首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An efficient numerical technique has been used to compute the deformation of pores of arbitrary shape embedded in a homogeneous elastic solid under the influence of applied stresses. The scheme is based on the boundary-element method, where single linear elements are used to generate solutions that satisfy prescribed boundary conditions. These solutions can be employed to describe the behavior of elastic moduli and other petrophysical properties in porous rocks. The numerical algorithm allows computation of the stress field induced by the pores in the solid. In this way, the effect of the interactions between pores caused by stress concentrations can be studied from a quantitative point of view. To test the algorithm, some interesting results are compared with existing models, for special cases available in the literature. Also, a model for the compressibility and porosity of sedimentary rocks, as a function of applied hydrostatic stress, was generated by mixing some realistic pore geometries generated with the numerical algorithm. Results were in good agreement with data obtained from selected samples of sandstones.  相似文献   

2.
万波  尹芮芮  左泽均  王润  吴信才 《地球科学》2016,41(11):1966-1976
三维地质体模型相交元素之间构成的奇异空间关系与复杂的模型要素形态极大影响了切割算法稳健性及切割结果可靠性.提出一种几何运算与关系表达相统一的地质体三维模型切割算法.算法首先构建交点对象拓扑结构,存储交点与所在三角形单元及空间邻近要素的相对位置关系;然后结合精确谓词法设计完整的边-三角形相交类型分类图,记录27种相交情况与交点位置的对应关系,并在重三角化过程中建立交点调整机制,利用交点对象拓扑结构中关联的空间关系作为上下文约束,有效控制投影降维浮点误差带来的交点位置偏差的不良影响.实验结果表明,算法能够有效处理地质体模型中的三角网退化/近似退化、自相交及共面/近似共面等奇异空间关系,同时具有良好的运算效率.   相似文献   

3.
An algorithm for the solution of a nonlinear problem of phase boundary movement and evolution of temperature distribution due to the perturbation in the basal heat flux has been discussed. The reduction of the problem to a system of nonlinear ordinary differential equations with the help of a Fourier series method leads to a stiff system. This stiffness is taken care of by the use of a modified Euler’s method. Various cases of basal heat flow variation have been considered to show the performance and stability of the technique for such a nonlinear system. The first case of step-wise function is taken to analyse the performance of the technique, and the study has been extended to other general cases of linear increase, periodic variation, and box and triangular function type variations in the heat flux. In the step-wise case the phase boundary attains a constant position rapidly if the supplied heat flux is sufficiently large. The effect of periodicity in the heat flow is clearly depicted in the phase boundary movement, where the phase boundary oscillates about the mean position at large times. The absence of any constant level in the case of linear increase in heat flux is due to a very large value of heat flux. In the cases of box car and triangular heat flux the boundary starts moving downward after the cessation of excess heat flux but does not immediately return to its original preperturbation state, instead approaches it at large times. This technique may be applied to more general cases of heat flow variation.  相似文献   

