首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
特提斯喜马拉雅北亚带江孜地区上古新统-下始新统甲查拉组记录了喜马拉雅碰撞造山带的早期地壳加厚和沉积历史。本文我们报道了甲查拉组详细的碎屑锆石U-Pb年龄和全岩Sm-Nd同位素数据。甲查拉组由青灰色厚层的岩屑砂岩夹泥岩组成,不整合覆盖在宗卓组之上,碎屑锆石主要的峰值介于350~80 Ma, 900~470 Ma以及1 300~950 Ma,次要的峰值介于2 800~1 500 Ma。全岩87Sr/86Sr介于0.707 505~0.713 174,143Nd/144Nd介于0.512 206~0.512 355,εNd(0)介于-5.52~-8.43。甲查拉组物源区以再循环的日喀则弧前盆地和上三叠统郎杰学群为主,少量物质来自雅鲁藏布江缝合带。上述研究表明,甲查拉组沉积在周缘前陆盆地的背景下,且特提斯喜马拉雅北亚带在始新世期间经历了明显的地壳加厚。  相似文献   

2.
In the Boreal Chalk of northwestern Europe the base of the Maastrichtian Stage is defined by entry of the belemnite Belemnella . In the Kronsmoor section, in northwestern Germany, which is a standard section for the European Chalk, 87Sr/86Sr at the Campanian/ Maastrichtian (C/M) boundary is 0.707723±9 (10). An isotopic correlation of this boundary to the US Western Interior, for which a highly refined cephalopod biostratigraphy exists, suggests that this boundary, as defined at Kronsmoor, occurs within the Baculites jenseni zone. This correlationagrees with the latest placement based on biostratigraphic criteria. On87Sr/86Srcriteria the boundary at Kronsmoor correlates to the English Chalk at Trunch, Norfolk, UK, at a level 3.5 m lower than its position based on biostratigraphic criteria.
At Kronsmoor, 87Sr/86Sr increases in a quasi-linear manner through much of the section, suggesting that, averaged over intervals of 1 Myr, the gross sedimentation rate and temporal rate of change of 87Sr/86Sr were approximately constant through the section. For US samples, zonally-plotted values of 87Sr/86Sr define a quasi-linear trend, which suggests a moderate uniformity of zonal duration from the Baculites compressus zone (73.2±0.7 Ma, 10) to the Baculites grandis zone (70.1±0.7 Ma, 10).  相似文献   

3.
Zachariah 《地学学报》1998,10(6):312-316
A marble band in the ≈ 2.75 Gyr old Ramagiri schist belt in the Dharwar craton of south India gave a Pb–Pb age of 3.075 ± 0.095 Gyr. The geochemical data, including high Sr and low Ba and Mn indicate seawater origin for the parent rock, and that there was insignificant geochemical exchange between the marble and the surrounding rocks. The calculated initial Nd isotopic composition and μ1 indicate an older continental crustal source for the Nd and Pb. The initial 87Sr/86Sr of the marble is 0.70128, which is higher than the calculated mantle value at ≈ 3 Ga. Although pre-3 Gyr old marine carbonate rocks are thought to be buffered by mantle Sr, the Ramagiri marble contains evolved, crustal Sr. Despite this, the marble has the lowest measured 87Sr/86Sr among carbonates and represents one of the least radiogenic periods in seawater Sr isotope composition.  相似文献   

