首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present an X-ray study of the galaxy group or poor cluster MKW 4. Working with XMM–Newton data we examine the distribution and properties of the hot gas which makes up the group halo. The inner halo shows some signs of structure, with circular or elliptical beta models providing a poor fit to the surface brightness profile. This may be evidence of large-scale motion in the inner halo, but we do not find evidence of sharp fronts or edges in the emission. The temperature of the halo declines in the core, with deprojected spectral fits showing a central temperature of ∼1.3 keV compared to ∼3 keV at 100 kpc. In the central ∼30 kpc of the group, multitemperature spectral models are required to fit the data, but they indicate a lack of gas at low temperatures. Steady-state cooling flow models provide poor fits to the inner regions of the group and the estimated cooling time of the gas is long except within the central dominant galaxy, NGC 4073. Abundance profiles show a sharp increase in the core of the group, with mean abundance rising by a factor of 2 in the centre of NGC 4073. Fitting individual elements shows the same trend, with high values of Fe, Si and S in the core. We estimate that ∼50 per cent of the Fe in the central 40 kpc was injected by Type Ia supernovae, in agreement with previous ASCA studies. Using our best-fitting surface brightness and temperature models, we calculate the mass, gas fraction, entropy and mass-to-light ratio of the group. At 100 kpc (∼0.1 virial radius) the total mass and gas entropy of the system (  ∼2 × 1013 M  and ∼300 keV cm2) are quite comparable to those of other systems of similar temperature, but the gas fraction is rather low (∼1 per cent). We conclude that MKW 4 is a fairly relaxed group, which has developed a strong central temperature gradient but not a large-scale cooling flow.  相似文献   

2.
We present an XMM–Newton observation of the Seyfert–LINER (low-ionization nuclear emission-line region) galaxy NGC 7213. The RGS soft X-ray spectrum is well fitted with a power law plus soft X-ray collisionally ionized thermal plasma  ( kT = 0.18+0.03−0.01 keV)  . We confirm the presence of Fe  i , Fe  xxv and Fe  xxvi Kα emission in the EPIC spectrum and set tighter constraints on their equivalent widths of  82+10−13, 24+9−11  and 24+10−13 eV, respectively. We compare the observed properties together with the inferred mass accretion rate of NGC 7213 with those of other Seyfert and LINER galaxies. We find that NGC 7213 has intermediate X-ray spectral properties lying between those of the weak active galactic nucleus found in the LINER M81 and higher-luminosity Seyfert galaxies. There appears to be a continuous sequence of X-ray properties from the Galactic Centre through LINER galaxies to Seyferts, probably determined by the amount of material available for accretion in the central regions.  相似文献   

3.
We present Galaxy Evolution Explorer ( GALEX ) far-ultraviolet (FUV) and near-ultraviolet (NUV) imaging of the nearby early-type galaxy NGC 2974, along with complementary ground-based optical imaging. In the ultraviolet, the galaxy reveals a central spheroid-like component and a newly discovered complete outer ring of radius 6.2 kpc, with suggestions of another partial ring at an even larger radius. Blue FUV–NUV and UV-optical colours are observed in the centre of the galaxy and from the outer ring outwards, suggesting young stellar populations (≲1 Gyr) and recent star formation in both locations. This is supported by a simple stellar population model which assumes two bursts of star formation, allowing us to constrain the age, mass fraction and surface mass density of the young component pixel by pixel. Overall, the mass fraction of the young component appears to be just under 1 per cent (lower limit, uncorrected for dust extinction). The additional presence of a nuclear and an inner ring (radii 1.4 and 2.9 kpc, respectively), as traced by [O  iii ] emission, suggests ring formation through resonances. All three rings are consistent with a single pattern speed of  78 ± 6  km s−1 kpc−1, typical of S0 galaxies and only marginally slower than expected for a fast bar if traced by a small observed surface brightness plateau. This thus suggests that star formation and morphological evolution in NGC 2974 at the present epoch are primarily driven by a rotating asymmetry (probably a large-scale bar), despite the standard classification of NGC 2974 as an E4 elliptical.  相似文献   