4.
Performance of three classes of explicit and implicit time‐stepping integrators is assessed for a cyclic plasticity constitutive model for sands. The model is representative of an important class of cyclic plasticity models for soils and includes both isotropic and nonlinear kinematic hardening. The implicit algorithm is based on the closest point projection method and the explicit algorithm follows a cutting‐plane integration procedure. A sub‐stepping technique was also implemented. The performance of these algorithms is assessed through a series of numerical simulations ranging from simulations of laboratory tests (such as triaxial and bi‐axial compression, direct shear, and cyclic triaxial tests) to the analysis of a typical boundary value problem of geotechnical earthquake engineering. These simulations show that the closest point projection algorithm remains stable and accurate for relatively large strain increments and for cases where the mean effective stress in a soil element reaches very small values leading to a liquefaction state. It is also shown that while the cutting plane (CP) and sub‐stepping (SS) algorithms provide high efficiency and good accuracy for small to medium size strain increments, their accuracy and efficiency deteriorate faster than the closest point projection method for large strain increments. The CP and SS algorithms also face convergence difficulties in the liquefaction analysis when the soil approaches very small mean effective stresses. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
6.
In recent years, a number of constitutive models have been proposed to describe mathematically the mechanical response of natural clays. Some of these models are characterized by complex formulations, often leading to non‐trivial problems in their numerical integration in finite elements codes. The paper describes a fully implicit stress‐point algorithm for the numerical integration of a single‐surface mixed isotropic–kinematic hardening plasticity model for structured clays. The formulation of the model stems from a compromise between its capability of reproducing the larger number of features characterizing the behaviour of structured clays and the possibility of developing a robust integration algorithm for its implementation in a finite elements code. The model is characterized by an ellipsoid‐shaped yield function, inside which a stress‐dependent reversible stiffness is accounted for by a non‐linear hyperelastic formulation. The isotropic part of the hardening law extends the standard Cam‐Clay one to include plastic strain‐driven softening due to bond degradation, while the kinematic hardening part controls the evolution of the position of the yield surface in the stress space. The proposed algorithm allows the consistent linearization of the constitutive equations guaranteeing the quadratic rate of asymptotic convergence in the global‐level Newton–Raphson iterative procedure. The accuracy and the convergence properties of the proposed algorithm are evaluated with reference to the numerical simulations of single element tests and the analysis of a typical geotechnical boundary value problem. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
根据颗粒离散元Kelvin 接触力计算模型,分析了圆形颗粒体模拟材料力学特性应具备的条件,在此基础上提出了一种新颗粒模型构建方法。该方法首先在复杂模型域内随机生成种子,然后利用相切条件逐步扩展填充整个区域。填充过程中借助局部Delaunay三角化网格控制新颗粒的生成,采用复杂几何体距离控制颗粒与模型边界的相对位置,对靠近模型边界的颗粒进行容忍性优化填充,从而增加模型颗粒与边界的耦合性。同时对模型孔隙进行再填充,保证每个填充颗粒至少与3个颗粒相切,提高了模型内颗粒间的耦合性和模型的密度。最后采用任意多边形控制材料边界,将模型材料的设置简化为判断点是否在多边形内,简化了复杂模型材料属性的设置过程。结果表明:与膨胀颗粒生成法相比,该方法生成模型重叠量小、颗粒间及颗粒-边界相互耦合、填充率高。因此,颗粒黏结力破坏后不会造成飞溢现象,可适用于任意连通域模型的生成,能更好地实现复杂岩土细观介质变形破坏机制的模拟与研究。  相似文献   

8.
吕守航  杜立志  姚仁  王杰  常高奇 《世界地质》2017,36(3):995-1000
为研究井地电法在确定异常体边界时电场的分布规律,笔者对室内水槽固定位置的低阻体(铜板)直接供电,并对充电低阻体形成的电场在地表的电位分布特征进行观测。研究不同方向电位分布特征,及进行线性拟合建立电位梯度曲线,分析异常体不同方向上的电位梯度变化规律,确定该低阻体的边界特征。模拟实验表明,电位梯度曲线在异常体的边界会出现明显的拐点,与电位分布图的对比表明,电位梯度曲线在异常体边界的变化可以作为识别异常体边界的标志。  相似文献   

9.
This paper discusses the formulation and the numerical performance of a fully implicit algorithm used to integrate a rate-dependent model defined within a breakage mechanics framework. For this purpose, a Generalized Backward Euler (GBE) algorithm has been implemented according to two different linearization strategies: The former is derived by a direct linearization of the constitutive equations, while the latter introduces rate effects through a consistency parameter. The accuracy and efficiency of the GBE algorithm have been investigated by (1) performing material point analyses and (2) solving initial boundary value problems. In both cases, the overall performance of the underlying algorithm is inspected for a range of loading rates, thus simulating comminution from slow to fast dynamic problems. As the viscous response of the breakage model can be recast through a viscous nucleus function, the presented algorithm can be considered as a general framework to integrate constitutive equations relying on the overstress approach typical of Perzyna-like viscoplastic models.  相似文献   

