首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Using the superposition model in conjunction with our crystal field analysis package recently developed for 3d ions doped at arbitrary low symmetry sites in crystals, the energy levels and statevectors have been predicted within the whole 3d 3 configuration of Cr3+ at the four possible triclinic sites in kyanite (Al2O3∶SiO2). The values of the ground state zero-field splitting for each of the four Al sites are evaluated. The splittings of the lower excited state 2 E as well as the admixture of 4 T 2 state into 2 E have also been determined. The predicted results are compared with the available experimental data on the four possible, but so far not uniquely identified, substitutional Cr3+ sites in kyanite thus enabling correlation of the spectroscopic properties and substitutional sites.  相似文献   

2.
Quartz‐rich veins in metapelitic schists of the Sanandaj‐Sirjan belt, Hamadan region, Iran, commonly contain two Al2SiO5 polymorphs, and, more rarely, three coexisting Al2SiO5 polymorphs. In most andalusite and sillimanite schists, the types of polymorphs in veins correlate with Al2SiO5 polymorph(s) in the host rocks, although vein polymorphs are texturally and compositionally distinct from those in adjacent host rocks; e.g. vein andalusite is enriched in Fe2O3 relative to host rock andalusite. Low‐grade rocks contain andalusite + quartz veins, medium‐grade rocks contain andalusite + sillimanite + quartz ± plagioclase veins, and high‐grade rocks contain sillimanite + quartz + plagioclase veins/leucosomes. Although most andalusite and sillimanite‐bearing veins occur in host rocks that also contain Al2SiO5, kyanite‐quartz veins crosscut rocks that lack Al2SiO5 (e.g. staurolite schist, granite). A quartz vein containing andalusite + kyanite + sillimanite + staurolite + muscovite occurs in andalusite–sillimanite host rocks. Textural relationships in this vein indicate the crystallization sequence andalusite to kyanite to sillimanite. This crystallization sequence conflicts with the observation that kyanite‐quartz veins post‐date andalusite–sillimanite veins and at least one intrusive phase of a granite that produced a low‐pressure–high‐temperature contact aureole; these relationships imply a sequence of andalusite to sillimanite to kyanite. Varying crystallization sequences for rocks in a largely coherent metamorphic belt can be explained by P–T paths of different rocks passing near (slightly above, slightly below) the Al2SiO5 triple point, and by overprinting of multiple metamorphic events in a terrane that evolved from a continental arc to a collisional orogen.  相似文献   

3.
The luminescence spectra of Pr3+ and Sm3+ ions in apatite Ca5[F∣(PO4)3] crystals from Spain and Russia have been compared with those for phosphate glasses doped with Pr3+, Sm3+ and Pr3+, Sm3+ ions. Time-resolved spectra measurements confirm that, in apatites, samarium ions occupy two non-equivalent crystal sites; the same is assumed for praseodymium ions. For the first time in minerals, the Stark splitting energy levels ΔE for 3H6 and 1D2 of Pr3+ ion and 6H7/2 of Sm3+ ion were determined. Some small differences in ΔE values for the Spanish and Russian apatite are discussed. The decay times of the excited levels of Pr3+, Sm3+ and Pr3+, Sm3+ doped in phosphate glass were measured at room temperature and at 77 K. The energy transfer process between samarium and praseodymium ions was observed and the energy transfer rate was calculated.  相似文献   

4.
Potential protonation sites for, kyanite, sillimanite, and andalusite, located in a mapping of the (3, −3) critical points displayed by their L(r) = −∇2ρ(r) distributions, are compared with polarized single-crystal FTIR spectra of kyanite and sillimanite determined earlier and with andalusite measured in this study. For andalusite, seven peaks were observed when the electric vector, E, is parallel to [100]: four intense ones at 3,440, 3,460, 3,526, and 3,597 cm−1 and three weaker ones at 3,480, 3,520, and 3,653 cm−1. Six peaks, three intense ones at 3,440, 3,460, and 3,526 cm−1 and three weaker ones at 3,480, 3,520, and 3,653 cm−1 when E parallels [010]. No peaks were observed when E is parallel to [001]. The concentration of water in andalusite varies between 110 and 168 ppm by weight % H2O. Polarized FTIR spectra indicate that the OH vector is parallel to (001) in andalusite and sillimanite and in kyanite. Examination of the L(r) (3, −3) critical points in comparison with the polarized FTIR indicates that H prefers to bond to the oxygen atoms O1 and O2 in andalusite and O2 and O4 in sillimanite which correspond to the underbonded oxygen atoms and those with the largest L(r) maxima. In kyanite, comparison of the FTIR spectrum and the critical points indicates that H will preferentially bond to the two 4-coordinated O2 and O6 atoms.  相似文献   

