首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
We study spectral variability of 11 ultraluminous X-ray sources (ULX) using archived XMM–Newton and Chandra observations. We use three models to describe the observed spectra: a power law, a multicolour disc (MCD) and a combination of these two models. We find that seven ULXs show a correlation between the luminosity L X and the photon index Γ. Furthermore, four out of these seven ULXs also show spectral pivoting in the observed energy band. We also find that two ULXs show an   L X–Γ  anticorrelation. The spectra of four ULXs in the sample can be adequately fitted with a MCD model. We compare these sources to known black hole binaries (BHB) and find that they follow similar paths in their luminosity–temperature diagrams. Finally, we show that the 'soft excess' reported for many of these ULXs at ∼0.2 keV seems to roughly follow a trend   L soft∝ T −3.5  when modelled with a power law plus a 'cool' MCD model. This is contrary to the   L ∝ T 4  relation that is expected from theory and what is seen for many accreting BHBs. The observed trend could instead arise from disc emission beamed by an outflowing wind around a  ∼10 M  black hole.  相似文献   

2.
We present a ROSAT and ASCA study of the Einstein source X-9 and its relation to a shock-heated shell-like optical nebula in a tidal arm of the M81 group of interacting galaxies. Our ASCA observation of the source shows a flat and featureless X-ray spectrum well described by a multicolour disc blackbody model. The source most likely represents an optically thick accretion disc around an intermediate-mass black hole  ( M ∼102 M)  in its high/soft state, similar to other variable ultraluminous X-ray sources observed in nearby disc galaxies. Using constraints derived from both the innermost stable orbit around a black hole and the Eddington luminosity, we find that the black hole is fast-rotating and that its mass is between ∼80 M–1.5×102 M. The inferred bolometric luminosity of the accretion disc is ∼(1.1×1040 erg s−1)/(cos  i ). Furthermore, we find that the optical nebula is very energetic and may contain large amounts of hot gas, accounting for a soft X-ray component as indicated by archival ROSAT PSPC data. The nebula is apparently associated with X-9; the latter may be powering the former and/or they could be formed in the same event (e.g. a hypernova). Such a connection, if confirmed, could have strong implications for understanding both the birth of intermediate-mass black holes and the formation of energetic interstellar structures.  相似文献   

3.
The Sc galaxy M 99 in the Virgo Cluster has been strongly affected by tidal interactions and recent close encounters, responsible for an asymmetric spiral pattern and a high star formation rate. Our XMM–Newton study shows that the inner disc is dominated by hot plasma at kT ≈ 0.30 keV, with a total X-ray luminosity of ≈1041 erg s−1 in the 0.3–12 keV band. At the outskirts of the galaxy, away from the main star-forming regions, there is an ultraluminous X-ray source (ULX) with an X-ray luminosity of ≈2 × 1040 erg s−1 and a hard spectrum well fitted by a power law of photon index Γ≈ 1.7. This source is close to the location where a massive H  i cloud appears to be falling on to the M 99 disc at a relative speed of >100 km s−1. We suggest that there may be a direct physical link between fast cloud collisions and the formation of bright ULXs, which may be powered by accreting black holes with masses ∼100 M. External collisions may trigger large-scale dynamical collapses of protoclusters, leading to the formation of very massive (≳200 M) stellar progenitors; we argue that such stars may later collapse into massive black holes if their metal abundance is sufficiently low.  相似文献   

4.
We report the results of a study of X-ray point sources coincident with the high-velocity system (HVS) projected in front of NGC 1275. A very deep X-ray image of the core of the Perseus cluster, made with the Chandra X-ray Observatory , has been used. We find a population of ultraluminous X-ray sources [ULXs; seven sources with   L X(0.5 − 7.0  keV) > 7 × 1039 erg s-1  ]. As with the ULX populations in the Antennae and Cartwheel galaxies, those in the HVS are associated with a region of very active star formation. Several sources have possible optical counterparts found on the Hubble Space Telescope ( HST ) images, although the X-ray brightest one does not. Absorbed power-law models fit the X-ray spectra, with most having a photon index between 2 and 3.  相似文献   

