首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
 This study evaluates the sensitivity of ecosystem models to changes in the horizontal resolution of version 2 of the National Centre for Atmospheric Research Community Climate Model (CCM2). A previous study has shown that the distributions of natural ecosystems predicted by vegetation models using coarse resolution present-day climate simulations are poorly simulated. It is usually assumed that increasing the spatial resolution of general circulation models (GCMs) will improve the simulation of climate, and hence will increase our level of confidence in the use of GCM output for impacts studies. The principal goals of this study is to investigate this hypothesis and to identify which biomes are more affected by the changes in spatial resolution of the forcing climate. The ecosystem models used are the BIOME-1 model and a version of the Holdridge scheme. The climate simulations come from a set of experiments in which CCM2 was run with increasing horizontal resolutions. The biome distributions predicted using CCM2 climates are compared against biome distributions predicted using observed climate datasets. Results show that increasing the resolution of CCM2 produces a significant improvement of the global-scale vegetation prediction, indicating that a higher level of confidence can be vested in the global-scale prediction of natural ecosystems using medium and high resolution GCMs. However, not all biomes are equally affected by the increased spatial resolution, and although certain biome distributions are improved (e.g. hot desert, tropical seasonal forest), others remain globally poorly predicted even at high resolution (e.g. grasses and xerophytic woods). In addition, these results show that some climatic biases are enhanced with increasing resolution (e.g. in mountain ranges), resulting in the inadequate prediction of biomes. Received: 4 March 1997 / Accepted: 10 December 1997  相似文献   

2.
Tropical rainforest plays an important role in the global carbon cycle, accounting for a large part of global net primary productivity and contributing to CO2 sequestration. The objective of this work is to simulate potential changes in the rainforest biome in Central America subject to anthropogenic climate change under two emissions scenarios, RCP4.5 and RCP8.5. The use of a dynamic vegetation model and climate change scenarios is an approach to investigate, assess or anticipate how biomes respond to climate change. In this work, the Inland dynamic vegetation model was driven by the Eta regional climate model simulations. These simulations accept boundary conditions from HadGEM2-ES runs in the two emissions scenarios. The possible consequences of regional climate change on vegetation properties, such as biomass, net primary production and changes in forest extent and distribution, were investigated. The Inland model projections show reductions in tropical forest cover in both scenarios. The reduction of tropical forest cover is greater in RCP8.5. The Inland model projects biomass increases where tropical forest remains due to the CO2 fertilization effect. The future distribution of predominant vegetation shows that some areas of tropical rainforest in Central America are replaced by savannah and grassland in RCP4.5. Inland projections under both RCP4.5 and RCP8.5 show a net primary productivity reduction trend due to significant tropical forest reduction, temperature increase, precipitation reduction and dry spell increments, despite the biomass increases in some areas of Costa Rica and Panama. This study may provide guidance to adaptation studies of climate change impacts on the tropical rainforests in Central America.  相似文献   

3.
The use of one-way coupling of an equilibrium-response vegetation, or biome, model with atmospheric circulation models is critically assessed. Global biome patterns from various, equally likely numerical realisations of present-day climate are compared. It has been found that the changes in global biome patterns to be expected from interdecadal variability in the atmosphere affect 9–12% of the continental surface (Antarctica excluded). There is no unique difference pattern, although changes are mainly induced by the variability of annual moisture availability and, to a lesser extent, by winter temperatures. This variability of biome patterns reflects the uncertainty in the estimate of equilibrium vegetation patterns from finite time interval climatologies. Changes in biome distributions between present-day climate and anomaly climate, the latter induced by an increase in sea-surface temperatures and atmospheric CO2, are larger than and different in kind from the changes due to interdecadal variability. Roughly 30% of the land surface is affected by these changes. It appears that the strongest and most significant signal is seen for boreal biomes which can be attributed to an increase in near surface temperatures.  相似文献   

