首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Onshore and offshore seismic and geologic-morphologic evidence from the wider region of the ?anakkale Basin indicates that this area has been widely exposed to transpressional tectonism, which already commenced in the Pliocene. During this transpressional tectonism, the Gelibolu Fault and the Anafartalar Shear Zone on the Gelibolu Peninsula, as well as the Bozcaada-Biga Shear Zone on the Biga Peninsula were activated. As a consequence, the northern part of the Gelibolu Peninsula, and a broad zone between Bozcaada Island and the Karaburun Peninsula were uplifted to form the northern and southern boundaries of the ?anakkale Basin, respectively. This remained a low-elevation intermontane basin between these two highlands. The original morphology of the ?anakkale Basin may have developed as a coastal and shelf section of the large extensional Marmara Sea Basin at the end of the Late Miocene. This tectonic phase was followed in the Pliocene by the transpressional tectonism of the North Anatolian Fault Zone, which destroyed the initial morphology and formed the present V-shaped basin. The activity of the Gelibolu Fault and the Anafartalar Shear Zone along the northern boundary of the ?anakkale Basin ended in the late Pleistocene with the initiation of the northern segment of the North Anatolian Fault Zone. The tectonism along the northern boundary of the ?anakkale Basin thus shifted from a transpressional to a transtensional regime. Seismic data indicate that the Bozcaada-Biga Shear Zone continues to be active to the present day.  相似文献   

2.
The North Anatolian Fault crosses the Sea of Marmara from east to west. Tectonic features of the Sea of Marmara were studied using multi-channel deep seismic reflection data. The northern branch of the North Anatolian Fault is active as a right lateral strike-slip fault zone and indicates both negative and positive flower structures. The North Anatolian Fault splays into two faults at the Sea of Marmara as a northern branch and north segment of the southern branch. The northern branch named the Main Marmara Fault extends in a complicated manner from the north of the Kapıdağı Peninsula to westward in the Sea of Marmara. The north segment of southern branch extends between the Gemlik and Bandırma gulfs in the south of the Sea of Marmara. In addition, uplift areas arose by compression and a push-up style in between the Kapıdağı Peninsula and the Main Marmara Fault. The North Anatolian Fault is characterized by a negative flower structure in basins and push-up style in uplift areas in the Sea of Marmara. An uplift area arose between the north segment of the southern branch and the northern branch of the North Anatolian Fault. The north segment of the southern branch of the North Anatolian Fault is a strike-slip fault and displays a pull-apart style in the seismic reflection data.  相似文献   

3.
Active faults aligning in NW–SE direction and forming flower structures of strike-slip faults were observed in shallow seismic data from the shelf offshore of Avcılar in the northern Marmara Sea. By following the parallel drainage pattern and scarps, these faults were traced as NW–SE-directed lineaments in the morphology of the northern onshore sector of the Marmara Sea (eastern Thrace Peninsula). Right-lateral displacements in two watersheds of drainage and on the coast of the Marmara Sea and Black Sea are associated with these lineaments. This right-lateral displacement along the course of these faults suggests a new, active strike-slip fault zone located at the NW extension of the northern boundary fault of the ?ınarcık Basin in the Marmara Sea. This new fault zone is interpreted as the NW extension of the northern branch of the North Anatolian Fault Zone (NAFZ), extending from the ?ınarcık Basin of the Marmara Sea to the Black Sea coast of the Thrace Peninsula, and passing through B üy ük ?ekmece and K ü ? ük ?ekmece lagoons. These data suggest that the rupture of the 17 August 1999 earthquake in the NAFZ may have extended through Avcılar. Indeed, Avcılar and İzmit, both located on the Marmara Sea coast along the rupture route, were strongly struck by the earthquake whereas the settlements between Avcılar and İzmit were much less affected. Therefore, this interpretation can explain the extraordinary damage in Avcılar, based on the newly discovered rupture of the NAFZ in the Marmara Sea. However, this suggestion needs to be confirmed by further seismological studies.  相似文献   