4.
The Paleogene succession of the Himalayan foreland basin is immensely important as it preserves evidence of India-Asia collision and related records of the Himalayan orogenesis. In this paper, the depositional regime of the Paleogene succession of the Himalayan foreland basin and variations in composition of the hinterland at different stages of the basin developments are presented. The Paleogene succession of the western Himalayan foreland basin developed in two stages, i.e. syn-collisional stage and post-collisional stage. At the onset, chert breccia containing fragments derived from the hanging walls of faults and reworked bauxite developed as a result of erosion of the forebulge. The overlying early Eocene succession possibly deposited in a coastal system, where carbonates represent barriers and shales represent lagoons. Up-section, the middle Eocene marl beds likely deposited on a tidal flat. The late Eocene/Oligocene basal Murree beds, containing tidal bundles, indicate that a mixed or semi-diurnal tidal system deposited the sediments and the sedimentation took place in a tide-dominated estuary. In the higher-up, the succession likely deposited in a river-dominated estuary or in meandering rivers. In the beginning of the basin evolution, the sediments were derived from the Precambrian basement or from the metasediments/volcanic rocks possessing terrains of the south. The early and middle Eocene (54.7–41.3 Ma) succession of the embryonic foreland possibly developed from the sediments derived from the Trans-Himalayan schists and phyllites and Indus ophiolite of the north during syn-collisional stage. The detrital minerals especially the lithic fragments and the heavy minerals suggest the provenance for the late Eocene/Oligocene sequences to be from the recycled orogenic belt of the Higher Himalaya, Tethyan Himalaya and the Indus-suture zone from the north during post-collisional stage. This is also supported by the paleocurrent measurements those suggest main flows directed towards southeast, south and east with minor variations. This implies that the river system stabilized later than 41 Ma and the Higher Himalaya attained sufficient height around this time. The chemical composition of the sandstones and mudstones occurring in the early foreland basin sequences are intermediate between the active and passive continental margins and/or same as the passive continental margins. The sedimentary succession of this basin has sustained a temperature of about 200 °C and undergone a burial depth of about 6 km.  相似文献   

5.
In 140 metres of Maastrichtian White Chalk (nannofossil chalk) exposed near Hemmoor, NW Germany, values of 87Sr/86Sr increase from 0.707760 in the Belemnella sumensis Zone (Lower Maastrichtian) at the base of the section (-54.5 m; referred to 0 m at a prominent marl, M900) to 0.707821 in the Belemnella baltica/danica Zone (Upper Maastrichtian) at the top of the section (+84.5 m). A plateau in 87Sr/86Sr occurs between -5m and +50m in the section, probably as a result of a very high rate of sedimentation in this interval. A belemnite and associated nannofossil chalk have similar 87Sr/86Sr values, suggesting that there has been little diagenetic alteration of the 87Sr/86Sr ratios in the chalk, which therefore preserves its original 87Sr/86Sr. Comparison of 87Sr/86Sr and nannofossil zonations for sequences at Bidart, France, and DSDP Sites reveals discordance and so possible diachronism of the basal boundaries of nannofossil Zones CC25B and CC25C.  相似文献   

6.
The oxygen and strontium isotope compositions of granitic rocks of the Idaho Batholith provide insight into the magma source, assimilation processes, and nature of the suture zone between the Precambrian craton and accreted arc terranes. Granitic rocks of the Idaho Batholith intrude basement rocks of different age: Triassic/Jurassic accreted terranes to the west of the Salmon River suture zone and the Precambrian craton to the east. The age difference in the host rocks is reflected in the abrupt increase in the initial 87Sr/86Sr ratios of granitic rocks in the batholith across the previously defined 0.706 line. Initial 87Sr/86Sr ratios of granitic rocks along Slate Creek on the western edge of the batholith jump from less than 0.704 to greater than 0.707 along an approximately 700 m transect normal to the Salmon River suture. Initial 87Sr/86Sr ratios along the Slate Creek transect do not identify a transition zone between accreted arcs and the craton and suggest a unique tectonic history during or after suturing that is not documented along other transects on the west side of the Idaho Batholith. The lack of transition zone along Slate Creek may be a primary structure due to transcurrent/transpressional movement rather than by contractional thrust faulting during suturing or be the result of post-imbrication modification.  相似文献   