4.
BCC_CSM1.0模式对20世纪降水及其变率的模拟   总被引:4,自引:0,他引:4       下载免费PDF全文
应用国家气候中心气候系统模式 (BCC_CSM1.0),在给定温室气体、太阳常数、硫酸盐气溶胶、火山灰等外强迫数据的条件下,对19世纪末到20世纪气候进行模拟。对降水模拟结果的检验表明:BCC_CSM1.0模式能够模拟出全球降水的基本气候状态、季节变化、季节内振荡、年际变化等特征。模拟结果显示:与CMAP及CRU观测分析资料相比基本一致,全球陆地降水在过去一个多世纪中存在上升趋势。同时,模式也存在不足和需要改进之处:模拟降水的时空分布与观测不一致;我国东部地区的雨带季节转变较观测偏快;主要雨带位置较观测偏西、偏北;夏季青藏高原东北侧有虚假的降水中心;热带季节内振荡较实际偏弱;降水年际变率较观测略大,主要发生在降水较明显的热带。BCC_CSM1.0模式模拟的全球陆地降水以及欧亚、亚洲、中国大陆 (中国东部、江南、华北等地区) 平均降水与近105年由观测所得的CRU资料基本一致,但多数地区比观测略偏低。模拟的全球陆地、中国东部、江南、华北等地区的降水趋势也与CRU资料一致;模拟的全球陆地降水在过去105年中有明显的上升趋势,与CRU资料相比,上升趋势更强,但在欧亚、亚洲、中国范围内模拟的降水趋势与观测有一定的差异。  相似文献   

5.
The participation of different vegetation types within the physical climate system is investigated using a coupled atmosphere-biosphere model, CCM3-IBIS. We analyze the effects that six different vegetation biomes (tropical, boreal, and temperate forests, savanna, grassland and steppe, and shrubland/tundra) have on the climate through their role in modulating the biophysical exchanges of energy, water, and momentum between the land-surface and the atmosphere. Using CCM3-IBIS we completely remove the vegetation cover of a particular biome and compare it to a control simulation where the biome is present, thereby isolating the climatic effects of each biome. Results from the tropical and boreal forest removal simulations are in agreement with previous studies while the other simulations provide new evidence as to their contribution in forcing the climate. Removal of the temperate forest vegetation exhibits behavior characteristic of both the tropical and boreal simulations with cooling during winter and spring due to an increase in the surface albedo and warming during the summer caused by a reduction in latent cooling. Removal of the savanna vegetation exhibits behavior much like the tropical forest simulation while removal of the grassland and steppe vegetation has the largest effect over the central United States with warming and drying of the atmosphere in summer. The largest climatic effect of shrubland and tundra vegetation removal occurs in DJF in Australia and central Siberia and is due to reduced latent cooling and enhanced cold air advection, respectively. Our results show that removal of the boreal forest yields the largest temperature signal globally when either including or excluding the areas of forest removal. Globally, precipitation is most affected by removal of the savanna vegetation when including the areas of vegetation removal, while removal of the tropical forest most influences the global precipitation excluding the areas of vegetation removal.  相似文献   

6.
 A global, three-dimensional climate model, developed by coupling the CCCma second-generation atmospheric general circulation model (GCM2) to a version of the GFDL modular ocean model (MOM1), forms the basis for extended simulations of past, current and projected future climate. The spin-up and coupling procedures are described, as is the resulting climate based on a 200 year model simulation with constant atmospheric composition and external forcing. The simulated climate is systematically compared to available observations in terms of mean climate quantities and their spatial patterns, temporal variability, and regional behavior. Such comparison demonstrates a generally successful reproduction of the broad features of mean climate quantities, albeit with local discrepancies. Variability is generally well-simulated over land, but somewhat underestimated in the tropical ocean and the extratropical storm-track regions. The modelled climate state shows only small trends, indicating a reasonable level of balance at the surface, which is achieved in part by the use of heat and freshwater flux adjustments. The control simulation provides a basis against which to compare simulated climate change due to historical and projected greenhouse gas and aerosol forcing as described in companion publications. Received: 24 September 1998 / Accepted: 8 October 1999  相似文献   

7.
Evidence is presented that the recent trend patterns of surface air temperature and precipitation over the land masses surrounding the North Atlantic Ocean (North America, Greenland, Europe, and North Africa) have been strongly influenced by the warming pattern of the tropical oceans. The current generation of atmosphere–ocean coupled climate models with prescribed radiative forcing changes generally do not capture these regional trend patterns. On the other hand, even uncoupled atmospheric models without the prescribed radiative forcing changes, but with the observed oceanic warming specified only in the tropics, are more successful in this regard. The tropical oceanic warming pattern is poorly represented in the coupled simulations. Our analysis points to model error rather than unpredictable climate noise as a major cause of this discrepancy with respect to the observed trends. This tropical error needs to be reduced to increase confidence in regional climate change projections around the globe, and to formulate better societal responses to projected changes in high-impact phenomena such as droughts and wet spells.  相似文献   