4.
Active faults aligning in NW–SE direction and forming flower structures of strike-slip faults were observed in shallow seismic data from the shelf offshore of Avc?lar in the northern Marmara Sea. By following the parallel drainage pattern and scarps, these faults were traced as NW–SE-directed lineaments in the morphology of the northern onshore sector of the Marmara Sea (eastern Thrace Peninsula). Right-lateral displacements in two watersheds of drainage and on the coast of the Marmara Sea and Black Sea are associated with these lineaments. This right-lateral displacement along the course of these faults suggests a new, active strike-slip fault zone located at the NW extension of the northern boundary fault of the Ç?narc?k Basin in the Marmara Sea. This new fault zone is interpreted as the NW extension of the northern branch of the North Anatolian Fault Zone (NAFZ), extending from the Ç?narc?k Basin of the Marmara Sea to the Black Sea coast of the Thrace Peninsula, and passing through B üy ük çekmece and K ü ç ük çekmece lagoons. These data suggest that the rupture of the 17 August 1999 earthquake in the NAFZ may have extended through Avc?lar. Indeed, Avc?lar and ?zmit, both located on the Marmara Sea coast along the rupture route, were strongly struck by the earthquake whereas the settlements between Avc?lar and ?zmit were much less affected. Therefore, this interpretation can explain the extraordinary damage in Avc?lar, based on the newly discovered rupture of the NAFZ in the Marmara Sea. However, this suggestion needs to be confirmed by further seismological studies.  相似文献   

5.
We studied the active deformation zone of the middle strand of the North Anatolian Fault Zone through the southern part of the Sea of Marmara by means of high-resolution as well as deep seismic reflection data. Our main objective was to investigate the active deformation within the uppermost sedimentary layers at high resolution as well as deeper sedimentary layers, focusing on the tectonic and stratigraphic setting between Gemlik and Bandırma. The middle strand of the North Anatolian Fault reaching the Gulf of Gemlik is a main fault which has a lazy-S shape in the Gulf of Gemlik, and extends westwards to Bandırma as a main fault which is an E–W-trending single right-lateral fault controlling the zone along the Gemlik and Bandırma sub-basins. Small-scale faults, consistent with a dextral shear regime, are present in the vicinity of the main fault. Several oblique fault groups parallel to the main fault were detected. The deformation in the Gulf of Gemlik is characterized by a series of synthetic and antithetic faults emanating from the main fault. The boundary faults in the Gulf of Gemlik have a compressive component, which indicates the sill areas of the gulfs of Gemlik and Bandırma to be push-up structures. Four seismic stratigraphic units were identified in the sediments of the gulfs of Gemlik and Bandırma, providing evidence of tectonic influence. The present tectonic structure between Gemlik and Bandırma is not a pull-apart structure. The microseismic study in this area has shown that fault planes are either strike-slip or compressional, and that the stress tensor is compatible with pure strike-slip in the E–W fault system.  相似文献   

6.
A total of 42 km of high-resolution seismic reflection and bathymetric data were collected for the first time to document stratigraphic and structural features of the uppermost 5 m of the Holocene sedimentary infill of Küçükçekmece Lagoon along the Marmara Sea coast of Turkey. The lagoon gradually deepens from 1 m off the northern coast to a maximum of 20 m in the southern basin. Stratigraphically, the uppermost seismic unit is characterized by a generally parallel reflection configuration, indicating deposition under low-energy conditions. In the southern basin of the lagoon, the sub-bottom is locally characterized by frequency attenuated and chaotic reflections interpreted as gas-charged sediments. Structurally, the soft sediment of the first 5 m below the lagoon floor is locally deformed by active strike-slip fault zones, here named FZ1, FZ2, and FZ3. These fault zones are NW–SE oriented and follow the long axis of the lagoon, compatible with the geographic alignment of the lagoon, the onland drainage pattern, and the scarps of the surrounding terrain. Moreover, the fault zones in Küçükçekmece Lagoon are well correlated with active offshore faults mapped during previous studies. This suggests that the FZ1, FZ2, and FZ3 fault zones are not merely local fault systems deforming the Küçükçekmece Lagoon bottom, but that they may be part of a regional fault zone extending both north and southward to merge with the northern branch of the North Anatolian Fault Zone (NAFZ) in the Ç?narc?k Basin. This, however, needs to be confirmed by further structural and seismological studies around Küçükçekmece Lagoon in order to more firmly establish its link with the NAFZ in the Marmara Sea, and to highlight potential seismic risks for the densely populated Istanbul metropolitan area.  相似文献   

