首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
A first-order, semi-analytical method for the long-term motion of resonant satellites is introduced. The method provides long-term solutions, valid for nearly all eccentricities and inclinations, and for all commensurability ratios. The method allows the inclusion of all zonal and tesseral harmonics of a nonspherical planet.We present here an application of the method to a synchronous satellite includingonly theJ 2 andJ 22 harmonics. Global, long-term solutions for this problem are given for arbitrary values of eccentricity, argument of perigee and inclination.  相似文献   

2.
The motion of a satellite subject to an inverse-square gravitational force of attraction and a perturbation due to the Earth's oblateness as theJ 2 term is analyzed, and a uniform, analytic solution correct to first-order inJ 2, is obtained using a noncanonical approach. The basis for the solution is the transformation and uncoupling of the differential equations for the model. The resulting solution is expressed in terms of elementary functions of the independent variable (the ‘true anomaly’), and is of a compact and simple form. Numerical results are comparable to existing solutions.  相似文献   

3.
The Hill stability criterion is applied to analyse the stability of a planet in the binary star system of HD 41004 AB, with the primary and secondary separated by 22 AU, and masses of 0.7 M and 0.4 M, respectively. The primary hosts one planet in an S‐type orbit, and the secondary hosts a brown dwarf (18.64 MJ) on a relatively close orbit, 0.0177 AU, thereby forming another binary pair within this binary system. This star‐brown dwarf pair (HD 41004 B+Bb) is considered a single body during our numerical calculations, while the dynamics of the planet around the primary, HD 41004 Ab, is studied in different phase‐spaces. HD 41004 Ab is a 2.6 MJ planet orbiting at the distance of 1.7 AU with orbital eccentricity 0.39. For the purpose of this study, the system is reduced to a three‐body problem and is solved numerically as the elliptic restricted three‐body problem (ERTBP). The Hill stability function is used as a chaos indicator to configure and analyse the orbital stability of the planet, HD 41004 Ab. The indicator has been effective in measuring the planet's orbital perturbation due to the secondary star during its periastron passage. The calculated Hill stability time series of the planet for the coplanar case shows the stable and quasi‐periodic orbits for at least ten million years. For the reduced ERTBP the stability of the system is also studied for different values of planet's orbital inclination with the binary plane. Also, by recording the planet's ejection time from the system or collision time with a star during the integration period, stability of the system is analysed in a bigger phase‐space of the planet's orbital inclination, ≤ 90°, and its semimajor axis, 1.65–1.75 AU. Based on our analysis it is found that the system can maintain a stable configuration for the planet's orbital inclination as high as 65° relative to the binary plane. The results from the Hill stability criterion and the planet's dynamical lifetime map are found to be consistent with each other. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
It is shown that the inclusion of the J2-term of the planet and its orbital eccentricity may alter the stability character of a satellite in the sense of Hill. The effect depends on the initial conditions. With the actual initial conditions, the satellite S9 is Hill stable whether or not these terms are considered, but if S9 were located at a distance of 330 Saturn radii, then it would be unstable or stable according as these terms are considered or not.  相似文献   