8.
We assess the responses of North Atlantic, North Pacific, and tropical Indian Ocean Sea Surface Temperatures (SSTs) to natural forcing and their linkage to simulated global surface temperature (GST) variability in the MPI-Earth System Model simulation ensemble for the last millennium. In the simulations, North Atlantic and tropical Indian Ocean SSTs show a strong sensitivity to external forcing and a strong connection to GST. The leading mode of extra-tropical North Pacific SSTs is, on the other hand, rather resilient to natural external perturbations. Strong tropical volcanic eruptions and, to a lesser extent, variability in solar activity emerge as potentially relevant sources for multidecadal SST modes’ phase modulations, possibly through induced changes in the atmospheric teleconnection between North Atlantic and North Pacific that can persist over decadal and multidecadal timescales. Linkages among low-frequency regional modes of SST variability, and among them and GST, can remarkably vary over the integration time. No coherent or constant phasing is found between North Pacific and North Atlantic SST modes over time and among the ensemble members. Based on our assessments of how multidecadal transitions in simulated North Atlantic SSTs compare to reconstructions and of how they contribute characterizing simulated multidecadal regional climate anomalies, past regional climate multidecadal fluctuations seem to be reproducible as simulated ensemble-mean responses only for temporal intervals dominated by major external forcings.  相似文献   

9.
ENSO teleconnections in projections of future climate in ECHAM5/MPI-OM   总被引:1,自引:1,他引:0  
The teleconnections of the El Niño/Southern Oscillation (ENSO) in future climate projections are investigated using results of the coupled climate model ECHAM5/MPI-OM. For this, the IPCC SRES scenario A1B and a quadrupled CO2 simulation are considered. It is found that changes of the mean state in the tropical Pacific are likely to condition ENSO teleconnections in the Pacific North America (PNA) region and in the North Atlantic European (NAE) region. With increasing greenhouse gas emissions the changes of the mean states in the tropical and sub-tropical Pacific are El Niño-like in this particular model. Sea surface temperatures in the tropical Pacific are increased predominantly in its eastern part and redistribute the precipitation further eastward. The dynamical response of the atmosphere is such that the equatorial east–west (Walker) circulation and the eastern Pacific inverse Hadley circulation are decreased. Over the subtropical East Pacific and North Atlantic the 200 hPa westerly wind is substantially increased. Composite maps of different climate parameters for positive and negative ENSO events are used to reveal changes of the ENSO teleconnections. Mean sea level pressure and upper tropospheric zonal winds indicate an eastward shift of the well-known teleconnection patterns in the PNA region and an increasing North Atlantic oscillation (NAO) like response over the NAE region. Surface temperature and precipitation underline this effect, particularly over the North Pacific and the central North Atlantic. Moreover, in the NAE region the 200 hPa westerly wind is increasingly related to the stationary wave activity. Here the stationary waves appear NAO-like.  相似文献   

10.
FGOALS-g2模式模拟和预估的全球季风区极端降水及其变化   总被引:4,自引:2,他引:2  
利用LASG/IAP(中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室)全球耦合模式FGOALS-g2,评估了其对全球季风区极端气候指标的模拟能力,并讨论了RCP8.5排放情景下21世纪季风区极端气候指标的变化特征。总体而言,模式对季风区总降水和极端气候指标1997~2014年气候态和年际变率的空间分布均具有一定的模拟能力。偏差主要表现在模式低估了亚洲季风强降水中心,低估了中雨(10~20 mm d-1)和大雨(20~50 mm d-1)的频率而高估了暴雨(>50 mm d-1)频率。在RCP8.5排放情景下,由于可降水量的增加,模式预估的全球季风区极端降水、降水总量和降水强度将持续增加。到2076~2095年,极端降水和降水强度在北美季风区增加最显著(约22%和17%),降水总量在澳大利亚增加最显著(约37%)。然而,FGOALS-g2对全球季风区平均的日降水量低于1 mm的连续最大天数(CDD)的预估变化不显著,这是由于预估的CDD在陆地季风区将增加,而在海洋季风区将减少。对各子季风区的分析显示,CDD在南美季风区变长最显著,达到30%,在澳洲季风区变短最显著,达到40%,这与两季风区日降水量低于1 mm的降水事件发生频率变化不同有关。  相似文献   