7.
Although there are many research studies on the northern and southern branches of the North Anatolian fault, cutting through the deep basins of the Sea of Marmara in the north and creating a series of pull-apart basins on the southern mainland, little data is available about the geometrical and kinematical characteristics of the middle strand of the North Anatolian fault. The first detailed geometry of the middle strand of the North Anatolian fault along the southern Marmara shelf, including the Gemlik and Band?rma Bay, will be given in this study, by a combined interpretation of different seismic data sets. The characteristic features of its segments and their importance on the paleogeographic evolution of the southern shelf sub-basins were defined. The longest one of these faults, the Armutlu-Band?rma segment, is a 75-km long dextral strike-slip fault which connects the W–E trending Gençali segment in the east and NE–SW trending Kap?da?-Edincik segment in the west. In this context, the Gemlik Bay opened as a pull-apart basin under the control of the middle strand whilst a new fault segment developed during the late Pleistocene, cutting through the eastern rim of the bay. In this region, a delta front forming the paleoshoreline of the Gemlik paleolake was cut and shifted approximately 60 ± 5 m by the new segment. The same offset on this fault was also measured on a natural scarp of acoustic basement to the west and integrated with this paleoshoreline forming the slightly descending topset–foreset reflections of the delta front. Therefore the new segment is believed to be active at least for the last 30,000 years. The annual lateral slip rate representing this period of time will be 2 mm, which is quite consistent with modern GPS measurements. Towards the west, the Band?rma Bay is a rectangular transpressional basin whilst the Erdek Bay is a passive basin under the control of NW–SE trending faults. When the water level of the paleo-Marmara lake dropped down to ?90 m, the water levels of the suspended paleolakes of Band?rma and Gemlik on the southern shelf were ?50.3 (?3.3 Global Isostatic Adjustment—GIA) and ?60.5 (?3.3 GIA) m below the present mean sea level, respectively. As of today a similar example can be seen between the Sea of Marmara and the shallow freshwater lakes of Manyas and Uluabat. Similarly, the paleolakes of Gemlik and Bandirma were affected by the water level fluctuations at different time periods, even though both lakes were isolated from the Sea of Marmara during the glacial periods.  相似文献   

8.
Multichannel seismic reflection and multi-beam bathymetry data were used to study the active tectonic and syn-tectonic stratigraphic setting of the Gulf of ?zmit in the Marmara Sea (Turkey). The gulf and its near surroundings are deformed by the northern strand of the dextral North Anatolian Fault. Three connected basins of the gulf, the western (Dar?ca), central (Karamürsel) and eastern (Gölcük) basins are formed by active faults, as observed in the stacked and migrated seismic sections, as well as the bathymetry map. The main branch and its surrounding sedimentary strata are confined by normal faults to the north and south. These normal faults converge at depth towards the main fault, forming a negative flower structure in the gulf. The average maximum sedimentation rate is 0.4 mm/year according to the three most recent seismo-stratigraphic units that are located to the south of the main fault branch within the central basin. A 20° south-dipping major discontinuity along the northern shoreline of the gulf represents the top of Paleozoic basement.  相似文献   

9.
New (2009) multi-beam bathymetric and previously published seismic reflection data from the NE-SW-oriented Fethiye Bay and the neighboring N-S-oriented Marmaris Bay off SW Anatolia were evaluated in order to interpret the seafloor morphology in terms of the currently still active regional tectonic setting. This area lies between the Pliny Trench, which constitutes the eastern sector of the subduction zone between the African and Eurasian plates in the Eastern Mediterranean, and the Fethiye-Burdur Fault Zone of the Anatolian Plate. The bathymetric data document the very narrow shelf of the Anatolian coast, a submarine plain between the island of Rhodes and Marmaris Bay, and a large canyon connecting the abyssal floor of the Rhodes Basin with Fethiye Bay. The latter are here referred to as the Marmaris Plain and Fethiye Canyon, respectively. Several active and inactive faults have been identified. Inactive faults (faults f1) delineate a buried basin beneath the Marmaris Plain, here referred to as the Marmaris Basin. Other faults that affect all stratigraphic units are interpreted as being active. Of these, the NE-SW-oriented Marmaris Fault Zone located on the Marmaris Plain is interpreted as a transtensional fault zone in the seismic and bathymetric data. The transtensional character of this fault zone and associated normal faults (faults f3) on the Marmaris Plain correlates well with the Fethiye-Burdur Fault Zone on land. Another important fault zone (f4) occurs along the Fethiye Canyon, forming the northeastern extension of the Pliny Trench. The transpressional character of faults f4 inferred from the seismic data is well correlated with the compressional structures along the Pliny Trench in the Rhodes Basin and its vicinity. These observations suggest that the Marmaris Fault Zone and faults f3 have evolved independently of faults f4. The evidence for this missing link between the Pliny Trench and the Fethiye-Burdur Fault Zone implies possible kinematic problems in this tectonic zone that deserve further detailed studies. Notably, several active channels and submarine landslides interpreted as having been triggered by ongoing faulting attest to substantial present-day sediment transport from the coast into the Rhodes Basin.  相似文献   