4.
We have identified two new galaxies with gas counter-rotation (NGC 1596 and 3203) and have confirmed similar behaviour in another one (NGC 128), this using results from separate studies of the ionized-gas and stellar kinematics of a well-defined sample of 30 edge-on disc galaxies. Gas counter-rotators thus represent 10 ± 5 per cent of our sample, but the fraction climbs to 21 ± 11 per cent when only lenticular (S0) galaxies are considered and to 27 ± 13 per cent for S0 galaxies with detected ionized gas only. Those fractions are consistent with but slightly higher than previous studies. A compilation from well-defined studies of S0 galaxies in the literature yields fractions of 15 ± 4 and 23 ± 5 per cent, respectively. Although mainly based on circumstantial evidence, we argue that the counter-rotating gas originates primarily from minor mergers and tidally induced transfer of material from nearby objects. Assuming isotropic accretion, twice those fractions of objects must have undergone similar processes, underlining the importance of (minor) accretion for galaxy evolution. Applications of gas counter-rotators to barred galaxy dynamics are also discussed.  相似文献   

5.
An excellent candidate for a young elliptical, or 'protoelliptical' galaxy is NGC 1700. Here we present new B -, V - and I -band imaging using the Keck telescope, and reanalyse existing V - and I -band images from the Hubble Space Telescope . After subtracting a model of the galaxy from the Keck images, NGC 1700 reveals two symmetric tidal tail-like structures. If this interpretation is correct, it suggests a past merger event involving two spiral galaxies. These tails are largely responsible for the 'boxiness' of the galaxy isophotes observed at a radius of ∼13 kpc.
We also show that the B − I colour distribution of the globular cluster system is bimodal. The mean colour of the blue population is consistent with that of old Galactic globular clusters. Relative to this old, metal-poor population, we find that the red population is younger and more metal-rich. This young population has an age and metallicity similar to that inferred for the central stars, suggesting that both populations are associated with an episode of star formation triggered by the merger that may have formed the galaxy. We find that, although they have large errors, the majority of the age estimates of NGC 1700 are reasonably consistent and we adopt a 'best estimate' for the age of 3.0±1.0 Gyr. This relatively low age places NGC 1700 within the age range where there is a notable lack of obvious candidates for protoellipticals. The total globular cluster specific frequency is rather low for a typical elliptical, even after taking into account the fading of the galaxy over the next 10 Gyr. We speculate that NGC 1700 will eventually form a relatively 'globular cluster poor' elliptical galaxy.  相似文献   

6.
We report the detection of hard X-ray emission components in the spectra of six nearby, giant elliptical galaxies observed with the ASCA satellite. The systems studied, which exhibit strong dynamical evidence for supermassive black holes in their nuclei, are M87, NGC 1399 and NGC 4696 (the dominant galaxies of the Virgo, Fornax and Centaurus clusters, respectively) and NGC 4472, 4636 and 4649 (three further giant ellipticals in the Virgo cluster). The ASCA data for all six sources provide clear evidence for hard emission components, which can be parametrized by power-law models with photon indices in the range Γ=0.6–1.5 (mean value 1.2) and intrinsic 1–10 keV luminosities of 2×1040–2×1042 erg s−1. Our results imply the identification of a new class of accreting X-ray source, with X-ray spectra significantly harder than those of binary X-ray sources, Seyfert nuclei or low-luminosity active galactic nuclei, and bolometric luminosities relatively dominated by their X-ray emission. We discuss various possible origins for the hard X-ray emission and argue that it is most likely to be due to accretion on to the central supermassive black holes, via low radiative efficiency accretion flows coupled with strong outflows. In the case of M87, our detected power-law flux is in good agreement with a previously reported measurement from ROSAT High Resolution Imager observations, which were able to resolve the jet from the nuclear X-ray emission components. We confirm previous results showing that the use of multiphase models in the analysis of the ASCA data leads to determinations of approximately solar emission-weighted metallicities for the X-ray gas in the galaxies. We also present results on the individual element abundances in NGC 4636.  相似文献   