11.
This study introduces a new global climate model--the Integrated Climate Model (ICM)--developed for the seasonal prediction of East Asian-western North Pacific (EA-WNP) climate by the Center for Monsoon System Research at the Institute of Atmospheric Physics (CMSR, IAP), Chinese Academy of Sciences. ICM integrates ECHAM5 and NEMO2.3 as its atmospheric and oceanic components, respectively, using OASIS3 as the coupler. The simulation skill of ICM is evaluated here, including the simulated climatology, interannual variation, and the influence of E1 Nifio as one of the most important factors on EA-WNP climate. ICM successfully reproduces the distribution of sea surface temperature (SST) and precipitation without climate shift, the seasonal cycle of equatorial Pacific SST, and the precipitation and circulation of East Asian summer monsoon. The most prominent biases of ICM are the excessive cold tongue and unrealistic westward phase propagation of equatorial Pacific SST. The main interannual variation of the tropical Pacific SST and EA-WNP climate E1 Nifio and the East Asia-Pacific Pattern--are also well simulated in ICM, with realistic spatial pattern and period. The simulated E1 Nifio has significant impact on EA-WNP climate, as in other models. The assessment shows ICM should be a reliable model for the seasonal prediction of EA-WNP climate.  相似文献   

12.
区域海气耦合模式是研究局地海气相互作用过程影响气候变率的重要平台,也是对全球气候模式进行"动力降尺度"的重要工具.本文介绍了LASG(State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics)/IAP(Institute of Atmospheric Physics)发展的区域海气耦合模式FROALS(Flexible Regional Ocean-Atmosphere-Land System model),并总结了过去五年围绕该区域海气耦合模式开展的研究工 作.FROALS的特点之一是有两个完全不同的大气模式分量和海洋模式分量选项,可以适应不同的模拟研究需 求.针对区域海气耦合模式在西北太平洋地区的模拟偏差,通过分步骤考察不同大气模式分量和不同海洋模式分量对模式模拟性能的影响,指出大气模式是导致区域海气耦合偏差的主要分量.通过改进对流触发的相对湿度阈值标准,有效地改善了此前区域海气耦合模式在亚洲季风区普遍出现的"模拟海温冷偏差".改进的FROALS对西北太平洋地区的大气和海洋环境有较好的模拟能力,合理地再现了西北太平洋地区表层洋流气候态和年际变率.较之非耦合模式,考虑区域海气耦合过程后,改进了东亚和南亚地区的降水和热带气旋潜势年际变率的模拟.最后,针对东亚—西北太平洋地区,利用FROALS对IAP/LASG全球气候模式模拟和预估的结果进行了动力降尺 度,得到了东亚区域50 km高分辨率区域气候变化信息.分析显示,FROALS模拟得到的东亚区域气候较之全球气候模式和非耦合区域气候模式结果具有明显的"增值",显示出区域海气耦合模式在该区域良好的应用前景.  相似文献   

13.
利用一个全球海气耦合模式(BCM),结合观测资料,讨论了热带太平洋强迫对北大西洋年际气候变率的影响。研究表明,BCM能够相对合理地模拟赤道太平洋的年际变率模态及相应的海温距平型和大气遥相关型,尽管其准3年的振荡周期过于规则。来自数值模式和观测上的证据都表明,北大西洋冬季海温的主导性变率模态,即自北而南出现的“- -”的海温距平型,受到来自热带太平洋强迫的显著影响,其正位相与赤道中东太平洋冷事件相对应。换言之,赤道太平洋暖事件的发生,在太平洋-北美沿岸激发出PNA遥相关型,进而通过在北大西洋产生类似NAO负位相的气压距平型,削弱本来与NAO正位相直接联系的三核型海温距平。北大西洋三核型海温距平对热带太平洋强迫的响应,要滞后2—3个月的时间。  相似文献   

14.
1999年全球重大气候事件概述   总被引:13,自引:6,他引:7  
李晓燕 《气象》2000,26(4):16-19
1999年,全球气候仍持续较常年偏暖。赤道中、东太平洋的强拉尼娜事件维持并发展,对全球特别是热带地区的气候产生了较明显的影响。欧洲、北冬季连续遭受暴风雪袭击,出现严寒天气,夏季又经受了高温热浪的袭击。全球许多地区暴雨频繁,亚洲南部、欧洲中部、北美南部、南美北部以及非洲的一些地区都遇到了严重的洪涝灾害;而北美中部、西亚等地却干旱少雨,发生了凡十年来最严重的旱灾。北美、南亚、澳大利亚东北部先后遭到罕见  相似文献   