10.
南黄海盆地古潜山分类及构造特征   总被引:1,自引:0,他引:1  
南黄海是下扬子的主体,奠基于晋宁期变质基底之上,构造演化历经南华纪—早、中三叠世海相地层发育期、晚白垩世—古近纪箕状断陷发育期和新近纪—第四纪坳陷发育期,为一典型地台-断陷-坳陷多层结构的复合盆地。盆地历经多次构造运动改造,古潜山发育,类型多样。在总结前人对古潜山研究的基础上,结合南黄海新近采集的二维地震剖面,对该地区古潜山类型进行了系统划分,并对典型古潜山的构造特征及生储盖匹配关系进行了初步描述。根据成因划分为剥蚀型潜山、拉张型潜山、挤压型潜山和复合型潜山四大类,每一类又可根据形态划分出剥蚀残丘型潜山、拉张翘倾断块型潜山、拉张断阶型潜山、拉张断垒型潜山、挤压褶皱型潜山、拱张褶皱型潜山和褶皱—断块复合型潜山等类型。南黄海盆地古潜山的发育具有分带性,按盆地中潜山的构造位置,分为凸起潜山带、陡坡潜山带、洼陷潜山带和缓坡潜山带,每一构造带发育了不同类型潜山。研究表明南黄海古生界和中生界古潜山数量众多,规模较大,是南黄海地区实现油气突破的一种重要油气藏类型。  相似文献   

11.
红河活动断裂带在南海西北部的反映   总被引:6,自引:0,他引:6  
红河断裂带是一条走滑的活动断裂带,它控制着南海西北部的构造活动,也控制着莺歌海盆地的形成和演化。根据南海西北部中穿过莺歌海盆地的地震剖面和历史资料进行解释,结果表明,莺歌海盆地的形成可分3个阶段:自50MaB.P.开始,沿红河断裂带的左旋错动和在印支地块的顺时针旋转的应力作用下,形成了莺歌海盆地的雏形;24MaB.P.之后在左旋压扭应力场作用下,形成了盆地西北部的反转构造;5MaB.P.之后发生了右旋错动,盆地内快速沉降,发育巨厚沉积层。根据盆地内最老和最新的沉积中心之间的距离,推测沿红河断裂带的左旋位错约200km。该断裂带发展到现代,其活动性大为减弱,曾发生10次小于5级地震。  相似文献   

12.
Structural, mass-wasting and sedimentation processes along an active dextral shear zone beneath the Gulf of Saros and the NE Aegean Sea were investigated on the basis of new high-resolution swath bathymetric data and multi-channel seismics. A long history of dextral shearing operating since the Pliocene culminated in the formation of a NE-SW-trending, ca. 800-m-deep basin (the so-called inner basin) in this region, which is bordered by a broad shelf along its northern and eastern sides and a narrow shelf at the southern side. The western extension of the North Anatolian Fault Zone (the Ganos Fault) cuts the eastern shelf along a narrow deformation zone, and ends sharply at the toe of the slope, where the strain is taken up by two NE-SW-oriented fault zones. These two fault zones cut the basin floor along its central axis and generate a new, Riedel-type pull-apart basin (the so-called inner depression). According to the bathymetric and seismic data, these basin boundary fault zones are very recent features. The northern boundary of the inner depression is a through-going fault comprising several NE-SW- and E-W-oriented, overlapping fault segments. The southern boundary fault zone, on the other hand, consists of spectacular en-echelon fault systems aligned in NE–SW and WNW–ESE directions. These en-echelon faults accommodate both dextral and vertical motions, thereby generating block rotations along their horizontal axis. As the basin margins retreat, the basin widens continuously by mass-wasting of the slopes of the inner basin. The mass-wasting, triggered by active tectonics, occurs by intense landsliding and channel erosion. The eroded material is transported into the deep basin, where it is deposited in a series of deep-sea fans and slumps. The high sedimentation rate is reflected in an over 1,500-m-thick basin fill which has accumulated in Pliocene–Quaternary times.  相似文献   