7.
Current theories of galaxy formation predict that spiral galaxies are embedded in a reservoir of hot gas. This gas is able to cool on to the galaxy, replenishing cold gas that is consumed by star formation. Estimates of the X-ray luminosity emitted in the cooling region suggest a bolometric luminosity of the order of 10×1041 erg s−1 in massive systems. We have used ROSAT PSPC data to search for extended X-ray emission from the haloes of three nearby, massive, late-type galaxies: NGC 2841, 4594 and 5529. We infer 95 per cent upper limits on the bolometric X-ray luminosities of the haloes of NGC 2841, 4594 and 5529 of 0.4, 1.2 and 3.8×1041 erg s−1 respectively. Thus, the true luminosity lies well below the straightforward theoretical prediction. We discuss this discrepancy and suggest a number of ways in which the theoretical model might be brought into agreement with the observational results. A possible solution is that the gravitational potentials of the dark matter haloes of these galaxies are weaker than assumed in the current model. Alternatively, the present-day accretion may be substantially less than is required on average to build the disc over the Hubble time. Our results are, however, based on only three galaxies, none of which is ideal for this kind of study. A larger data set is required to explore this important problem further.  相似文献   

8.
The group of galaxies RXJ1340.6+4018 has approximately the same bolometric X-ray luminosity as other bright galaxy groups and poor clusters such as the Virgo cluster. However, 70 per cent of the optical luminosity of the group comes from a dominant giant elliptical galaxy, compared with 5 per cent from M87 in Virgo.The second brightest galaxy in RXJ1340.6+4018 is a factor of 10 fainter (Δ m 12=2.5 mag) than the dominant elliptical, and the galaxy luminosity function has a gap at about L *.
We interpret the properties of the system as a result of galaxy merging within a galaxy group. We find that the central galaxy lies on the Fundamental Plane of ellipticals, has an undisturbed, non-cD morphology, and has no spectral features indicative of recent star formation, suggesting that the last major merger occurred ≳4 Gyr ago. The deviation of the system from the cluster L X− T relation in the opposite sense to most groups may be caused by an early epoch of formation of the group or a strong cooling flow.
The unusual elongation of the X-ray isophotes and the similarity between the X-ray and optical ellipticities at large radii (∼230 kpc) suggest that both the X-ray gas and the outermost stars of the dominant galaxy are responding to an elongated dark matter distribution. RXJ1340.6+4018 may be part of a filamentary structure related to infall in the outskirts of the cluster A1774.  相似文献   

9.
We present XMM–Newton observations of NGC 891, a nearby edge-on spiral galaxy. We analyse the extent of the diffuse emission emitted from the disc of the galaxy, and find that it has a single-temperature profile with best-fitting temperature of 0.26 keV, though the fit of a dual-temperature plasma with temperatures of 0.08 and 0.30 keV is also acceptable. There is a considerable amount of diffuse X-ray emission protruding from the disc in the north-west direction out to approximately 6 kpc. We analyse the point-source population using a Chandra observation, using a maximum-likelihood method to find that the slope of the cumulative luminosity function of point sources in the galaxy is  −0.77+0.13−0.1  . Using a sample of other local galaxies, we compare the X-ray and infrared properties of NGC 891 with those of 'normal' and starburst spiral galaxies, and conclude that NGC 891 is most likely a starburst galaxy in a quiescent state. We establish that the diffuse X-ray luminosity of spirals scales with the far-infrared luminosity as   L X∝ L 0.87±0.07FIR  , except for extreme starbursts, and NGC 891 does not fall in the latter category. We study the supernova SN1986J in both XMM–Newton and Chandra observations, and find that the X-ray luminosity has been declining with time more steeply than expected  ( L X∝ t −3)  .  相似文献   