7.
ABSTRACT This work presents a detailed 87Sr/86Sr isotope curve for the interval 7.5–9.7 Ma obtained by a high-resolution analysis (sampling spacing of about 40 kyr) of an astronomically calibrated land-based sedimentary sequence exposed in the central Mediterranean area (Gibliscemi section, southern Sicily). The main aim is to verify a synchronous response of the Mediterranean seawater Sr isotope record to the oceanic forcing on the basis of multiple comparisons of the Gibliscemi record with published coeval 87Sr/86Sr curves. A good correlation with the 87Sr/86Sr data from the ODP site 926 (equatorial Atlantic ocean), considered to be the Sr chemostratigraphic reference section for the Late Miocene, and from the Pacific DSDP site 590B was registered. Conversely, the comparison of the Gibliscemi Sr isotope data with 87Sr/86Sr ratios from the coeval segment of the land-based Sardella section (eastern Mediterranean) shows important differences highlighting a local control on the seawater Sr isotope changes in semi-isolated subbasins within the Late Miocene Mediterranean.  相似文献   

8.
《Geochimica et cosmochimica acta》1999,63(13-14):1905-1925
Himalayan rivers have very unusual Sr characteristics and their budget cannot be achieved by simple mixing between silicate and carbonate even if carbonates are radiogenic. We present Sr, O, and C isotopic data from river and rain water, bedload, and bedrock samples for the western and central Nepal Himalaya and Bangladesh, including the monsoon season. Central Himalayan rivers receive Sr from several sources: carbonate and clastic Tethyan sediments, High Himalayan Crystalline (HHC) gneisses and granitoids with minor marbles, carbonates and metasediments of the Lesser Himalaya (LH), and Miocene-Recent foreland basin sediment from the Siwaliks group and the modern flood plain. In the Tethyan Himalaya rivers have dissolved [Sr] ≈ 6 μmol/l and 87Sr/86Sr ≈ 0.717, with a large contribution from moderately radiogenic carbonate. Rivers draining HHC gneisses are very dilute with [Sr] ≈ 0.2 μmol/l and 87Sr/86Sr ≈ 0.74. Lesser Himalayan streams also have low [Sr] ≈ 0.4 μmol/l and are highly radiogenic (87Sr/86Sr ≥ 0.78). Highly radiogenic carbonates of the LH do not contribute significantly to the Sr budget because they are sparse and have very low [Sr]. In large rivers exiting the Himalaya, Sr systematics can be modeled as a mixture between Tethyan rivers, where slightly radiogenic carbonates (mean 87Sr/86Sr ≈ 0.715) are the main source of Sr, and Lesser Himalaya waters, where extremely radiogenic silicates (>0.8) are the main source of Sr. HHC waters are less important because of their low [Sr]. Rivers draining the Siwaliks foreland basin sediments have [Sr] ≈ 4 μmol/l and 87Sr/86Sr ≈ 0.725. Weathering of silicates in the Siwaliks and the flood plain results in a probably significant radiogenic (0.72–0.74) input to the Ganges and Brahmaputra (G-B), but quantification of this flux is limited by uncertainties in the hydrologic budget. The G-B in Bangladesh show strong seasonal variability with low [Sr] and high 87Sr/86Sr during the monsoon. Sr in the Brahmaputra ranges from 0.9 μmol/l and 0.722 in March to 0.3 μmol/l and 0.741 in August. We estimate the seasonally weighted flux from the G-B to be 6.5 × 108 mol/yr with 87Sr/86Sr = 0.7295.  相似文献   

9.
We have measured 87Sr/86Sr and 143 Nd/144 Nd isotope ratios in different batches and aliquots of the new US Geological Survey (USGS) reference materials (RMs) BCR-2, BHVO-2, AGV-2 and GSP-2 and the original USGS RMs BCR-1, BHVO-1, AGV-1 and GSP-1 by thermal ionisation mass spectrometry. In addition, we also analysed the eight Max-Planck-Institut-Dingwell (MPI-DING) reference glasses. Nearly all isotope ratios obtained in the different aliquots and batches agree within uncertainty limits indicating excellent homogeneity of the USGS powders and the MPI-DING glasses. With the exception of GSP-2, the new USGS RMs are also indistinguishable from the ratios found in the original USGS RMs (87Sr/86Sr: 0.704960, 0.704958 (BCR-1, -2), 0.703436, 0.703435 (BHVO-1, -2), 0.703931, 0.703931 (AGV-1, -2); 143 Nd/144 Nd: 0.512629, 0.512633 (BCR-1, -2), 0.512957, 0.512957 (BHVO-1, -2); 0.512758, 0.512755 (AGV-1, -2)). This means that for normalisation purposes in Sr and Nd isotope geochemistry BCR-2, BHVO-2 and AGV-2 can well replace BCR-1, BHVO-1 and AGV-1 respectively.  相似文献   