5.
We present results from a study of short-term variability in 19 archival observations by XMM–Newton of 16 ultraluminous X-ray sources (ULXs). Eight observations (six sources) showed intrinsic variability with power spectra in the form of either a power-law or broken power-law-like continuum and in some cases quasi-periodic oscillations (QPOs). The remaining observations were used to place upper limits on the strength of possible variability hidden within. Seven observations (seven sources) yielded upper limits comparable to, or higher than, the values measured from those observations with detectable variations. These represented the seven faintest sources, all with   fx < 3 × 10−12 erg cm−2 s−1  . In contrast, there are four observations (three sources) that gave upper limits significantly lower than both the values measured from the ULX observations with detectable variations, and the values expected by comparison with luminous Galactic black hole X-ray binaries (BHBs) and active galactic nuclei (AGN) in the observed frequency bandpass (10−3–1 Hz). This is the case irrespective of whether one assumes characteristic frequencies appropriate for a stellar mass  (10 M)  or an intermediate mass  (1000 M)  black hole, and means that in some ULXs the variability is significantly suppressed compared to bright BHBs and AGN. We discuss ways to account for this unusual suppression in terms of both observational and intrinsic effects and whether these solutions are supported by our results.  相似文献   

6.
We report a Chandra observation of the   z =3.395  radio galaxy B2 0902+343. The unresolved X-ray source is centred on the active nucleus. The spectrum is well fitted by a flat power law of photon index of  Γ∼1.1  with intrinsic absorption of  8×1022 cm-2  , and an intrinsic  2–10 keV  luminosity of  3.3×1045 erg s-1  . More complex models that allow for a steeper spectral index cause the column density and intrinsic luminosity to increase. The data limit any thermal luminosity of the hot magnetized medium, assumed responsible for high Faraday rotation measures seen in the radio source, to less than ∼1045 erg s−1.  相似文献   

7.
We present results of a Chandra survey of the ultraluminous X-ray sources (ULX) in 13 normal galaxies, in which we combine source detection with X-ray flux measurement. 22 ULX were detected, i.e. with   L x > 1 × 1039 erg s−1 ( L 10)  and 39 other sources were detected with   L x > 5 × 1038 erg s−1 ( L 5)  . We also use radial intensity profiles to remove extended sources from the sample. The majority of sources are not extended, which for a typical distance constrains the emission region size to less than 50 pc. X-ray colour–colour diagrams and spectral fitting results were examined for indicators of the ULX nature. In the case of the brighter sources, spectral fitting generally requires two-component models. In only a few cases do colour–colour diagrams or spectral fitting provide evidence of a black hole nature. We find no evidence of a correlation with stellar mass, however, there is a strong correlation with star formation as indicated by the 60-μm flux as found in previous studies.  相似文献   

8.
We present X-ray results on the ultraluminous infrared galaxy Arp 220 obtained with BeppoSAX . X-ray emission up to 10 keV is detected. No significant signal is detected with the PDS detector in the higher energy band. The 2–10 keV emission has a flat spectrum (Γ∼1.7) , similar to M82, and a luminosity of ∼ 1×1041 erg s−1 . A population of X-ray binaries may be a major source of this X-ray emission. The upper limit of an iron K line equivalent width at 6.4 keV is ≃600 eV. This observation imposes the tightest constraint so far on an active nucleus if present in Arp 220. We find that a column density of X-ray absorption must exceed 1025 cm−2 for an obscured active nucleus to be significant in the energetics, and the covering factor of the absorption should be almost unity. The underluminous soft X-ray starburst emission may need a good explanation, if the bolometric luminosity is primarily powered by a starburst.  相似文献   