10.
We study the stellar mass assembly of the Spiderweb galaxy  (MRC 1138−262)  , a massive   z = 2.2  radio galaxy in a protocluster and the probable progenitor of a brightest cluster galaxy. Nearby protocluster galaxies are identified and their properties are determined by fitting stellar population models to their rest-frame ultraviolet to optical spectral energy distributions. We find that within 150 kpc of the radio galaxy the stellar mass is centrally concentrated in the radio galaxy, yet most of the dust-uncorrected, instantaneous star formation occurs in the surrounding low-mass satellite galaxies. We predict that most of the galaxies within 150 kpc of the radio galaxy will merge with the central radio galaxy by   z = 0  , increasing its stellar mass by up to a factor of ≃2. However, it will take several hundred Myr for the first mergers to occur, by which time the large star formation rates are likely to have exhausted the gas reservoirs in the satellite galaxies. The tidal radii of the satellite galaxies are small, suggesting that stars and gas are being stripped and deposited at distances of tens of kpc from the central radio galaxy. These stripped stars may become intracluster stars or form an extended stellar halo around the radio galaxy, such as those observed around cD galaxies in cluster cores.  相似文献   

11.
An analysis of the X-ray variability of the low-luminosity Seyfert nucleus NGC 4395, based on a long XMM–Newton observation, is presented. The power spectrum shows a clear break from a flat spectrum  (α≈ 1)  to a steeper spectrum  (α≈ 2)  at a frequency   f br= 0.5–3.0 × 10−3 Hz  , comparable to the highest characteristic frequency found previously in a Seyfert galaxy. This extends the measured   M BH− f br  values to lower M BH than previous studies of Seyfert galaxies, and is consistent with an inverse scaling of variability frequency with black hole mass. The variations observed are among the most violent seen in an active galactic nuclei to date, with the fractional rms amplitude  ( F var)  exceeding 100 per cent in the softest band. The amplitude of the variations seems intrinsically higher in NGC 4395 than most other Seyfert galaxies, even after accounting for the differences in characteristic frequencies. The origin of this difference is not clear, but it is unlikely to be a high accretion rate (   L / L Edd≲ 20  per cent for NGC 4395). The variations clearly follow the linear rms–flux relation, further supporting the idea that this is a ubiquitous characteristics of accreting black holes. The variations are highly coherent between different energy bands with any frequency-dependent time delay limited to ≲1 per cent.  相似文献   

12.
We present the first imaging X-ray observation of the highly inclined  ( i = 78°)  Sab Seyfert 2 galaxy NGC 6810 using XMM–Newton , which reveals soft X-ray emission that extends out to a projected height of ∼7 kpc away from the plane of the galaxy. The soft X-ray emission beyond the optical disc of the galaxy is most plausibly extraplanar, although it could instead come from large galactic radius. This extended X-ray emission is spatially associated with diffuse Hα emission, in particular with a prominent 5-kpc-long Hα filament on the north-west of the disc. A fraction ≲35 per cent of the total soft X-ray emission of the galaxy arises from projected heights  | z | ≥ 2 kpc  . Within the optical disc of the galaxy the soft X-ray emission is associated with the star-forming regions visible in ground-based Hα and XMM–Newton optical monitor near-UV imaging. The temperature, supersolar α-element-to-iron abundance ratio, soft X-ray/Hα correlation, and X-ray to far-infrared (FIR) flux ratio of NGC 6810 are all consistent with local starbursts with winds, although the large base radius of the outflow would make NGC 6810 one of the few 'disc-wide' superwinds currently known. Hard X-ray emission from NGC 6810 is weak, and the total   E = 2–10 keV  luminosity and spectral shape are consistent with the expected level of X-ray binary emission from the old and young stellar populations. The X-ray observations provide no evidence of any active galactic nucleus activity. We find that the optical, IR and radio properties of NGC 6810 are all consistent with a starburst galaxy, and that the old classification of this galaxy as a Seyfert 2 galaxy is probably incorrect.  相似文献   