10.
Abstract. The Jecheon granitoids, having an elongated shape of NE-SW 27 km and NW-SE 13 km (190 km2), are composed mostly of magnetite-series hornblende-biotite granodiorite and biotite granite, which intrude into the Neoproterozoic metamor-phic and Paleozoic sedimentary rocks of the Ogcheon Belt. The granitoids have Triassic-Jurassic age of 202.7 ±1.9 Ma with very high 87Sr/86Sr initial ratio of 0.7140. The granodiorite has 63–69 % SiO2, 15.1–17.3 % Al2O3, <1.6 % MgO, 6–15 ppm Y and Sr/Y ratios of 24–76, and is depleted in HREE. Biotite granite together, the Jecheon pluton has adakitic characteristics, which are unique in a continental tectonic setting. The granitoids may have been generated by partial melting of an older adakitic granitoid of I-type basement, or by separation of early crystallized garnet and hornblende from an anatectic melt.  相似文献   

11.
Himalayan orogeny in relation to Global Tectonics is a hotly debated subject. Orogeny can result either from collision of continental plates or by an endogenic process of mantle upwelling along pre-existing fracture zones in the crust. This paper describes a new technique of frequency analysis of radiometric ages of crystalline rocks in the mountain ranges straddling the Indus-Tsangpo Suture Zone (ITSZ), the supposed line of collision between India and Asia, and shows that all the ranges from Karakoram to Lesser Himalaya across the ITSZ got uplifted simultaneously in a particular sequence. This contradicts the concept of suturing, places the ITSZ in the category of one of the intracrustal thrusts of the Himalayan orogenic system and establishes the family affinity between the Karakoram and the Himalaya. Analysis of stratigraphic and structural data points out that this family affinity is not confined to the ranges only but extends beyond into the foreland and oceanic basins as well. This paper also explains a number of apparent contradictions in terrain geomorphology, ophiolites in suture zones, thickness anomaly of Himalaya-derived sediments in eastern and western wings of terrestrial and oceanic basins to the south of the ranges, the status of Mid-oceanic Ridges in global tectonics, convergence aspect between Himalaya and India, nature of Foothills Fault and metamorphism of early Tertiary sediments in the Himalayan foreland basin.  相似文献   

12.
<正>Foreland basin represents one of the most important hydrocarbon habitats in central and western China.To distinguish these foreland basins regionally,and according to the need of petroleum exploration and favorable exploration areas,the foreland basins in central and western China can be divided into three structural types:superimposed,retrogressive and reformative foreland basin(or thrust belt),each with distinctive petroleum system characteristics in their petroleum system components(such as the source rock,reservoir rock,caprock,time of oil and gas accumulation,the remolding of oil/gas reservoir after accumulation,and the favorable exploration area,etc.).The superimposed type foreland basins,as exemplified by the Kuqa Depression of the Tarim Basin, characterized by two stages of early and late foreland basin development,typically contain at least two hydrocarbon source beds,one deposited in the early foreland development and another in the later fault-trough lake stage.Hydrocarbon accumulations in this type of foreland basin often occur in multiple stages of the basin development,though most of the highly productive pools were formed during the late stage of hydrocarbon migration and entrapment(Himalayan period).This is in sharp contrast to the retrogressive foreland basins(only developing foreland basin during the Permian to Triassic) such as the western Sichuan Basin,where prolific hydrocarbon source rocks are associated with sediments deposited during the early stages of the foreland basin development.As a result, hydrocarbon accumulations in retrogressive foreland basins occur mainly in the early stage of basin evolution.The reformative foreland basins(only developing foreland basin during the Himalayan period) such as the northern Qaidam Basin,in contrast,contain organic-rich,lacustrine so urce rocks deposited only in fault-trough lake basins occurring prior to the reformative foreland development during the late Cenozoic,with hydrocarbon accumulations taking place relatively late(Himalayan period).Therefore,the ultimate hydrocarbon potentials in the three types of foreland basins are largely determined by the extent of spatial and temporal matching among the thrust belts,hydrocarbon source kitchens,and regional and local caprocks.  相似文献   