15.
We investigate major results of the NARCCAP multiple regional climate model (RCM) experiments driven by multiple global climate models (GCMs) regarding climate change for seasonal temperature and precipitation over North America. We focus on two major questions: How do the RCM simulated climate changes differ from those of the parent GCMs and thus affect our perception of climate change over North America, and how important are the relative contributions of RCMs and GCMs to the uncertainty (variance explained) for different seasons and variables? The RCMs tend to produce stronger climate changes for precipitation: larger increases in the northern part of the domain in winter and greater decreases across a swath of the central part in summer, compared to the four GCMs driving the regional models as well as to the full set of CMIP3 GCM results. We pose some possible process-level mechanisms for the difference in intensity of change, particularly for summer. Detailed process-level studies will be necessary to establish mechanisms and credibility of these results. The GCMs explain more variance for winter temperature and the RCMs for summer temperature. The same is true for precipitation patterns. Thus, we recommend that future RCM-GCM experiments over this region include a balanced number of GCMs and RCMs.  相似文献   

16.
《Climate Dynamics》2008,30(7-8):887-907
Fire activity has varied globally and continuously since the last glacial maximum (LGM) in response to long-term changes in global climate and shorter-term regional changes in climate, vegetation, and human land use. We have synthesized sedimentary charcoal records of biomass burning since the LGM and present global maps showing changes in fire activity for time slices during the past 21,000 years (as differences in charcoal accumulation values compared to pre-industrial). There is strong broad-scale coherence in fire activity after the LGM, but spatial heterogeneity in the signals increases thereafter. In North America, Europe and southern South America, charcoal records indicate less-than-present fire activity during the deglacial period, from 21,000 to ∼11,000 cal yr BP. In contrast, the tropical latitudes of South America and Africa show greater-than-present fire activity from ∼19,000 to ∼17,000 cal yr BP and most sites from Indochina and Australia show greater-than-present fire activity from 16,000 to ∼13,000 cal yr BP. Many sites indicate greater-than-present or near-present activity during the Holocene with the exception of eastern North America and eastern Asia from 8,000 to ∼3,000 cal yr BP, Indonesia and Australia from 11,000 to 4,000 cal yr BP, and southern South America from 6,000 to 3,000 cal yr BP where fire activity was less than present. Regional coherence in the patterns of change in fire activity was evident throughout the post-glacial period. These complex patterns can largely be explained in terms of large-scale climate controls modulated by local changes in vegetation and fuel load. The readers are requested to refer to the section “List of contributors” for the complete list of author affiliation details.  相似文献   

17.
This study examines the impact of historical land-cover change on North American surface climate, focusing on the robustness of the climate signal with respect to representation of sub-grid heterogeneity and land biogeophysics within a climate model. We performed four paired climate simulations with the Community Atmosphere Model using two contrasting land models and two different representations of land-cover change. One representation used a biome classification without subgrid-scale heterogeneity while the other used high-resolution satellite data to prescribe multiple vegetation types within a grid cell. Present-day and natural vegetation datasets were created for both representations. All four sets of climate simulations showed that present-day vegetation has cooled the summer climate in regions of North America compared to natural vegetation. The simulated magnitude and spatial extent of summer cooling due to land-cover change was reduced when the biome-derived land-cover change datasets were replaced by the satellite-derived datasets. The diminished cooling is partly due to reduced intensity of agriculture in the satellite-derived datasets. Comparison of the two land-surface models showed that the use of a comparatively warmer and drier land model in conjunction with satellite-derived datasets further reduced the simulated magnitude of summer cooling. These results suggest that the cooling signal associated with North American land-cover change is robust but the magnitude and therefore detection of the signal depends on the realism of the datasets used to represent land-cover change and the parametrisation of land biogeophysics.  相似文献   