5.
We say that a planet is Earth-like if the coefficient of the second order zonal harmonic dominates all other coefficients in the gravity field. This paper concerns the zonal problem for satellites around an Earth-like planet, all other perturbations excluded. The potential contains all zonal coefficientsJ 2 throughJ 9. The model problem is averaged over the mean anomaly by a Lie transformation to the second order; we produce the resulting Hamiltonian as a Fourier series in the argument of perigee whose coefficients are algebraic functions of the eccentricity — not truncated power series. We then proceed to a global exploration of the equilibria in the averaged problem. These singularities which aerospace engineers know by the name of frozen orbits are located by solving the equilibria equations in two ways, (1) analytically in the neighborhood of either the zero eccentricity or the critical inclination, and (2) numerically by a Newton-Raphson iteration applied to an approximate position read from the color map of the phase flow. The analytical solutions we supply in full to assist space engineers in designing survey missions. We pay special attention to the manner in which additional zonal coefficients affect the evolution of bifurcations we had traced earlier in the main problem (J 2 only). In particular, we examine the manner in which the odd zonalJ 3 breaks the discrete symmetry inherent to the even zonal problem. In the even case, we find that Vinti's problem (J 4+J 2 2 =0) presents a degeneracy in the form of non-isolated equilibria; we surmise that the degeneracy is a reflection of the fact that Vinti's problem is separable. By numerical continuation we have discovered three families of frozen orbits in the full zonal problem under consideration; (1) a family of stable equilibria starting from the equatorial plane and tending to the critical inclination; (2) an unstable family arising from the bifurcation at the critical inclination; (3) a stable family also arising from that bifurcation and terminating with a polar orbit. Except in the neighborhood of the critical inclination, orbits in the stable families have very small eccentricities, and are thus well suited for survey missions.  相似文献   

6.
We describe a collection of results obtained by numerical integration of orbits in the main problem of artificial satellite theory (theJ 2 problem). The periodic orbits have been classified according to their stability and the Poincaré surfaces of section computed for different values ofJ 2 andH (whereH is thez-component of angular momentum). The problem was scaled down to a fixed value (–1/2) of the energy constant. It is found that the pseudo-circular periodic solution plays a fundamental role. They are the equivalent of the Poincaré first-kind solutions in the three-body problem. The integration of the variational equations shows that these pseudo-circular solutions are stable, except in a very narrow band near the critical inclincation. This results in a sequence of bifurcations near the critical inclination, refining therefore some known results on the critical inclination, for instance by Izsak (1963), Jupp (1975, 1980) and Cushman (1983). We also verify that the double pitchfork bifurcation around the critical inclination exists for large values ofJ 2, as large as |J 2|=0.2. Other secondary (higher-order) bifurcations are also described. The equations of motion were integrated in rotating meridian coordinates.  相似文献   

7.
We hereby study the stability of a massless probe orbiting around an oblate central body (planet or planetary satellite) perturbed by a third body, assumed to lay in the equatorial plane (Sun or Jupiter for example) using a Hamiltonian formalism. We are able to determine, in the parameters space, the location of the frozen orbits, namely orbits whose orbital elements remain constant on average, to characterize their stability/unstability and to compute the periods of the equilibria. The proposed theory is general enough, to be applied to a wide range of probes around planet or natural planetary satellites. The BepiColombo mission is used to motivate our analysis and to provide specific numerical data to check our analytical results. Finally, we also bring to the light that the coefficient J 2 is able to protect against the increasing of the eccentricity due to the Kozai-Lidov effect and the coefficient J 3 determines a shift of the equilibria.  相似文献   

8.
In this paper, the connections between orbit dynamics and rigid body dynamics are established throughout the Eulerian redundant parameters, the perturbation equations for any conic motion of artificial satellites are derived in terms of these parameters. A general recursive and stable computational algorithm is also established for the initial-value problem of the Eulerian parameters for satellites prediction in the Earth's gravitational field with axial symmetry. Applications of the algorithm are considered for the two cases of short and long term predictions. For the short-term prediction, we consider the problem of the final state prediction of some typical ballistic missiles in the geopotential model with zonal harmonic terms up to J 36, while for the long-term prediction, we consider the perturbed J 2 motion of Explorer 28 over 100 revolutions.  相似文献   

9.
W. Landgraf 《Solar physics》1992,142(2):403-406
From astrometric observations of minor planet (1566) Icarus from 1949 to 1987 were made solutions for improved orbital elements of Icarus and the quadrupole moment of the Sun. The formal result was J2 = -0.6±5.8 &d 10–6. From this we can conclude that J 2 is very probably less than 2 · 10–-5.  相似文献   