13.
The frontal part of the active, wedge-shaped Indo-Eurasian collision boundary is defined by the Himalayan fold-and-thrust belt whose foreland basin accumulated sediments that eventually became part of the thrust belt and is presently exposed as the sedimentary rocks of the Siwalik Group. The rocks of the Siwalik Group have been extensively studied in the western and Nepal Himalaya and have been divided into the Lower, Middle and Upper Subgroups. In the Darjiling–Sikkim Himalaya, the Upper Siwalik sequence is not exposed and the Middle Siwalik Subgroup exposed in the Tista river valley of Darjiling Himalaya preserves a ~325 m thick sequence of sandstone, conglomerate and shale. The Middle Siwalik section has been repeated by a number of north dipping thrusts. The sedimentary facies and facies associations within the lithostratigraphic column of the Middle Siwalik rocks show temporal repetition of sedimentary facies associations suggesting oscillation between proximal-, mid- and distal fan setups within a palaeo-alluvial fan depositional environment similar to the depositional setup of the Siwalik sediments in other parts of the Himalaya. These oscillations are probably due to a combination of foreland-ward movement of Himalayan thrusts, climatic variations and mountain-ward shift of fan-apex due to erosion. The Middle Siwalik sediments were derived from Higher- and Lesser Himalayan rocks. Mineral characteristics and modal analysis suggest that sedimentation occurred in humid climatic conditions similar to the moist humid climate of the present day Eastern Himalaya.  相似文献   

14.
Abstract: The Biliutai pluton, as the host of a small gold deposit, containing dark-gray enclaves, intruded into the Lower Permian volcanic-sedimentary formations in east Inner Mongolia, China. The host rocks and enclaves formed simultaneously at about 200 Ma (Rb–Sr isochron age with initial 87Sr/86Sr of 0.704). The Nd (T) values for the enclaves (from +4.4 to +4.6) are similar to their host rocks (+3.2 to +4.8), although the values for the host rocks are relatively variable. Both enclaves and host rocks are enriched in large ion lithosphere elements and light rare earth elements but depleted in high field strength elements and heavy rare earth elements. These observations suggest that the magma was produced from subduction-modified mantle sources. The age of the mantle enrichment event, evaluated using depleted mantle Nd model ages, is 0.61 - 0.83 Ga. These geochemical characteristics constrain the metallogeny of the Biliutai pluton, and imply that the ore-forming materials probably were derived from lithospheric mantle.  相似文献   

15.
M.J. Bickle 《地学学报》1996,8(3):270-276
The seawater 87Sr/86Sr curve implies a 50–100 Myr episodicity in weathering rate which requires a corresponding variation in CO2 degassing from the solid earth to the atmosphere. It is proposed that this is caused by orogenesis, which both produces CO2 as a result of metamorphic decarbonation reactions, and consumes extra CO2 as a consequence of erosion-enhanced weathering. Global climate on the geological time-scale is therefore contTolled by the difference between the relatively large and variable orogenic-moderated degassing and weathering CO2 fluxes.  相似文献   

16.
Geochronology is useful for understanding provenance, and while it has been applied to the central and western Himalaya, very little data are available in the eastern Himalaya. This study presents detrital zircon U–Pb ages from the late Palaeocene–Eocene Yinkiong Group in NE India. The samples are from the late Palaeocene to early Eocene Lower Yinkiong Formation, and the Upper Yinkiong Formation deposited during the early to mid‐Eocene within the Himalayan foreland basin. The U–Pb ages of the detrital zircon within the Lower Yinkiong Formation are older than late Palaeozoic, with a cratonic and early Himalayan Thrust Belt affinity, whereas the Cenozoic grains in the Upper Yinkiong Formation indicate a Himalayan Thrust Belt source and possibly a granitic body within the Asian plate. The shift of the sources and the changes in the foreland basin system strongly suggest that the India–Asia collision in the Eastern Himalaya began before or immediately after the deposition of the Upper Yinkiong Formation, i.e., within the early Eocene (c. 56 to 50 Ma).  相似文献   