9.
Current theories of galaxy formation predict that spiral galaxies are embedded in a reservoir of hot gas. This gas is able to cool on to the galaxy, replenishing cold gas that is consumed by star formation. Estimates of the X-ray luminosity emitted in the cooling region suggest a bolometric luminosity of the order of 10×1041 erg s−1 in massive systems. We have used ROSAT PSPC data to search for extended X-ray emission from the haloes of three nearby, massive, late-type galaxies: NGC 2841, 4594 and 5529. We infer 95 per cent upper limits on the bolometric X-ray luminosities of the haloes of NGC 2841, 4594 and 5529 of 0.4, 1.2 and 3.8×1041 erg s−1 respectively. Thus, the true luminosity lies well below the straightforward theoretical prediction. We discuss this discrepancy and suggest a number of ways in which the theoretical model might be brought into agreement with the observational results. A possible solution is that the gravitational potentials of the dark matter haloes of these galaxies are weaker than assumed in the current model. Alternatively, the present-day accretion may be substantially less than is required on average to build the disc over the Hubble time. Our results are, however, based on only three galaxies, none of which is ideal for this kind of study. A larger data set is required to explore this important problem further.  相似文献   

10.
We present ROSAT High Resolution Imager (HRI) and ASCA observations of the well-known ultraluminous infrared galaxy (ULIRG) IRAS 19254−7245 (the 'Superantennae' ). The object is not detected by ROSAT , implying a 3 σ upper limit of X-ray luminosity L X∼8×1041 erg s−1 in the 0.1–2 keV band. However, we obtain a clear detection by ASCA , yielding a luminosity in the 2–10 keV band of 2×1042 erg s−1. The X-ray spectrum of IRAS 19254−7245 is very hard, equivalent to a photon index of Γ=1.0±0.35. We therefore attempt to model the X-ray data using a 'scatterer' model, in which the intrinsic X-ray emission along our line of sight is obscured by an absorbing screen while some fraction, f , is scattered into our line of sight by an ionized medium; this is the standard model for the X-ray emission in obscured (but non Compton-thick) Seyfert galaxies. We obtain an absorbing column density of N H=2×1023 cm−2 for a power-law photon index of Γ=1.9, an order of magnitude above the column estimated on the basis of optical observations; the percentage of the scattered emission is high (∼20 per cent). Alternatively, a model where most of the X-ray emission comes from reflection on a Compton-thick torus ( N H>1024 cm−2) cannot be ruled out. We do not detect an Fe line at 6.4 keV; however, the upper limit (90 per cent) to the equivalent width of the 6.4 keV line is high (∼3 keV). Overall , the results suggest that most of the X-ray emission originates in a highly obscured Seyfert 2 nucleus.  相似文献   

11.
We present a study of the X-ray emission from the nuclei of galaxies observed in the core of the Perseus cluster in a deep exposure with Chandra . Point sources are found coincident with the nuclei of 13 early-type galaxies, as well as the central galaxy NGC 1275. This corresponds to all galaxies brighter than M B > −18 in the Chandra field. All of these sources have a steep power-law spectral component and four have an additional thermal component. The unabsorbed power-law luminosities in the 0.5–7.0 keV band range from 8 × 1038 to 5 × 1040 erg s−1. We find no simple correlations between the K -band luminosity, or the FUV and NUV AB magnitudes of these galaxies and their X-ray properties. We have estimated the black hole masses of the nuclei using the K -band   M BH– L K bol  relation and again find no correlation between black hole mass and the X-ray luminosity. Bondi accretion on to the black holes in the galaxies with minihaloes should make them much more luminous than observed.  相似文献   

12.
We present a flux variability study of simultaneous RXTE and EUVE observations of the highly variable Seyfert galaxy NGC 4051. We find a strong correlation between variability in the EUV and medium-energy X-ray bands, indicating that both are sampling the same power-law continuum. The lag between the two bands is less than 20 ks and, depending on model assumptions, may be <1 ks. We examine the consequences of such a small lag in the context of simple Comptonization models for the production of the power-law continuum. A lag of <1 ks implies that the size of the Comptonizing region is less than 20 Schwarzschild radii for a black hole of mass >106 M.  相似文献   