5.
Raman spectra of the three Al2SiO5 polymorphs; andalusite, sillimanite and kyanite were recorded as a function of pressure at room temperature. All the Raman active bands which could be observed from the high-pressure cell showed a linear pressure dependence for each of the three Al2SiO5 polymorphs and no phase changes were observed over the pressure ranges used in this study. In andalusite and to a lesser extent in sillimanite, vibrations which could be correlated with internal motions of the SiO4 tetrahedra were generally well separated from the lattice modes and showed a greater pressure dependence than that observed for other modes. The distinct pressure dependence of the internal SiO4 modes is less evident in kyanite, probably due to the lack of continuous tetrahedral chains and the fact that the rigid SiO4 tetrahedra now form an integral part of the structural network. At ambient pressure, kyanite also exhibits two fluorescence bands at 705 and 706.2 nm which are due to small amounts of Cr3+ in the kyanite crystals. These fluorescence bands showed a non-linear frequency shift as pressure was increased.  相似文献   

6.
 The electronic structure of the three polymorphs of Al2SiO5, andalusite, sillimanite, and kyanite, is studied by linearized-augmented-plane-wave (LAPW) calculations using the WIEN code. Total energy calculations verify, in agreement with recent pseudopotential calculations, that andalusite is the most stable phase, followed by sillimanite and kyanite.We determine the electronic charge density distribution and find strong polarizations on all oxygen ions. We identify different polarizations due to Al or Si neighbors which depend on their respective distances to the oxygen atom. The chemical bonding is not purely ionic in nature but has important covalent contributions. Electric field gradients (EFGs) at all sites are calculated and agree well (within 10%) with available experimental data on Al. We identify the origin of the EFGs and demonstrate its relation to the nearest-neighbor coordination and the resulting anisotropy of the electronic charge distribution. Received: 22 March 2000 / Accepted: 3 August 2000  相似文献   

7.
A selected set of five different kyanite samples was analysed by electron microprobe and found to contain chromium between <0.001 and 0.055 per formula unit (pfu). Polarized electronic absorption spectroscopy on oriented single crystals, R1, R2-sharp line luminescence and spectra of excitation of λ3- and λ4-components of R1-line of Cr3+-emission had the following results: (1) The Fe2+–Ti4+ charge transfer in c-parallel chains of edge connected M(1) and M(2) octahedra shows up in the electronic absorption spectra as an almost exclusively c(||Z′)-polarized, very strong and broad band at 16000 cm−1 if <, in this case the only band in the spectrum, and at an invariably lower energy of 15400 cm−1 in crystals with  ≥ . The energy difference is explained by an expansion of the Of–Ok, and Ob–Om edges, by which the M(1) and M(2) octahedra are interconnected (Burnham 1963), when Cr3+ substitutes for Al compared to the chromium-free case. (2) The Cr3+ is proven in two greatly differing crystal fields a and b, giving rise to two sets of bands, derived from the well known dd transitions of Cr3+ 4A2g4T2g(F)(I), →4T1g(F)(II), and →4T1g(P)(III). Band energies in the two sets a and b, as obtained by absorption, A, and excitation, E, agree well: I: 17300(a, A), 17200(a, E), 16000(b, A), 16200(b, E); II: 24800(a, A), 24400(a, E); 22300(b, A), 22200(b, E); III: 28800(b,A) cm−1. Evaluation of crystal field parameters from the bands in the electronic spectra yield Dq(a)=1730 cm−1, Dq(b)=1600 cm−1, B(a)=790 cm−1, B(b)=620 cm−1 (errors ca. ±10 cm−1), again in agreement with values extracted from the λ3, λ4 excitation spectra. The CF-values of set a are close to those typical of Cr3+ substituting for Al in octahedra of other silicate minerals without constitutional OH as for sapphirine, mantle garnets or beryl, and are, therefore, interpreted as caused by Cr3+ substituting for Al in some or all of the M(1) to M(4) octaheda of the kyanite structure, which are crystallographically different but close in their mean Al–O distances, ranging from 1.896 to 1.919 A (Burnham 1963), and slight degrees of distortion. Hence, band set a originates from substitutive Cr3+ in the kyanite structural matrix. The CF-data of Cr3+ type b, expecially B, resemble those of Cr3+ in oxides, especially of corundum type solid solutions or eskolaite. This may be interpreted by the assumption that a fraction of the total chromium contents might be allocated in a precursor of a corundum type exsolution. Received: 3 January 1997 / Revised, accepted: 2 May 1997  相似文献   