10.
A transition region may be defined as a region of rapid change in medium properties about the interface between two porous media or at the interface between a porous medium and a reservoir. Modelling the transition region between different porous media can assist in the selection of the most appropriate boundary conditions for the standard advection–dispersion equation (ADE). An advantage of modelling the transition region is that it removes the need for explicitly defining boundary conditions, though boundary conditions may be recovered as limiting cases. As the width of a transition region is reduced, the solution of the transition region model (TR model) becomes equivalent to the solution of the standard ADE model with correct boundary conditions. In this paper numerical simulations using the TR model are employed to select the most appropriate boundary conditions for the standard ADE under a variety of configurations and conditions. It is shown that at the inlet boundary between a reservoir and porous medium, continuity of solute mass flux should be used as the boundary condition. At the boundary interface between two porous media both continuity of solute concentration and solute mass flux should be used. Finally, in a finite porous medium where the solute is allowed to advect freely from the exit point, both continuity of solute concentration and solute mass flux should be used as the outlet boundary condition. The findings made here are discussed with reference to a detailed review of previous relevant theoretical and experimental observations. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
Analysis of the four cases of the sequence boundary (SB)-transgressive surface (TS) relation in nature shows that applying transgressive surfaces as sequence boundaries has the following merits: it improves the methodology of stratigraphic subdivision; the position of transgressive surface in a sea level curve is relatively fixed; the transgressive surface is a transforming surface of the stratal structure; in platforms or ramps, the transgressive surface is the only choice for determining the sequence boundary; the transgressive surface is a readily recognized physical surface reflected by seismic records in seismostratigraphy. The paper reaches a conclusion that to delineate a SB in terms of the TS is theoretically and practically better than to delineate it between highstand and lowstand sediments as has been done traditionally.  相似文献   

12.
赣北上二叠统多重地层划分研究   总被引:2,自引:0,他引:2  
覃兆松 《江西地质》2000,14(4):241-250
在开展赣西1∶5万区调中,对上石炭统至下侏罗统开展了岩石地层、层序地层、生物地层、生态地层、年代地层及旋回地层和同位素地层研究,本文即是部分成果的总结。依据岩石特征,将赣北上二叠统分为6个岩石地层区,并创竹亭组代表其深水相沉积。依据七宝山、枣木两剖面资料,进行了生物地层、生态地层及年代地层划分,提出长兴阶顶界位于青龙组底部、底界位于长兴组下部的结论,并对吴家坪阶底界的优选点进行了探讨。通过生态地层  相似文献   

13.
讨论了高阶Duffing型微分方程周期解的存在性,此类方程是二阶Duffing型方程的推广,具有重要的理论意义。利用同胚延拓和不动点方法,构造处理了一类比文献所述条件更弱的Duffing型方程。通过构造一个先验界,利用Schaud-er不动点方法得到解的存在性结论,所使用的方法能广泛适用于各种边界条件。  相似文献   

14.
Many of the major lineaments in southern Africa are major ductile shear zones with large displacement, occurring within, though often bounding orogenic belts. An example is the boundary to the Limpopo belt in Botswana and Zimbabwe. However, some of these shear zones only record slight displacement when considered on a crustal scale; they are merely planes recording differential movement on much larger, flat to gently dipping, shear zones where the boundary to the orogenic belt is a low-angle thrust zone. These different types of shear zones are clearly shown in the Pan-African belt of Zambia where large ENE-trending lineaments have been recorded. Recent work has shown the northern group of shears to be large lateral ramps; for example, the rocks of the copper belt are part of an ENE-verging thrust package, the southern boundary of which is a major, oblique to lateral ramp. In southern Zambia shears are more analogous to major transform faults; they form as tear faults separating zones of different thrust vergence. A possible plate tectonic model is given for this part of Africa, showing the different relative plate movement vectors estimated from the geometry of the Pan-African shear zones.  相似文献   