13.
We have monitored the Seyfert galaxy NGC 3227 with the Rossi X-ray Timing Explorer ( RXTE ) since 1999 January. During late 2000 and early 2001 we observed an unusual hardening of the 2–10 keV X-ray spectrum which lasted several months. The spectral hardening was not accompanied by any correlated variation in flux above 8 keV. We therefore interpret the spectral change as transient absorption by a gas cloud of column density 2.6 × 1023 cm−2 crossing the line of sight to the X-ray source. A spectrum obtained by XMM–Newton during an early phase of the hard-spectrum event confirms the obscuration model and shows that the absorbing cloud is only weakly ionized. The XMM–Newton spectrum also shows that ∼10 per cent of the X-ray flux is not obscured, but this unabsorbed component is not significantly variable and may be scattered radiation from a large-scale scattering medium. Applying the spectral constraints on the cloud ionization parameter and assuming that the cloud follows a Keplerian orbit, we constrain the location of the cloud to be   R ∼ 10–100  light-days from the central X-ray source, and its density to be   n H∼ 108 cm−3  , implying that we have witnessed the eclipse of the X-ray source by a broad line region cloud.  相似文献   

14.
We present XMM–Newton observations of NGC 891, a nearby edge-on spiral galaxy. We analyse the extent of the diffuse emission emitted from the disc of the galaxy, and find that it has a single-temperature profile with best-fitting temperature of 0.26 keV, though the fit of a dual-temperature plasma with temperatures of 0.08 and 0.30 keV is also acceptable. There is a considerable amount of diffuse X-ray emission protruding from the disc in the north-west direction out to approximately 6 kpc. We analyse the point-source population using a Chandra observation, using a maximum-likelihood method to find that the slope of the cumulative luminosity function of point sources in the galaxy is  −0.77+0.13−0.1  . Using a sample of other local galaxies, we compare the X-ray and infrared properties of NGC 891 with those of 'normal' and starburst spiral galaxies, and conclude that NGC 891 is most likely a starburst galaxy in a quiescent state. We establish that the diffuse X-ray luminosity of spirals scales with the far-infrared luminosity as   L X∝ L 0.87±0.07FIR  , except for extreme starbursts, and NGC 891 does not fall in the latter category. We study the supernova SN1986J in both XMM–Newton and Chandra observations, and find that the X-ray luminosity has been declining with time more steeply than expected  ( L X∝ t −3)  .  相似文献   

15.
We present a series of RXTE observations of the nearby obscured Seyfert galaxies ESO103-G35, IC5063, NGC 4507 and NGC 7172. The period of monitoring ranges from seven days for NGC 7172 up to about seven months for ESO103-G035. The spectra of all galaxies fit well with a highly obscured ( N H>1023 cm−2) power-law and an Fe line at 6.4 keV. We find strong evidence for the presence of a reflection component in ESO103-G35 and NGC 4507. The observed flux presents strong variability on day time-scales in all objects. Spectral variability is also detected in the sense that the spectrum steepens with increasing flux similar to the behaviour witnessed in some Seyfert 1 galaxies.  相似文献   

16.
We present high spatial resolution X-ray Chandra HRC and HST WFPC2 H α observations of the prototypical infrared-luminous galaxy NGC 6240. The central region of this system shows a remarkably complex morphology, with filaments and loops observed in the optical and X-rays. The total X-ray luminosity is dominated by the extended emission. Both nuclei are clearly detected in the HRC image and both appear to be extended. The energetics of the nuclei imply that the southern nucleus is the more plausible counterpart to the obscured active galactic nucleus. The overall spectral energy distribution of the galaxy is in good agreement with a blend of starburst and AGN components that have similar bolometric luminosities,   L bol∼5×1045 erg s-1  , with the starburst dominating the observed continuum in the near-infrared ( K band), optical and soft X-ray bands.  相似文献   