8.
Cr-droped and Cr,Li-doped forsterite crystals were grown and their optical properties were investigated. It was shown that when only Cr is doped, Cr3+ is substituted at the site of low crystal field, and the energy level 2E lie above the 4T2 level, while 4T2 is just above 2E when Cr and Li are codoped. The difference was rationalized by a deformation of the Cr substituted site with the introduction of Li.  相似文献   

9.
Single crystals of emerald synthesized by means of the flux method were adopted for crystallographic analyses. Emerald crystals with a wide range of Cr3+-doping content up to 3.16 wt% Cr2O3 were examined by X-ray single crystal diffraction refinement method. The crystal structures of the emerald crystals were refined to R 1 (all data) of 0.019–0.024 and wR 2 (all data) of 0.061–0.073. When Cr3+ substitutes for Al3+, the main adjustment takes place in the Al-octahedron and Be-tetrahedron. The effect of substitution of Cr3+ for Al3+ in the beryl structure results in progressively lengthening of the Al–O distance, while the length of the other bonds remains nearly unchanged. The substitution of Cr3+ for Al3+ may have caused the expansion of a axis, while keeping the c axis unchanged in the emerald lattice. As a consequence, the Al–O–Si and Al–O–Be bonding angles are found to decrease, while the angle of Si–O–Be increases as the Al–O distance increases during the Cr replacement.  相似文献   

10.
Polarized electronic absorption spectra of single crystalline Co2[SiO4] and (Co0.64Mg0.36)2[SiO4] (E|| a (|| Z), E || b (|| X), E || c (|| Y)) have been studied in the temperature range 293 T/K 1273. The three polarized spectra show a total of 15 bands. Five bands are caused by spin-allowed transitions in Co2+ ions at M1 sites which appear in all polarization directions. Seven polarization-dependent bands can be ascribed to spin-allowed transitions in Co2+ ions at M2 sites and three bands may be assigned to spin-forbidden transitions. The assignment of bands due to Co2+ ions at M1 and M2 sites has been made on the basis of transition energies and intensity ratios. Further arguments have been derived from the comparison of spectra of crystals with different cobalt content, from the analysis of the polarization dependence of the spectra, and from the evolution of band intensities with temperature.  相似文献   

11.
In the Mt. Franks area of the Willyama Complex, microfabric evidence suggests that the alteration of andalusite to sillimanite has taken place by a process similar to that suggested by Carmichael (1969). Andalusite is pre- to syn-S2 in age. Alteration to “sericite” has resulted in the formation of “sericite” laths, some of which are crenulated about S2, and some which are syn- and post-S2. “Fibrolite” occurs in these andalusite—“sericite” aggregates within the sillimanite zone and is wholly embedded in “sericite”. “Fibrolite” is pre- to syn-S2 in age. This evidence is interpreted as suggesting that the formation of sillimanite from andalusite took place via a “sericite” phase.Further microfabric observations are interpreted to imply constant volume for the reaction aluminosilicate → “sericite”. This suggests a situation in which Al3+ is relatively mobile but Al4+ is relatively immobile. This suggestion differs from Carmichael's (1969) idea of Al3+ immobility.  相似文献   

12.
Torsion experiments were performed on the Al2SiO5 polymorphs in the sillimanite stability field to determine basic rheological characteristics and the effect of deformation on polymorphic transformation. The experiments resulted in extensive transformation of andalusite and kyanite to sillimanite. No transformation occurred during the hot-press (no deformation) stage of sample preparation, which was carried out at similar PT conditions and duration as the torsion experiments. Experiments were conducted on fine-grained (< 15 µm) aggregates of natural andalusite, kyanite and sillimanite at 1250 °C, 300 MPa, and a constant shear strain rate of 2 × 10− 4/s to a maximum shear strain of 400%. Electron back-scattered diffraction (EBSD) analysis of the experiments revealed development of lattice-preferred orientations, with alignment of sillimanite and andalusite [001] slightly oblique to the shear plane. The kyanite experiment could not be analyzed using EBSD because of near complete transformation to sillimanite. Very little strain ( 30%) is required to produce widespread transformation in kyanite and andalusite. Polymorphic transformation in andalusite and kyanite experiments occurred primarily along 500 µm wide shear bands oriented slightly oblique and antithetic to the shear plane and dominated by sub-µm (100–150 nm) fibrolitic sillimanite. Shear bands are observed across the entire strain field preserved in the torsion samples. Scanning transmission electron microscope imaging shows evidence for transformation away from shear bands; e.g. fibrolitic rims on relict andalusite or kyanite. Relict grains typically have an asymmetry that is consistent with shear direction. These experimental results show that sillimanite is by far the weakest of the polymorphs, but no distinction can yet be made on the relative strengths of kyanite and andalusite. These observations also suggest that attaining high bulk strain energy in strong materials such as the Al2SiO5 polymorphs is not necessary for triggering transformation. Strain energy is concentrated along grain boundaries, and transformation occurs by a dynamic recrystallization type process. These experiments also illustrate the importance of grain-size sensitive creep at high strains in a system with simultaneous reaction and deformation.  相似文献   