13.
In this paper, we demonstrate the effectiveness of steerable filters as a method of delineating the boundaries of subsurface geological structures. Steerable filters, generally used for edge detection on 2-D images, have the properties of band pass filters with certain directions and are applied to many image processing problems. We first tested the method on synthetic data and then applied it to the aeromagnetic data of İskenderun Basin and adjacent areas.İskenderun Basin is located in the Northeastern Mediterranean where African–Arabian and Anatolian plates are actively interacting. The basin fill records a complex tectonic evolution since the Early Miocene, involving ophiolite emplacement, diachronous collision of Eurasian and Arabian plates and subsequent tectonic escape related structures and associated basin formation. Geophysical investigations of the tectonic framework of İskenderun Basin of Turkey provide important insights on the regional tectonics of the Eastern Mediterranean and Middle East. In this study we show geological structures, which are responsible for the magnetic anomalies in İskenderun Basin and enlighten the structural setting of the Northeastern Mediterranean triple junction using steerable filters. We obtained a magnetic anomaly map of the region from the General Directorate of Mineral Research and Exploration as raw data and then evaluated this by steerable filters. We determined the magnetic anomaly boundaries for İskenderun Basin by using various types of steerable filters and correlated these to drilling data and seismic profiles from the Turkish Petroleum Corporation. The result of the steerable filter analysis was a clarified aeromagnetic anomaly map of İskenderun Basin. The tectonic structure of İskenderun Basin is divided into regions by an N–S trending oblique-slip fault defined by the steerable filter outputs. We propose a new tectonic structure model of İskenderun Basin and modify the direction of the East Anatolian Fault Zone. In our model, East Anatolian Fault Zone cross-cuts the basin as a narrow fault zone and continues towards the Cyprus arc.  相似文献   

14.
Compressional wave velocities measured in gabbroic rocks and metabasites recovered from Site 293 of Leg 31 in the Philippine Sea (on the Central Basin Fault) are correlative with seismic velocities determined for Layer 3. The lower crustal origin for these rocks suggested by this data is further supported by the similarity between these samples, dredge haul samples from fracture zones in the main ocean basins and rocks found in ophiolite complexes. These plutonic rocks were possibly introduced to the sea floor by movements along the Central Basin Fault, a major tectonic feature in the Philippine Sea, or formed as part of new ocean crust within a leaky transform fault.  相似文献   

15.
The Pearl River Mouth Basin is one of the most favorable areas for gas exploration on the northern slope of the South China Sea. Differences of fault patterns between shelf and slope are obvious. In order to investigate the tectonic evolution, five series of analogue modeling experiments were compared. The aim of this study is to investigate how crustal thickness influences fault structures, and compare this to the observed present-day fault structures in the Pearl River Mouth Basin. The initial lithospheric rheological structure can be derived from the best fit between the modeled and observed faults. The results indicate. (1) Different initial crustal rheological structures can produce different rift structures in the Pearl River Mouth Basin. (2) We also model that the Baiyun Sag in the southern Pearl River Mouth Basin may have had a thinned crust before rifting compared to the rest of the basin. (3) The thickness ratio of brittle to ductile crust in southern Pearl River Mouth Basin is less than normal crust, suggesting an initially hot and weak lithosphere. (4) Slightly south of the divergent boundary magma may have taken part in the rifting process during the active rift stage.  相似文献   