15.
钻杆自动装卸技术作为智能钻探装备领域的关键技术,制约着煤矿井下钻探装备的自动化和智能化发展,现有钻杆自动装卸系统主要依靠机械结构和接近开关进行定位,存在定位精度差自动化程度低的问题。针对此问题,提出一种基于单目视觉技术的钻杆位姿识别算法,利用摄像机拍摄含有合作目标的图像,解算摄像机与合作目标之间的相对距离和姿态,通过固定坐标变换,推导钻杆相对于机械手的位姿,引导机械手进行钻杆自动装卸。首先,确定系统总体方案,利用小孔成像原理和张正友标定法建立摄像机成像数学模型,求解摄像机内外参数;然后,使用棋盘格标定板作为被测钻杆的合作目标,根据小孔成像模型和空间成像关系,建立空间任意平面的单目测距模型,计算得到相机光心与合作目标点的距离;最后,通过摄像机成像模型得出合作目标的姿态矩阵,结合摄像机内外参数,经坐标转换求解得到合作目标在世界坐标系中的姿态矩阵,再通过固定坐标变换完成钻杆位姿识别。为验证算法准确性,在室内进行了钻杆位姿识别试验,试验中对每张现场图片进行重复测距与姿态估计,结果显示钻杆距离识别偏差在0.12%之内,钻杆姿态识别偏差在1.08%之内,满足钻杆自动装卸精度要求。试验结果表明,基于单目视觉技术的钻杆位姿识别算法真实有效,利用该算法可实现钻杆定位智能识别,提高钻杆自动装卸精度和钻探装备的智能化水平。   相似文献   

16.
We describe an algorithm for modeling saturated fractures in a poroelastic domain in which the reservoir simulator is coupled with a boundary element method. A fixed stress splitting is used on the underlying fractured Biot system to iteratively couple fluid and solid mechanics systems. The fluid system consists of Darcy’s law in the reservoir and is computed with a multipoint flux mixed finite element method, and a Reynolds’ lubrication equation in the fracture solved with a mimetic finite difference method. The mechanics system consists of linear elasticity in the reservoir and is computed with a continuous Galerkin method, and linear elasticity in the fracture is solved with a weakly singular symmetric Galerkin boundary element method. This algorithm is able to compute both unknown fracture width and unknown fluid leakage rate. An interesting numerical example is presented with an injection well inside of a circular fracture.  相似文献   

17.
Three-dimensional (3D) numerical analyses have been carried out to study the behaviour of a single pile to adjacent tunnelling in the lateral direction of the pile. The numerical analyses have included comparisons between the current study, previous elastic solutions and advanced 3D elasto-plastic analyses. In the numerical analyses, the interaction between the tunnel, the pile and the soil next to the pile has been analysed. The study includes the axial force distributions on the pile, the relative shear displacement between the pile and the soil, the shear stresses at the soil next to the pile and the pile settlement. In particular, the shear stress transfer mechanism along the pile related to tunnel advancement has been analysed by using interface elements allowing soil slip. It has been found that existing solutions may not accurately estimate the pile behaviour since several key issues are not included. Due to changes in the relative shear displacement between the pile and the soil next to the pile with tunnel advancement, the shear stresses and axial force distributions along the pile change drastically. Downward shear stress develops at the upper part of the pile, while upward shear stress is mobilised at the lower part of the pile, resulting in a compressive force on the pile. A maximum compressive force of about 0.25–0.52Pa was developed on the pile, solely due to tunnelling, depending on the pile tip locations relative to the tunnel position, where Pa is the service pile loading prior to tunnelling. The majority of the axial force on the pile developed within ±2D in the transverse direction (behind and ahead of piles) relative to the pile position, where D is the tunnel diameter. In addition, mobilisation of shear strength at the pile–soil interface was found to be a key factor governing pile–soil–tunnelling interaction. The reduction of apparent allowable pile capacity due to tunnelling was dependent on the pile location relative to the tunnel position. Some insights into the pile behaviour in tunnelling obtained from the numerical analyses will be reported and discussed.  相似文献   