13.
Four samples of synthetic chromium-bearing spinels of (Mg, Fe2+)(Cr, Fe3+)2O4 composition and four samples of natural spinels of predominantly (Mg, Fe2+)(Al, Cr)2O4 composition were studied at ambient conditions by means of optical absorption spectroscopy. Synthetic end-member MgCr2O4 spinel was also studied at pressures up to ca. 10 GPa. In both synthetic and natural samples, chromium is present predominantly as octahedral Cr3+ seen in the spectra as two broad intense absorption bands in the visible range caused by the electronic spin-allowed 4 A 2g  → 4 T 2g and 4 A 2g  → 4 T 1g transitions (U- and Y-band, respectively). A distinct doublet structure of the Y-band in both synthetic and natural spinels is related to trigonal distortion of the octahedral site in the spinel structure. A small, if any, splitting of the U-band can only be resolved at curve-fitting analysis. In all synthetic high-chromium spinels, a couple of relatively narrow and weak bands of the spin-allowed transitions 4 A 2g  → 2 E g and 4 A 2g  → 2 T 1g of Cr3+, intensified by exchange-coupled interaction between Cr3+ and Fe3+ at neighboring octahedral sites of the structure, appear at ~14,400 and ~15,100 cm?1. A vague broad band in the range from ca. 15,000 to 12,000 cm?1 in synthetic spinels is tentatively attributed to IVCr2+ + VICr3+ → IVCr3+ + VICr2+ intervalence charge-transfer transition. Iron, mainly as octahedral Fe3+, causes intense high-energy absorption edge in near UV-range (ligand–metal charge-transfer O2? → Fe3+, Fe2+ transitions). As tetrahedral Fe2+, it appears as a strong infrared absorption band at around 4,850 cm?1 caused by electronic spin-allowed 5 E → 5 T 2 transitions of IVFe2+. From the composition shift of the U-band in natural and synthetic MgCr2O4 spinels, the coefficient of local structural relaxation around Cr3+ in spinel MgAl2O4–MgCr2O4 system was evaluated as ~0.56(4), one of the lowest among (Al, Cr)O6 polyhedra known so far. The octahedral modulus of Cr3+ in MgCr2O4, derived from pressure-induced shift of the U-band of Cr3+, is ~313 (50) GPa, which is nearly the same as in natural low-chromium Mg, Al-spinel reported by Langer et al. (1997). Calculated from the results of the curve-fitting analysis, the Racah parameter B of Cr3+ in natural and synthetic MgCr2O4 spinels indicates that Cr–O-bonding in octahedral sites of MgCr2O4 has more covalent character than in the diluted natural samples. Within the uncertainty of determination in synthetic MgAl2O4 spinel, B does not much depend on pressure.  相似文献   