16.
Crustal seismic structures beneath the West Philippine Sea are determined by using explosive sources (0.5–108.6 kg) and ocean bottom seismometers to measure refracted compressional waves. Total crustal thicknesses are shown to be thinner in the eastern part of the ocean basin, approaching only 3.5 km. Crustal thinning toward the east is consistent with the Palau Kyushu Ridge being a remnant transform fault connecting the Central Basin Ridge and the Kula Pacific Ridge in the past. A velocity-depth inversion from the westernmost refraction profile indicates the upper transitional crust layer to have strong velocity gradients which gradually decrease with depth; the lower crust is characterized by a nearly constant velocity gradient. The western part of the ocean basin is also shown to have more typical oceanic thicknesses, as is found in deep ocean basins of the Pacific. Spectral energy models using WKBJ synthetic seismograms suggest that there is a sharp seismic discontinuity between the crust and moho in the western part of the basin. Predicted water depths for the West Philippine Basin using an age-depth relation and corrected for an isostatic response to the measured crustal thicknesses, are still 300 meters shallower than observed depths. The depth anomaly can not be fully reconciled by thinner crust in the eastern part of the basin. This observation implies that a deeper seated anomaly is present beneath the West Philippine Basin.  相似文献   

17.
The Fingerdjupet Subbasin in the southwestern Barents Sea sits in a key tectonic location between deep rifts in the west and more stable platform areas in the east. Its evolution is characterized by extensional reactivation of N-S and NNE-SSW faults with an older history of Late Permian and likely Carboniferous activity superimposed on Caledonian fabrics. Reactivations in the listric NNE-SSW Terningen Fault Complex accommodated a semi-regional rollover structure where the Fingerdjupet Subbasin developed in the hangingwall. In parallel, the Randi Fault Set developed from outer-arc extension and collapse of the rollover anticline.N-S to NNE-SSW faults and the presence of other fault trends indicate changes in the stress regime relating to tectonic activity in the North Atlantic and Arctic regions. A latest Triassic to Middle Jurassic extensional faulting event with E-W striking faults is linked to activity in the Hammerfest Basin. Cessation of extensional tectonics before the Late Jurassic in the Fingerdjupet Subbasin, however, suggests rifting became localized to the Hammerfest Basin. The Late Jurassic was a period of tectonic quiescence in the Fingerdjupet Subbasin before latest Jurassic to Hauterivian extensional faulting, which reactivated N-S and NNE-SSW faults. Barremian SE-prograding clinoforms filled the relief generated during this event before reaching the Bjarmeland Platform. High-angle NW-prograding clinoforms on the western Bjarmeland Platform are linked to Early Barremian uplift of the Loppa High. The Terningen Fault Complex and Randi Fault Set were again reactivated in the Aptian along with other major fault complexes in the SW Barents Sea, leading to subaerial exposure of local highs. This activity ceased by early Albian. Post-upper Albian strata were removed by late Cenozoic uplift and erosion, but later tectonic activity has both reactivated E-W and N-S/NNE-SSW faults and also established a NW-SE trend.  相似文献   

18.
Potential tsunami waves were modelled on the basis of the morphology and geological setting of a late glacial submarine landslide localized in the north-eastern sector of the Sea of Marmara, using a three-dimensional algorithm with the purpose of assessing the future risk of tsunamogenic landslides in the region. The landslide occurred off the Tuzla Peninsula on the north-eastern slope of the Ç?narc?k Basin, the easternmost of the three deep Marmara basins. The mass movement appears to be related to the Main Marmara Fault that passes below the toe of the failed mass. Observations from earlier manned submersible dives suggest that the initiation of the slide was facilitated by secondary faults associated with the Hercynian orogeny and involved Palaeozoic shales dipping southwards towards the deep basin. Radiocarbon dating of core material, together with the well-dated Marmara sapropel above the chaotically mixed landslide surface, reveal that the latest landslide event occurred about 17 14C ka b.p. The uppermost scar of the landslide is found at 250 m and its toe at about 1,200 m below the present sea level. At the time of the slide, the Marmara Sea Basin was lacustrine, with its water level at ?85 m. In plan view the landslide has a distinctively triangular shape and the lateral extent of its toe is about 10 km. Multibeam bathymetric data indicate that the sliding motion probably occurred in two phases: a slower phase affecting the eastern part, characterized by an undulating surface, and a more rapid phase affecting the western part that possibly created tsunami waves. In the seismic sections, older failed slide masses can be clearly identified; these were probably displaced during marine isotopic stage 6 (~127–160 ka b.p.). The front of this buried material is located more than 1.5 km further south of the fault. We used a three-dimensional, Green’s function-based potential theory approach, rather than shallow-water equations commonly used in conventional tsunami simulations. The solution algorithm is based on a source-sink formulation and an integral equation. The results indicate that the maximum height of the tsunami in the Ç?narc?k Basin could have reached about half the average thickness of the sliding mass over a lateral extent of 7 km. Assuming an average thickness of 30 m for the landslide, and considering that the water level at 17 ka b.p. was at about ?85 m, the modelling shows that the maximum wave height generated by the slide would have been about 15–17 m.  相似文献   