18.
Seismic slip vectors along the Japan Trench, the eastern margin of the Japan Sea and the Sagami Trough are compared with global relative plate motions (RM2, Minster and Jordan, 1978) to test a new hypothesis that northern Honshu, Japan, is part of the North American plate. This hypothesis also claims that the eastern margin of the Japan Sea is a nascent convergent plate boundary (Kobayashi, 1983; Nakamura, 1983).Seismic slip vectors along the Japan Trench are more parallel to the direction of the Pacific-North American relative motion than that of the Pacific-Eurasian relative motion. However, the difference in calculated relative motions is too small avoid to the possibility that a systematic bias in seismic slip vectors due to anomalous velocity structure beneath island arcs causes this apparent coincidence. Seismic slip vectors and rates of shortening along the eastern margin of the Japan Sea for the past 400 years are also consistent with the relative motion between the North American and Eurasian plates calculated there. Seismic slip vectors and horizontal crustal strain patterns revealed by geodetic surveys in south Kanto, beneath which the Philippine Sea plate is subducting, indicate two major directions; one is the relative motion between the North American and Philippine Sea plates, and the other that between the Eurasian and Philippine Sea plates.One possible interpretation of this is that the eastern margin of the Japan Sea may be in an embryonic stage of plate convergence and the jump of the North American-Eurasian plate boundary from Sakhalin-central Hokkaido to the eastern margin of the Japan Sea has not yet been accomplished. In this case northern Honshu is a microplate which does not have a driving force itself and its motion is affected by the surrounding major plates, behaving as part of either the Eurasian or North American plate. Another possibility is that the seismic slip vectors and crustal deformations in south Kanto do not correctly represent the relative motion between plates but represent the stresses due to non-rigid behaviors of part of northern Honshu.  相似文献   

19.
三角形网格自动生成的一种快速算法   总被引:1,自引:0,他引:1  
提出了一种三角形网格自动生成的快速算法:从边界点出发逐步向内部联网,不仅联网速度快,而且很容易处理凹边界。   相似文献   

20.
According to previous observations [Geophys. Res. Lett. 27 (2000) 3957], the generation of large (M≥7.0) earthquakes in the western part of the north Anatolian fault system (Marmara Sea) is followed by strong earthquakes along the Northern Boundary of the Aegean microplate (NAB: northwestermost Anatolia–northern Aegean–central Greece–Ionian islands). Therefore, it can be hypothesized that a seismic excitation along this boundary should be expected after the occurrence of the Izmit 1999 earthquake (M=7.6). We have applied the method of accelerating seismic crustal deformation, which is based on concepts of critical point dynamics in an attempt to locate more precisely those regions along the NAB where seismic excitation is more likely to occur. For this reason, a detailed parametric grid search of the broader NAB area was performed for the identification of accelerating energy release behavior.Three such elliptical critical regions have been identified with centers along this boundary. The first region, (A), is centered in the eastern part of this boundary (40.2°N, 27.2°E: southwest of Marmara), the second region, (B), has a center in the middle part of the boundary (38.8°N, 23.4°E: East Central Greece) and the third region, (C), in the westernmost part of the boundary (38.2°N, 20.9°E: Ionian Islands). The study of the time variation of the cumulative Benioff strain in two of the three identified regions (A and B) revealed that intense accelerating seismicity is observed especially after the occurrence of the 1999 Izmit mainshock. Therefore, it can be suggested that the seismic excitation, at least in these two regions, has been triggered by the Izmit mainshock.Estimations of the magnitudes and origin times of the expected mainshocks in these three critical regions have also been performed, assuming that the accelerating seismicity in these regions will lead to a critical point, that is, to the generation of mainshocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号