14.
From considerations of relativeG-T surfaces inferred from publishedP-T data and the occurrence of replacement textures of Al2SiO5 polymorphs in rocks, the relative positions of curves representing the following equation in K+T — pH ispace on substituting Al2SiO5 different polymorphs are derived.3 Al2SiO5 + 3 SiO2 (quartz) + 2 K+ + 3 H2O 2 KAl2[AlSi3O10](OH)2 (muscovite)+ 2 H+. The curves are different because of the differentG-T values for the polymorphs which, in the field, is borne out by the observation that in a rock containing two or three Al2SiO5 polymorphs, in nearly all instances only one polymorph is replaced by white mica. Instances of textural relations showing the interpreted selective replacement of one Al2SiO5 polymorph by a white mica in the presence of one (or two) other Al2SiO5 polymorph(s) are cited both from the literature and various field examples. The selective replacement of kyanite if sillimanite and/or andalusite is/are present, and of andalusite if only sillimanite is present are interpreted to show that generally during the muscovitization reaction, the field of sillimanite in the above reaction (left hand side) at a particular pH (H+ concentration) and is larger in K+T space than that of andalusite which in turn is larger than that of kyanite. Theoretically it is shown that variations to this can exist but the field evidence suggests these only occur under rare geological conditions. Although this is not totally conclusive, the selectiveness of the replacement is interpreted to show that the fluid was buffered with respect to K+ and H+ on or near the curve of the polymorph showing the lowest stability field until that polymorph is totally consumed, after which the fluid composition moves to the next lowest curve for the remaining polymorph(s) present in the rock. The alteration of more than one polymorph by an apparently simultaneous process of alteration is rare and usually occurs at a low grade of metamorphism. This is interpreted to show that the buffering reaction could not keep pace with the influx of fluid and change the composition of this fluid (in most cases).  相似文献   

15.
Data on the structural and valence distribution of Cr and Fe in chrysoberyl and in alexandrite, its gem variety, are given. It is shown that the Cr3+ line in the natural Ural and Tanzania samples is the strongest in the M1 site and for the synthetic stones, in the M2 site. During the annealing of the alexandrite crystals, Cr3+ passes from the smaller M1 site into the larger M2 site. The M?ssbauer spectroscopy quantitatively determined the distribution of different valence Fe ions. The various proportions of both Fe2+ and Fe3+ ions isomorphically entering the octahedral sites in the BeAl2O4 crystal structure were established.  相似文献   

16.
Orange, ochre-coloured, light green and dark blue varieties of kyanite, ideally Al2SiO5, from Loliondo, Tanzania, have been characterised by electron microprobe analysis and polarised infrared and optical absorption spectroscopy. All colour varieties show elevated Fe contents of 0.39 to 1.31 wt.% FeO, but Ti contents only in the range of the EMP detection limit. Orange and ochre-coloured crystals have Mn contents of 0.23 and 0.06 wt.% MnO, respectively, the dark blue kyanite contains 0.28 wt.% Cr2O3, while the light green sample is nearly free from transition metal cations other than Fe. Polarised infrared spectra reveal OH defect concentrations of 3 to 17 wt.ppm H2O with structural OH defects partially replacing the OB (O2) oxygen atoms. Polarised optical absorption spectra show that the colour of all four varieties is governed by crystal field d-d transitions of trivalent cations, i.e. Fe3+ (all samples), Mn3+ (orange and ochre) and Cr3+ (blue kyanite), replacing Al in sixfold coordinated triclinic sites of the kyanite structure. Intervalence charge transfer, the prevalent colour-inducing mechanism in ‘usual’ (Cr-poor) blue kyanites, seems to play a very minor, if any, role in the present samples. Crystal field calculations in both a ‘classic’ tetragonal and in the semiempirical Superposition Model approach, accompanied by distance- and angle-least-squares refinements, indicate that Fe3+ preferably occupies the Al4 site, Cr3+ prefers the Al1 and Al2 sites, and Mn3+ predominantly enters the Al1 site. In each case specific local relaxation effects were observed according to the crystal chemical preferences of these transition metal cations. Furthermore, the high values obtained in the calculations for the interelectronic repulsion parameter Racah B correspond to a high ionic contribution to Me3+–O bonding in the kyanite structure. In the particular case of the blue sample, band positions specifically related to the high Racah B value enable this ‘unusual’ type of blue colouration of kyanite solely due to Cr3+ cations.  相似文献   

17.
Electron paramagnetic resonance (EPR) study of single crystals of chromium-doped forsterite grown by the Czochralski method in two different research laboratories has revealed, apart from the known paramagnetic centers Cr3+(M1), Cr3+(M2) and Cr4+, a new center \textCr 3+ (M 1)-V\textMg 2+ (M 2) {\text{Cr}}^{ 3+ } (M 1){-}V_{{{\text{Mg}}^{ 2+ } }} (M 2) formed by a Cr3+ ion substituting for Mg2+ at the M1 structural position with a nearest-neighbor Mg2+ vacancy at the M2 position. For this center, the conventional zero-field splitting parameters D and E and the principal g values and A values of the 53Cr hyperfine splitting have been determined as follows: D = 33.95(3) GHz, E = 8.64(1) GHz, g = [1.9811(2), 1.9787(2), 1.9742(2)], A = [51(3), 52(2), 44(3)] MHz. The center has been identified by comparing EPR spectra with those of the charge-uncompensated ion Cr3+(M1) and the ion pair Cr3+(M1)–Li+(M2) observed in forsterite crystals codoped with chromium and lithium. It has been found that the concentration of the new center decreases to zero, whereas that of the Cr3+(M1) and Cr3+(M1)–Li+(M2) centers increases with an increase of the Li content from 0 up to ~0.03 wt% (at the same Cr content ~0.07 wt%) in the melt. The known low-temperature luminescence data pertinent to the centers under consideration are also discussed.  相似文献   