19.
法尔维海盆位于西南太平洋海域豪勋爵海丘东侧、新喀里多尼亚岛西侧,是全球油气勘探的前沿地区。但目前对于该海盆的构造演化研究较为薄弱,限制了该海盆油气资源的进一步勘探开发。本文通过从新西兰塔斯曼海数据库搜集到大量地球物理资料,使用2D Move软件,通过平衡剖面技术进行构造演化模拟,结合区域动力学机制将海盆北部和南部的构造演化分为7个阶段:(1)早白垩世至晚白垩世陆内裂谷阶段;(2)晚白垩世断坳过渡阶段;(3)始新世早期坳陷阶段;(4)始新世晚期一次构造反转阶段;(5)始新世至渐新世热沉降阶段;(6)渐新世至中新世二次构造反转阶段;(7)中新世至今海洋沉降阶段。由于海盆中部未发现有明显的二次构造反转阶段,所以将海盆中部的构造演化划分为5个阶段:(1)早白垩世至晚白垩世陆内裂谷阶段;(2)晚白垩世断坳过渡阶段;(3)始新世早期坳陷阶段;(4)始新世晚期构造反转阶段;(5)中新世至今海洋沉降阶段。此阶段海盆整体下坳,逐渐形成现今样貌。法尔维海盆北部受到区域构造活动影响较大,白垩系地层发育较多的断裂构造;海盆中部晚白垩统地层发生较多的底辟构造;海盆南部从形成至今,受到构造活动影响较小,发育地层完整,前新生代地层较厚。整个法尔维海盆北部构造活动较强,中部较弱,南部较小。沉积地层从北到南由厚变薄。  相似文献   

20.
The northwestern continental margin of New Zealand offers one of the finest examples of a continent-backarc transform. This transform, part of the Vening Meinesz Fracture Zone (VMFZ), accommodated about 170 km of sea-floor spreading in the Norfolk backare basin together with eastward migration of a volcanic arc, the Three Kings Ridge, in the Mid- to Late Miocene. Before the onset of spreading, strain along the VMFZ may have been linked to a major Early Miocene obduction event — the emplacement of the Northland Allochthon. The transform is manifested by a belt up to 50 km wide of left-stepping, linear fault scarps up to 2000 m high within an approximately 100 km-wide deformed zone. A marginal ridge, the Reinga Ridge, which includes a faulted, folded and uplifted Miocene sedimentary basin, occurs within the high-standing continental side of the deformed zone, whereas a narrow strip of linear detached blocks occupies the deep backarc oceanic side. Prespreading uplift and erosion of crust in the proto-backarc region, are volcanism, and obduction of the allochthon, supplied clastic sediments to the basin on the continental side. This basin was complexly deformed as the transform evolved. The transform was initiated as a dextral strike-slip fault zone, which developed right-branching splays and left-steps along its length, uplifting and cutting the continental margin into left-hand, en echelon blocks and relays. Folds formed locally within relay blocks and at the distal ends of the splays. Only the high continental side of this zone (the Reinga Ridge) remains, the formerly adjacent crust (the Three Kings Ridge) having been displaced towards the southeast. As the Three Kings block moved and the Norfolk Basin opened, opposing rift margins of the backarc basin foundered to form terraces. The oceanic side of the transform also subsided to produce the belt of detached blocks (some laterally displaced by strike slip) and linear troughs along the main escarpment system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号