13.
Current views consider shell structures as bona fide signatures of a recent minor/major merging event though also weak interaction models (WIM) could produce long lasting shells on host galaxies possessing a stellar thick disc.We present a B V band photometric study of a sample of 5 shell galaxies belonging to the Malin & Carter (1983) compilation. The structural properties and colors of the galaxies, as well as the colors of their shells are examined in detail. We did not find signatures of the presence of double nuclei. NGC 7585 is the only E galaxy in the sample and has a moderately boxy structure. The other galaxies have either a discy structure or are mixed E/S0 type galaxies. NGC 474 is a true lenticular. NGC 6776 shows a diffuse asymmetric outer structure and a system of tails of the the same color of the galaxy body; but not clear shells. In general, the color of the shells in our sample is similar or slightly redder than that of the host galaxy, whose color, in turn, is typical of the early‐type morphological class. One of the outer shells of NGC 474 is significantly bluer than the body of the galaxy. Since NGC 474 appears to be interacting with NGC 470, the color of this one shell could be explained as result of a recent acquisition of material through tidal interaction. The WIM hypothesis could explain both the red and the blue shells of NGC 474, this latter acquired from the fly‐by of the nearby companion NGC 470, but the lack of the constancy of shell surface brightness as a ratio of the underlying galaxy brightness argues against WIM. We speculate about evidence, which also comes from different observations, that suggests a merging/accretion origin of the shells. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We compare the gravitational potential profiles of the elliptical galaxies NGC 4486 (M87) and NGC 1399 (the central galaxy in the Fornax cluster) derived from X-ray and optical data. This comparison suggests that the combined contribution of cosmic rays, magnetic fields and microturbulence to the pressure is ∼10 per cent of the gas thermal pressure in the cores of NGC 1399 and M87, although the uncertainties in our model assumptions (e.g. spherical symmetry) are sufficiently large that the contribution could be consistent with zero. In the absence of any other form of non-thermal pressure support, these upper bounds translate into upper limits on the magnetic field of ∼10–20 μG at a distance of 1–2 arcmin from the centers of NGC 1399 and M87. We show that these results are consistent with the current paradigm of cool cluster cores, based on the assumption that active galactic nuclei regulate the thermal state of the gas by injecting energy into the intracluster medium. The limit of ∼10–20 per cent on the energy density in the form of relativistic protons applies not only to the current state of the gas, but also essentially to the entire history of the intracluster medium, provided that cosmic ray protons evolve adiabatically and that their spatial diffusion is suppressed.  相似文献   

15.
This paper argues that the Milky Way galaxy is probably the largest member of the Local Group. The evidence comes from estimates of the total mass of the Andromeda galaxy (M31) derived from the three-dimensional positions and radial velocities of its satellite galaxies, as well as the projected positions and radial velocities of its distant globular clusters and planetary nebulae. The available data set comprises 10 satellite galaxies, 17 distant globular clusters and nine halo planetary nebulae with radial velocities. We find that the halo of Andromeda has a mass of together with a scalelength of 90 kpc and a predominantly isotropic velocity distribution. For comparison, our earlier estimate for the Milky Way halo is Although the error bars are admittedly large, this suggests that the total mass of M31 is probably less than that of the Milky Way . We verify the robustness of our results to changes in the modelling assumptions and to errors caused by the small size and incompleteness of the data set.
Our surprising claim can be checked in several ways in the near future. The numbers of satellite galaxies, planetary nebulae and globular clusters with radial velocities can be increased by ground-based spectroscopy, while the proper motions of the companion galaxies and the unresolved cores of the globular clusters can be measured using the astrometric satellites Space Interferometry Mission ( SIM ) and Global Astrometric Interferometer for Astrophysics ( GAIA ). Using 100 globular clusters at projected radii 20 R 50 kpc with both radial velocities and proper motions, it will be possible to estimate the mass within 50 kpc to an accuracy of 20 per cent. Measuring the proper motions of the companion galaxies with SIM and GAIA will reduce the uncertainty in the total mass caused by the small size of the data set to 22 per cent.  相似文献   