10.
The moment of inertia of a giant planet reveals important information about the planet’s internal density structure and this information is not identical to that contained in the gravitational moments. The forthcoming Juno mission to Jupiter might determine Jupiter’s normalized moment of inertia NMoI = C/MR2 by measuring Jupiter’s pole precession and the Lense–Thirring acceleration of the spacecraft (C is the axial moment of inertia, and M and R are Jupiter’s mass and mean radius, respectively). We investigate the possible range of NMoI values for Jupiter based on its measured gravitational field using a simple core/envelope model of the planet assuming that J2 and J4 are perfectly known and are equal to their measured values. The model suggests that for fixed values of J2 and J4 a range of NMoI values between 0.2629 and 0.2645 can be found. The Radau–Darwin relation gives a NMoI value that is larger than the model values by less than 1%. A low NMoI of ∼0.236, inferred from a dynamical model (Ward, W.R., Canup, R.M. [2006]. Astrophys. J. 640, L91–L94) is inconsistent with this range, but the range is model dependent. Although we conclude that the NMoI is tightly constrained by the gravity coefficients, a measurement of Jupiter’s NMoI to a few tenths of percent by Juno could provide an important constraint on Jupiter’s internal structure. We carry out a simplified assessment of the error involved in Juno’s possible determination of Jupiter’s NMoI.  相似文献   

11.
The non-spherical gravitational potential of the planet Mars is sig- nificantly different from that of the Earth. The magnitudes of Mars’ tesseral harmonic coefficients are basically ten times larger than the corresponding val- ues of the Earth. Especially, the magnitude of its second degree and order tesseral harmonic coefficient J2,2 is nearly 40 times that of the Earth, and approaches to the one tenth of its second zonal harmonic coefficient J2. For a low-orbit Mars probe, if the required accuracy of orbit prediction of 1-day arc length is within 500 m (equivalent to the order of magnitude of 104 standard unit), then the coupled terms of J2 with the tesseral harmonics, and even those of the tesseral harmonics themselves, which are negligible for the Earth satellites, should be considered when the analytical perturbation solution of its orbit is built. In this paper, the analytical solutions of the coupled terms are presented. The anal- ysis and numerical verification indicate that the effect of the above-mentioned coupled perturbation on the orbit may exceed 10−4 in the along-track direc- tion. The conclusion is that the solutions of Earth satellites cannot be simply used without any modification when dealing with the analytical perturbation solutions of Mars-orbiting satellites, and that the effect of the coupled terms of Mars's non-spherical gravitational potential discussed in this paper should be taken into consideration.  相似文献   

12.
Résumé On développe une méthode de construction d'orbites périoldiques dans un système d'axes tournants, pour un satellite gravitant autour d'un sphéroide. Les orbites sont quasi circulaires,i est l'inclinaison sur le plan équatorial de la planète. Pour les petites inclinaisons, la solution est donnée jusqu'aux termes enJ 2 2 etJ 4.Ce modèle peut être appliqué aux satellites de Saturne. Des valeurs observées des longitudes des noeuds ascendants de Mimas et Téthys, on donne une estimation des valeurs deJ 2 etJ 4 du potentiel de Saturne. La valeur deJ 2 est très sensible aux valeurs adoptées pour le rayon équatorial de la planète.
Construction of periodic orbits of satellites in a moving system of axes, I
We give an algorithm for the construction of periodic orbits in a rotating frame for the cases of satellites moving around an oblate planet.The orbits are near to the circular case; the asymptotic developments of the periodic solutions are completely calculated for the termsJ 2 andJ 4 of the potential. The solutions for small inclinations are given up toJ 2 2 .The families of solutions depend on three parameters: the semi-major axis, the inclination of the generating orbit and the initial position on this orbit.These solutions can be applied to the motion of the Saturnian satellites. From the observed longitudes of the ascending nodes of Mimas and Tethys, we estimate the valuesJ 2 andJ 4 of the Saturnian potential, the value ofJ 2 very strongly depends on the adopted value of the planet's equatorial diameter.
  相似文献   

