year−1, which corresponds to 10.5% of the total rainfall. The annual renewal rate of groundwater, evaluated based on the tritium contents, is up to 16%.  相似文献   

18.
Major element concentrations, stable (δ18O and δ2H) and radiogenic (3H, 14C) isotopes determined in groundwater provided useful initial tracers for understanding the processes that control groundwater mineralization and identifying recharge sources in semi-arid Cherichira basin (central Tunisia).Chemical data based on the chemistry of several major ions has revealed that the main sources of salinity in the groundwaters are related to the water–rock interaction such as the dissolution of evaporitic and carbonate minerals and some reactions with silicate and feldspar minerals.The stable isotope compositions provide evidence that groundwaters are derived from recent recharge. The δ18O and δ2H relationships implied rapid infiltration during recharge to both the Oligocene and Quaternary aquifers, with only limited evaporation occurring in the Quaternary aquifer.Chemical and isotopic signatures of the reservoir waters show large seasonal evolution and differ clearly from those of groundwaters.Tritium data support the existence of recent recharge in Quaternary groundwaters. But, the low tritium values in Oligocene groundwaters are justified by the existence of clay lenses which limit the infiltration of meteoric water in the unsaturated zone and prolong the groundwater residence time.Carbon-14 activities confirm that groundwaters are recharged from the surface runoff coming from precipitation.  相似文献   

19.
Stable Cl isotope ratios (37Cl/35Cl) were measured in groundwater samples from the southwestern flow system of the Great Artesian Basin, Australia to gain a better understanding of the Cl sources and transport mechanisms. δ37Cl values range from 0‰ to −2.5‰ (SMOC), and are inversely correlated with Cl concentration along the inferred flow direction. The Cl isotopic compositions, in conjunction with other geochemical parameters, suggest that Cl in groundwaters is not derived from salt dissolution. Mixing of the recharge water with saline groundwater cannot explain the relationship between δ37Cl and Cl concentration measured. Marine aerosols deposited via rainfall and subsequent evapotranspiration appear to be responsible for the Cl concentrations observed in wells that are close to the recharge area, and in groundwaters sampled along the southern transect. δ37Cl values measured in the leachate of the Bulldog shale suggest that the aquitard is the subsurface source of Cl for the majority of groundwater samples studied. Diffusion is likely the mechanism through which Cl is transported from the pore water of the Bulldog shale to the aquifer. However, a more detailed study of the aquitard rocks is required to verify this hypothesis.  相似文献   

20.
《Applied Geochemistry》1991,6(4):435-445
The36Cl/Cl ratios of 12 groundwater samples from the Milk River aquifer were determined by accelerator mass spectrometry. Using known Cl concentrations,36Cl concentrations were deduced. Approximately linear relations were observed between the logarithm of the36Cl concentration, the Cl concentration, and the distance from the recharge area along two flow paths. The results are discussed in two approaches:
  • (1)in an interpretation of the linear relation between logarithm of the36Cl concentration and Cl concentration excluding and includingin situ production of36Cl;
  • (2)in a diffusion model. The increase of the Cl concentration with the distance from the recharge area is considered to be due to diffusion of Cl from the underlying confining Colorado shale to the aquifer.
Flow velocities ranging between 0.04 and 0.14 m/a, and ages of the groundwater between 0.6 and 2 Ma are obtained at a distance of 80 km from the recharge area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号