17.
The Himalayan fold-and-thrust belt has propagated from its Tibetan hinterland to the southern foreland since ∼55 Ma. The Siwalik sediments (∼20 - 2 Ma) were deposited in the frontal Himalayan foreland basin and subsequently became part of the thrust belt since ∼ 12 Ma. Restoration of the deformed section of the Middle Siwalik sequence reveals that the sequence is ∼325 m thick. Sedimentary facies analysis of the Middle Siwalik rocks points to the deposition of the Middle Siwalik sediments in an alluvial fan setup that was affected by uplift and foreland-ward propagation of Greater and Lesser Himalayan thrusts. Soft-sediment deformation structures preserved in the Middle Siwalik sequence in the Darjiling Himalaya are interpreted to have formed by sediment liquefaction resulting from increased pore-water pressure probably due to strong seismic shaking. Soft-sediment structures such as convolute lamination, flame structures, and various kinds of deformed cross-stratification are thus recognized as palaeoseismic in origin. This is the first report of seismites from the Siwalik succession of Darjiling Himalaya which indicates just like other sectors of Siwalik foreland basin and the present-day Gangetic foreland basin that the Siwalik sediments of this sector responded to seismicity.  相似文献   

18.
This compilation report describes the field location, mineralogy, preparation and homogeneity testing of two new GIT-IWG reference materials: Whin Sill dolerite (WS-E) from England and Pitscurrie microgabbro (PM-S) from Scotland. The elemental composition of these two new reference materials has been established by an international cooperative analysis programme involving participation by 104 laboratories. A full assessment of these analytical results is presented, from which working values have been derived for the major elements as well as for 45 trace elements in WS-E and 44 trace elements in PM-S. Furthermore, isotopic ratios are presented for both samples, particularly for 87Sr/86Sr and 143Nd/144Nd.  相似文献   

19.
The δ13Ccarb and 87Sr/86Sr secular variations in Neoproteozoic seawater have been used for the purpose of 'isotope stratigraphy' but there are a number of problems that can preclude its routine use. In particular, it cannot be used with confidence for 'blind dating'. The compilation of isotopic data on carbonate rocks reveals a high level of inconsistency between various carbon isotope age curves constructed for Neoproteozoic seawater, caused by a relatively high frequency of both global and local δ13Ccarb fluctuations combined with few reliable age determinations. Further complication is caused by the unresolved problem as to whether two or four glaciations, and associated negative δ13Ccarb excursions, can be reliably documented. Carbon isotope stratigraphy cannot be used alone for geological correlation and 'blind dating'. Strontium isotope stratigraphy is a more reliable and precise tool for stratigraphic correlations and indirect age determinations. Combining strontium and carbon isotope stratigraphy, several discrete ages within the 590–544 Myr interval, and two age-groups at 660–610 and 740–690 Myr can be resolved.  相似文献   

20.
Strontium isotopic composition is a potentially powerful tracer in studies of kimberlitic rocks but the results from even the most carefully collected and stringently prepared bulk-rock samples are still hampered by contamination and alteration effects. Here we describe a LA-MC-ICP-MS technique which can obtain accurate, high precision Sri ratios from 50–150 μm kimberlitic groundmass perovskite without requiring time-consuming mineral separation procedures. Since perovskite is a robust magmatic phase with an extremely low Rb/Sr ratio, the effects of late-stage crustal contamination, post-emplacement alteration and age correction are minimised and results are more representative of primary melt compositions, while additionally preserving powerful grain-scale spatial and textural information. We demonstrate that the adopted protocol overcomes isobaric interferences from Kr+, Rb+, Er2+ and Yb2+, and that Ca dimers and Ca argides do not detectably affect the quality of 87Sr/86Sr ratios produced. To illustrate the utility of the technique, contrasting bulk-rock and in situ perovskite results from eleven Proterozoic kimberlites are documented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号