13.
We study the problem of critical inclination orbits for artificial lunar satellites, when in the lunar potential we include, besides the Keplerian term, the J 2 and C 22 terms and lunar rotation. We show that, at the fixed points of the 1-D averaged Hamiltonian, the inclination and the argument of pericenter do not remain both constant at the same time, as is the case when only the J 2 term is taken into account. Instead, there exist quasi-critical solutions, for which the argument of pericenter librates around a constant value. These solutions are represented by smooth curves in phase space, which determine the dependence of the quasi-critical inclination on the initial nodal phase. The amplitude of libration of both argument of pericenter and inclination would be quite large for a non-rotating Moon, but is reduced to <0°.1 for both quantities, when a uniform rotation of the Moon is taken into account. The values of J 2, C 22 and the rotation rate strongly affect the quasi-critical inclination and the libration amplitude of the argument of pericenter. Examples for other celestial bodies are given, showing the dependence of the results on J 2, C 22 and rotation rate.  相似文献   

14.
In a previous work we studied the effects of (I) the J 2 and C 22 terms of the lunar potential and (II) the rotation of the primary on the critical inclination orbits of artificial satellites. Here, we show that, when 3rd-degree gravity harmonics are taken into account, the long-term orbital behavior and stability are strongly affected, especially for a non-rotating central body, where chaotic or collision orbits dominate the phase space. In the rotating case these phenomena are strongly weakened and the motion is mostly regular. When the averaged effect of the Earth’s perturbation is added, chaotic regions appear again for some inclination ranges. These are more important for higher values of semi-major axes. We compute the main families of periodic orbits, which are shown to emanate from the ‘frozen eccentricity’ and ‘critical inclination’ solutions of the axisymmetric problem (‘J 2 + J 3’). Although the geometrical properties of the orbits are not preserved, we find that the variations in e, I and g can be quite small, so that they can be of practical importance to mission planning.  相似文献   

15.
This paper is a contribution to the Theory of the Artificial Satellite, within the frame of the Lie Transform as canonical perturbation technique (elimination of the short period terms). We consider the perturbation by any zonal harmonic J n (n ≥ 2) of the primary on the satellite, what we call here the complete zonal problem of the artificial satellite. This is quite useful for primaries with symmetry of revolution. We give an analytical formula to compute directly the first order averaged Hamiltonian. The computation is carried out in closed form for all terms, avoiding therefore tedious expansions in the eccentricity or in any anomaly; this feature makes the averaging process, not only valid for all kind of elliptic trajectories but at the same time it yields the averaged Hamiltonian in a very short and compact way. The formula allows us to now skip the averaging process, which means an asymptotic gain of a factor 3n/2 regarding the computational cost of the n th zonal. Our analytical formulae have been widely checked, by comparison on one hand with published works (Brouwer, 1959) (which contained results for particular zonal harmonics, let’s say typically from J 2 to J 8), and on the other hand with the results of 3 symbolic manipulation software, among which the MM (standing for ‘Moon’s series Manipulator’), which has already been used and described in (De Saedeleer B., 2004). Additionally, the first order generator associated with this transformation is given into the same closed form, and has also been validated.  相似文献   

16.
The critical inclination is of special interest in artificial satellite theory. The critical inclination can maintain minimal deviations of eccentricity and argument of pericentre from the initial values, and orbits at this inclination have been applied to some space missions. Most previous researches about the critical inclination were made under the assumption that the oblateness term J 2 is dominant among the harmonic coefficients. This paper investigates the extension of the critical inclination where the concept of the critical inclination is different from that of the traditional sense. First, the study takes the case of Venus for instance, and provides some preliminary results. Then for general cases, given the values of argument of pericentre and eccentricity, the relationship between the multiplicity of the solutions for the critical inclination and the values of J 2 and J 4 is analyzed. Besides, when given certain values of J 2 and J 4, the relationship between the multiplicity of the solutions for the critical inclination and the values of semimajor axis and eccentricity is studied. The results show that for some cases, the value of the critical inclination is far away from that of the traditional sense or even has multiple solutions. The analysis in this paper could be used as starters of correction methods in the full gravity field of celestial bodies.  相似文献   