17.
We present results from a new XMM–Newton observation of the high-redshift quasar RX J1028.6 – 0844 at a redshift of 4.276. The soft X-ray spectral flattening, as reported by a previous study with ASCA , is confirmed to be present, with, however, a reduced column density when modelled by absorption. The inferred column density for absorption intrinsic to the quasar is  2.1(+0.4−0.3) × 1022  cm−2  for cold matter, and higher for ionized gas. The spectral flattening shows remarkable similarity with that of two similar object, namely GB 1428 + 4217 and PMN J0525 − 3343. The results improve upon those obtained from a previous short-exposure observation for RX J1028.6 – 0844 with XMM–Newton . A comparative study of the two XMM–Newton observations reveals a change in the power-law photon index from  Γ≃ 1.3  to 1.5 on time-scales of about one year. A tentative excess emission feature in the rest-frame 5–10 keV band is suggested, which is similar to that marginally suggested for GB 1428 + 4217.  相似文献   

18.
Chandra X-ray Observatory observations of the powerful, peculiar radio galaxy 3C 123 have resulted in an X-ray detection of the bright eastern hotspot, with a 1-keV flux density of ∼5 nJy. The X-ray flux and spectrum of the hotspot are consistent with the X-rays being inverse-Compton scattering of radio synchrotron photons by the population of electrons responsible for the radio emission ('synchrotron self-Compton emission') if the magnetic fields in the hotspot are close to their equipartition values. 3C 123 is thus the third radio galaxy to show X-ray emission from a hotspot which is consistent with being in equipartition. Chandra also detects emission from a moderately rich cluster surrounding 3C 123, with L X(2–10 keV)=2×1044 erg s−1 and kT ∼5 keV, and absorbed emission from the active nucleus, with an inferred intrinsic column density of 1.7×1022 cm−2 and an intrinsic 2–10 keV luminosity of 1044 erg s−1.  相似文献   

19.
We report results of an 18-ks exposure with the ACIS instrument on Chandra of the powerful z =0.62 radio galaxy 3C 220.1. The X-ray emission separates into cluster gas of emission-weighted kT ∼5 keV , 0.7–12 keV luminosity (to a radius of 45 arcsec) of 5.6×1044 erg s−1 and unresolved emission (coincident with the radio core). While the extended X-ray emission is clearly thermal in nature, a straightforward cooling-flow model, even in conjunction with a point-source component, is a poor fit to the radial profile of the X-ray emission. This is despite the fact that the measured properties of the gas suggest a massive cooling flow of ∼130 M yr−1, and the data show weak evidence for a temperature gradient. The central unresolved X-ray emission has a power-law spectral energy index α ∼0.7 and 0.7–12 keV luminosity of 1045 erg s−1, and any intrinsic absorption is relatively small. The two-point spectrum of the core emission between radio and X-ray energies has α rx=0.75 . Since this is a flatter spectrum than seen in other sources where the X-ray emission is presumed to be radio-related, regions close to the active galactic nucleus (AGN) in this source may dominate the central X-ray output, as is believed to be the case for lobe-dominated quasars. Simple unification models would be challenged if this were found to be the case for a large fraction of high-power radio galaxies.  相似文献   

20.
We report the results of a two-month campaign conducted with the Chandra X-ray observatory to monitor the ultraluminous X-ray source (ULX) NGC 5204 X-1. This was composed of a 50-ks observation, followed by ten 5-ks follow-ups spaced initially at ∼3, then at ∼10-d intervals. The ULX flux is seen to vary by factors ∼5 on time-scales of a few days, but no strong variability is seen on time-scales shorter than an hour. There is no evidence for a periodic signal in the X-ray data. An examination of the X-ray colour variations over the period of the campaign shows the ULX emission consistently becomes spectrally harder as its flux increases. The X-ray spectrum from the 50-ks observation can be fitted by a number of disparate spectral models, all of which describe a smooth continuum with, unusually for a ULX, a broad emission feature evident at 0.96 keV. The spectral variations, both within the 50-ks observation and over the course of the whole campaign, can then be explained solely by variations in the continuum component. In the context of an optically thick corona model (as found in other recent results for ULXs) the spectral variations can be explained by the heating of the corona as the luminosity of the ULX increases, consistent with the behaviour of at least one Galactic black hole system in the strongly Comptonized very high state. We find no new evidence supporting the presence of an intermediate-mass black hole in this ULX.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号