18.
This paper examines the mean annual cycle, interannual variability, and leading patterns of the tropical Atlantic Ocean simulated in a long-term integration of the climate forecast system (CFS), a state-of-the-art coupled general circulation model presently used for operational climate prediction at the National Centers for Environmental Prediction. By comparing the CFS simulation with corresponding observation-based analyses or reanalyses, it is shown that the CFS captures the seasonal mean climate, including the zonal gradients of sea surface temperature (SST) in the equatorial Atlantic Ocean, even though the CFS produces warm mean biases and underestimates the variability over the southeastern ocean. The seasonal transition from warm to cold phase along the equator is delayed 1 month in the CFS compared with the observations. This delay might be related to the failure of the model to simulate the cross-equatorial meridional wind associated with the African monsoon. The CFS also realistically simulates both the spatial structure and spectral distributions of the three major leading patterns of the SST anomalies in the tropical Atlantic Ocean: the south tropical Atlantic pattern (STA), the North tropical Atlantic pattern (NTA), and the southern subtropical Atlantic pattern (SSA). The CFS simulates the seasonal dependence of these patterns and partially reproduces their association with the El Niño-Southern Oscillation. The dynamical and thermodynamical processes associated with these patterns in the simulation and the observations are similar. The air-sea interaction processes associated with the STA pattern are well simulated in the CFS. The primary feature of the anomalous circulation in the Northern Hemisphere (NH) associated with the NTA pattern resembles that in the Southern Hemisphere (SH) linked with the SSA pattern, implying a similarity of the mechanisms in the evolution of these patterns and their connection with the tropical and extratropical anomalies in their respective hemispheres. The anomalies associated with both the SSA and NTA patterns are dominated by atmospheric fluctuations of equivalent-barotropic structure in the extratropics including zonally symmetric and asymmetric components. The zonally symmetric variability is associated with the annular modes, the Arctic Oscillation in the NH and the Antarctic Oscillation in the SH. The zonally asymmetric part of the anomalies in the Atlantic is teleconnected with the anomalies over the tropical Pacific. The misplaced teleconnection center over the southern subtropical ocean may be one of the reasons for the deformation of the SSA pattern in the CFS.  相似文献   

19.
Zhang  Honghai  Seager  Richard  He  Jie  Diao  Hansheng  Pascale  Salvatore 《Climate Dynamics》2021,56(11):4051-4074

How atmospheric and oceanic processes control North American precipitation variability has been extensively investigated, and yet debates remain. Here we address this question in a 50 km-resolution flux-adjusted global climate model. The high spatial resolution and flux adjustment greatly improve the model’s ability to realistically simulate North American precipitation, the relevant tropical and midlatitude variability and their teleconnections. Comparing two millennium-long simulations with and without an interactive ocean, we find that the leading modes of North American precipitation variability on seasonal and longer timescales exhibit nearly identical spatial and spectral characteristics, explained fraction of total variance and associated atmospheric circulation. This finding suggests that these leading modes arise from internal atmospheric dynamics and atmosphere-land coupling. However, in the fully coupled simulation, North American precipitation variability still correlates significantly with tropical ocean variability, consistent with observations and prior literature. We find that tropical ocean variability does not create its own type of atmospheric variability but excites internal atmospheric modes of variability in midlatitudes. This oceanic impact on North American precipitation is secondary to atmospheric impacts based on correlation. However, relative to the simulation without an interactive ocean, the fully coupled simulation amplifies precipitation variance over southwest North America (SWNA) during late spring to summer by up to 90%. The amplification is caused by a stronger variability in atmospheric moisture content that is attributed to tropical Pacific sea surface temperature variability. Enhanced atmospheric moisture variations over the tropical Pacific are transported by seasonal mean southwesterly winds into SWNA, resulting in larger precipitation variance.

  相似文献   

20.
The skill of a regional climate model (RegCM4) in capturing the mean patterns, interannual variability and extreme statistics of daily-scale temperature and precipitation events over Mexico is assessed through a comparison of observations and a 27-year long simulation driven by reanalyses of observations covering the Central America CORDEX domain. The analysis also includes the simulation of tropical cyclones. It is found that RegCM4 reproduces adequately the mean spatial patterns of seasonal precipitation and temperature, along with the associated interannual variability characteristics. The main model bias is an overestimation of precipitation in mountainous regions. The 5 and 95 percentiles of daily temperature, as well as the maximum dry spell length are realistically simulated. The simulated distribution of precipitation events as well as the 95 percentile of precipitation shows a wet bias in topographically complex regions. Based on a simple detection method, the model produces realistic tropical cyclone distributions even at its relatively coarse resolution (dx = 50 km), although the number of cyclone days is underestimated over the Pacific and somewhat overestimated over the Atlantic and Caribbean basins. Overall, it is assessed that the performance of RegCM4 over Mexico is of sufficient quality to study not only mean precipitation and temperature patterns, but also higher order climate statistics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号