17.
Rozelot  J.P.  Godier  S.  Lefebvre  S. 《Solar physics》2001,198(2):223-240
In this paper we first emphasize why it is important to know the successive zonal harmonics of the Sun's figure with high accuracy: mainly fundamental astrometry, helioseismology, planetary motions and relativistic effects. Then we briefly comment why the Sun appears oblate, going back to primitive definitions in order to underline some discrepancies in theories and to emphasize again the relevant hypotheses. We propose a new theoretical approach entirely based on an expansion in terms of Legendre's functions, including the differential rotation of the Sun at the surface. This permits linking the two first spherical harmonic coefficients (J 2 and J 4) with the geometric parameters that can be measured on the Sun (equatorial and polar radii). We emphasize the difficulties in inferring gravitational oblateness from visual measurements of the geometric oblateness, and more generally a dynamical flattening. Results are given for different observed rotational laws. It is shown that the surface oblateness is surely upper bounded by 11 milliarcsecond. As a consequence of the observed surface and sub-surface differential rotation laws, we deduce a measure of the two first gravitational harmonics, the quadrupole and the octopole moment of the Sun: J 2=−(6.13±2.52)×10−7 if all observed data are taken into account, and respectively, J 2=−(6.84±3.75)×10−7 if only sunspot data are considered, and J 2=−(3.49±1.86)×10−7 in the case of helioseismic data alone. The value deduced from all available data for the octopole is: J 4=(2.8±2.1)×10−12. These values are compared to some others found in the literature. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1005238718479  相似文献   

18.
Analytical theory for short-term orbit motion of satellite orbits with Earth's zonal harmonicsJ 3 andJ 4 is developed in terms of KS elements. Due to symmetry in KS element equations, only two of the nine equations are integrated analytically. The series expansions include terms of third power in the eccentricity. Numerical studies with two test cases reveal that orbital elements obtained from the analytical expressions match quite well with numerically integrated values during a revolution. Typically for an orbit with perigee height, eccentricity and inclination of 421.9 km, 0.17524 and 30 degrees, respectively, maximum differences of 27 and 25 cm in semimajor axis computation are noted withJ 3 andJ 4 term during a revolution. For application purposes, the analytical solutions can be used for accurate onboard computation of state vector in navigation and guidance packages.  相似文献   

19.
A quick analytical method is presented for calculating comet cloud formation efficiency in the case of a single planet or multiple-planet system for planets that are not too eccentric (e p ≲ 0.3). A method to calculate the fraction of comets that stay under the control of each planet is also presented, as well as a way to determine the efficiency in different star cluster environments. The location of the planet(s) in mass-semi-major axis space to form a comet cloud is constrained based on the conditions developed by Tremaine (1993) together with estimates of the likelyhood of passing comets between planets; and, in the case of a single, eccentric planet, the additional constraint that it is, by itself, able to accelerate material to relative encounter velocity U ~ 0.4 within the age of the stellar system without sweeping up the majority of the material beforehand. For a single planet, it turns out the efficiency is mainly a function of planetary mass and semi-major axis of the planet and density of the stellar environment. The theory has been applied to some extrasolar systems and compared to numerical simulations for both these systems and the Solar System, as well as a diffusion scheme based on the energy kick distribution of Everhart (Astron J 73:1039–1052, 1968). The analytic results are in good agreement with the simulations.  相似文献   

20.
The construction of an analytical theory of the motion of the Galilean satellites of Jupiter requires that we keep track of the dynamical parameters, that is, the masses of the satellites, and the harmonic coefficients of the potential of the planet J2 and J4. This is realized here. But as in other theories the solution becomes partly numerical from the resolution of an autonomous system. The aim of this paper is to present a method to obtain developped solutions of this autonomous system. In these solutions the proper motions of the pericenters and nodes are obtained as short series developped in the neighbourhood of a numerical solution. We have used these results to obtain complementary terms in the general solution which give a complete representation of the motions with respect to the dynamical parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号