18.
A new organic/inorganic composite based on polyacrylonitrile and stannic molybdophosphate (PAN–SMP) as an adsorbent was synthesized under various conditions. The physicochemical properties of this material were specified by elemental analysis, scanning electron microscopy, infrared spectroscopy and thermogravimetry studies. The synthesized material was found to be stable in demineralized water, in dilute acids, under gamma radiation up to the total radiated of 100 kGy doses and in high temperature up to 500 °C. Ion exchange capacity of the synthesized composite and its distribution coefficient (K d) for several metal ions were determined. The results showed that PAN–SMP has a great affinity toward some metal ions such as Tl+, Sr2+, Ba2+, UO2 2+ and La4+. Based on the determined K d values, two binary quantitative separations of metal ions (Cr6+ from Cu2+ and Pb2+ from Cu2+) have been achieved on columns of this ion exchanger. The ability of PAN–SMP to decontaminate low-level liquid waste was also investigated.  相似文献   

19.
Natural specimens of green gemological euclase (chemical formula BeAlSiO4(OH)) from Brazil were investigated by electron paramagnetic resonance (EPR) and optical absorption. In addition to iron-related EPR spectra, analyzed recently in blue and colorless euclase, chromium and vanadium-related EPR spectra were also detected in green euclase. Their role as color causing centers is discussed. The results indicate that Cr3+ ions substitute for Al3+ ions in the euclase structure. The EPR rotation patterns of Cr3+ with electron spin S = 3/2 were analyzed with monoclinic spin Hamiltonian leading to the parameters of g xx , g yy and g zz equal to 2.018, 2.001 and 1.956 and electronic fine structure parameters of D = −8.27 GHz and E = 1.11 GHz, respectively, with high asymmetry ratio E/D = 0.13. For the vanadium-related EPR spectra the situation is different. It is concluded that vanadium is incorporated as the vanadyl radical VO2+ with electron spin S = 1/2 with nearly axial spin Hamiltonian parameters gzz = 1.9447, g xx  = 1.9740 g yy  = 1.9669 and axial hyperfine interactions due to the nuclear spin I = 7/2 of the 51V isotope leading to A zz  = 502 MHz, A xx  = 150 MHz and A yy  = 163 MHz. The green color of euclase is caused by two strong broad absorption bands centered at 17,185 and 24,345 cm−1 which are attributed to the 4A2g4T2g, 4T1g transitions of Cr3+, respectively. Vanadyl radicals may introduce some absorption bands centered in the near infrared with tail extending into the visible spectral range.  相似文献   

20.
The effect of raising temperature on spin-allowed dd-transitions of octahedral Cr3+ was studied for various point symmetries of the Cr3+-bearing structural sites, i.e. 3 m and 3 with inversion center in spinel and garnets, respectively, or 32, 3, 2 and 1, lacking the inversion centre, in beryl, corundum, diopside and topaz, respectively. For this purpose, crystals of Cr3+-bearing spinel, pyrope, andradite, grossular, uvarovite, emerald, ruby, diopside and topaz were analyzed by microprobe, oriented, and measured in polarized radiation (except for the cubic minerals) in the spectral range 30 000 to 11 100 cm-1 and at temperatures between 77 and 797 K. The evaluation of the intensities, half widths, and energy positions of bands due to Cr3+-transitions derived from 4 A 2g 4 T 2g (F) and 4 T 1g (F) as well as of Dq- and B-values derived, had the following results:In all cases, red shift of the above bands and, hence, independent on the site symmetry of Cr3+, decreases in the Dq-values were obtained. The dependcies of Dq on T are nearly linear above room temperature and amount between -1.6% in topaz and -5.1% in pyrope in the temperature range studied. From this, values for the local thermal expansion of the Cr3+-centered octahedra, loc, were derived on the basis of the R M-0 -5 -proportionality of 10Dq. Such values are consistently higher than those obtained from X-ray refinements, a method averaging rm-o for all the respective octahedral positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号