16.
We present observations of H i in the nearby interacting galaxies NGC 4490 and 4485 made with the VLA in both C and D arrays. The galaxies are embedded in an extensive envelope of neutral hydrogen which is elongated in a direction approximately perpendicular to the plane of NGC 4490, with an extent of about 56 kpc. We argue that this distribution of neutral hydrogen can best be explained by a galactic-scale bipolar outflow of H  i driven by supernovae in NGC 4490. The flow from the disc appears to be reasonably well collimated and has probably persisted for approximately 6 × 108 yr. The implications for galaxy evolution when such mass loss occurs are briefly discussed.  相似文献   

17.
We present a high spatial resolution study of metal distributions in the nearby,gas-rich elliptical galaxies NGC 4374 and NGC 4636 with the Chandra ACIS archive data.We define the hardness ratio HRFeL as the ratio of the emission in 0.65-1.4keV to that in 0.3-0.6keV and 1.4-3.5keV(after the magnesium and silicon lines are excluded),and HRcont as the ratio of the emission in 1.4-3.5keV to that in 0.3-0.6keV,so that the HRFeL and HRcont maps can be used to trace the iron abundance and gas temperature distribu...  相似文献   

18.
The analysis of the four-colour maps of galaxies in the Hubble Deep Field (HDF) has revealed, in the sample of 0.4< z <1 early-type field galaxies, the existence of ellipticals with a predominantly old coeval stellar population. However, there is another, unexpected, category of HDF early-type galaxies, in which the galaxy core is significantly bluer than the outer regions. We demonstrate that these colour gradients are predicted by the multizone chemodynamical model for the evolution of elliptical galaxies.
We suggest that the colour gradient could be used as a chronometer for the evolution of elliptical galaxies: galaxies younger than a few Gyr exhibit cores bluer than the surrounding galaxy as a result of ongoing star formation, while more evolved galaxies have redder cores because of metallicity gradients increasing toward the centre.  相似文献   

19.
We report on a 120-ks XMM–Newton observation of the galaxy cluster Abell 2597 (A2597). Results from both the European Photon Imaging Camera (EPIC) and the Reflection Grating Spectrometer (RGS) are presented. From EPIC we obtain radial profiles of temperature, density and abundance, and use these to derive cooling time and entropy. We illustrate corrections to these profiles for projection and point spread function (PSF) effects. At the spatial resolution available to XMM–Newton , the temperature declines by around a factor of 2 in the central 150 kpc or so in radius, and the abundance increases from about one-fifth to over one-half solar. The cooling time is less than 10 Gyr inside a radius of 130 kpc. EPIC fits to the central region are consistent with a cooling flow of around 100 solar masses per year. Broad-band fits to the RGS spectra extracted from the central 2 arcmin are also consistent with a cooling flow of the same magnitude; with a preferred low-temperature cut-off of essentially zero. The data appear to suggest (albeit at low significance levels below formal detection limits) the presence of the important thermometer lines from Fe  xvii at 15–17 Å rest wavelength, characteristic of gas at temperatures ∼0.3 keV. The measured flux in each line is converted to a mass-deposition estimate by comparison with a classical cooling flow model, and once again values at the level of 100 solar masses per year are obtained. These mass-deposition rates, whilst lower than those of previous generations of X-ray observatories, are consistent with those obtained from ultraviolet data for this object. This raises the possibility of a classical cooling flow, at the level of around 100 solar masses per year, cooling from 4 keV by more than two orders of magnitude in temperature.  相似文献   

20.
It is known that resonant scattering can distort the surface brightness profiles of clusters of galaxies in X-ray lines. We demonstrate that the scattered line emission should be polarized and possibly detectable with future X-ray polarimeters. Spectrally resolved mapping of a galaxy cluster in polarized X-rays could provide valuable independent information on the physical conditions, in particular element abundances and the characteristic velocity of small-scale turbulent motions, in the intracluster gas. The expected degree of polarization is of the order of 10 per cent for the richest regular clusters (e.g. Coma) and clusters whose X-ray emission is dominated by a central cooling flow (such as Perseus and M87/Virgo).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号