首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Faith Vilas 《Icarus》1985,64(1):133-138
Reflectance spectra of terrain on Mercury containing both smooth plains and intercrater plains were obtained using a charge-coupled device spectrograph on 24 November 1984. The composite spectrum covers the 0.53- to 1.02-μm spectral range with a resolution of 17 Å. Absorption features due to telluric H2O absorption are clearly mapped around 0.73, 0.82, and 0.93 μm. No evidence exists in the new spectrum for the proposed orthopyroxene absorption centered near 0.9 μm seen in older spectra of this terrain. The surface material is probably highly reduced, with any iron present in metallic form. Based upon the new spectrum, a history of heavy micrometeoroid bombardment of the Mercurian surface is suggested, resulting in a surface regolith primarily comprised of agglutinates.  相似文献   

2.
Don E. Wilhelms 《Icarus》1976,28(4):551-558
The Mariner 10 television team has argued that extensive plains on Mercury were formed by volcanism and compared them with the demonstrably lunar maria. I believe, however, that in stratigraphic relations, surface morphology, and albedo contrast, the Mercurian plains more closely resemble the lunar light plains. These lunar plains were interpreted as volcanic on the basis of data comparable to that available to the Mariner 10 investigators but have been shown by the Apollo missions to be of impact origin. The plains on Mercury might also be formed of impact materials, perhaps of impact melt or other basin ejecta that behaved more like a fluid when emplaced that did lunar basin ejecta.  相似文献   

3.
《Icarus》1987,72(3):477-491
There has been extensive debate about whether Mercury's smooth plains are volcanic features or impact ejecta deposits. We present new indirect evidence which supports a volcanic origin for two different smooth plains units. In Borealis Planitia, stratigraphic relations indicate at least two distinct stages of smooth plains formation. At least one of these stages must have had a volcanic origin. In the Hilly and Lineated Terrain, Petrarch and several other anomalously shallow craters apparently have been volcanically filled. Areally extensive smooth plains volcanism evidently occurred at these two widely separated areas on Mercury. These results, combined with work by other researchers on the circum-Caloris plains and the Tolstoi basin, show that smooth plains volcanism was a global process on Mercury. Present data suggest to us that the smooth and intercrater plains may represent two distinct episodes of volcanic activity on Mercury and that smooth plains volcanism may have been triggered by the Caloris impact. High-resolution and multispectral imaging from a future Mercury spacecraft could resolve many of the present uncertainties in our understanding of plains formation on Mercury.  相似文献   

4.
The primary crater population on Mercury has been modified by volcanism and secondary craters. Two phases of volcanism are recognized. One volcanic episode that produced widespread intercrater plains occurred during the period of the Late Heavy Bombardment and markedly altered the surface in many areas. The second episode is typified by the smooth plains interior and exterior to the Caloris basin, both of which have a different crater size-frequency distribution than the intercrater plains, consistent with a cratering record dominated by a younger population of impactors. These two phases may have overlapped as parts of a continuous period of volcanism during which the volcanic flux tended to decrease with time. The youngest age of smooth plains volcanism cannot yet be determined, but at least small expanses of plains are substantially younger than the plains associated with the Caloris basin. The spatial and temporal variations of volcanic resurfacing events can be used to reconstruct Mercury's geologic history from images and compositional and topographic data to be acquired during the orbital phase of the MESSENGER mission.  相似文献   

5.
The main goal of this paper is to estimate the possible composition of the tessera material on the basis of an interpretation of the morphology of the tessera precursor terrain. The results of detailed photogeologic analysis of tessera are presented. For the study, 56 randomly chosen areas that characterize the surface of large and small tessera massifs were selected. Each area represents a portion of the F-MAP photomosaics acquired at a 75 m/px resolution. The results of this study show that the tessera precursor terrain appears everywhere as plains. In its morphology, these plains are similar to the plains outside the tessera massifs. An overview of all possible mechanisms of the formation of plains on Venus and comparison of these mechanisms with the data of the chemical measurements on the surface of Venus suggests that the Venusian plains were formed as a result of the emplacement of low-viscous basaltic lava. This rather well-known conclusion is made here for the first time in order to estimate the possible composition of the tessera material. Thus, it is likely that the composition of the tessera precursor plains is similar to the composition of the basaltic plains on Venus. The products of posttessera volcanism in the form of morphologically smooth plains commonly occur within the tessera terrains. Morphologically, these plains are similar to the regional Venusian plains, which strongly suggests a basaltic composition of such plains. There are only two volcanic flows within the whole tessera terrain on Venus whose morphology permits one to interpret them as a manifestation of nonbasaltic, more siliceous volcanism. This means that the material of the regional tessera-bearing highlands very rarely responded to the thermal influence from below by siliceous volcanism. If some hypothetical granitelike material makes up the main portion of the tessera highlands, this material remains hidden. Therefore, the hypothesis of the granitelike bulk composition of the tessera highlands has little support from observations. At the current stage of the study of Venus, a model in which tessera highlands are composed predominantly of basalt with a possible, but insignificant component of more siliceous material is thought to be correct.  相似文献   

6.
Lakshmi Planum is distinctive and unique on the surface of Venus as an expansive (~2 × 106km2), relatively smooth, flat plateau containing two large shield volcanoes and abundant volcanic plains in the midst of a region of extreme relief. It rises 3–5 km above the datum and is surrounded on all sides by bands of mountains interpreted to be of compressional tectonic origin. The major units mapped on Lakshmi are volcanic edifices, smooth, ridged and grooved plains units, and structural units referred to as ridged terrain. Three styles of volcanism are observed to dominate the surface of Lakshmi. Distributed effusive volcanism is associated with extensive plains deposits and many of the small shields, domes and cones mapped within the plateau. Centralized effusive volcanism is primarily associated with the paterae, Colette and Sacajawea, and their circumferential low-shield-forming deposits. The precise origin and evolution of these unusually large and complex structures is not understood, although a catastrophic, explosive origin is unlikely. Pyroclastic volcanism may be represented by a unit referred to as the diffuse halo. The origin and evolution of Lakshmi Planum is closely related to its compressional tectonic environment; volcanism on Lakshmi has occurred synchronously with tectonism in the surrounding orogenic belts. A model for the origin and evolution of Lakshmi Planum consisting of a continuous sequence of convergence and horizontal shortening of crustal segments against a preexisting block of tessera seems best able to account for the elevation, plateau shape and irregular polygonal outline of Lakshmi, as well as the presence of ridged terrain and its resemblance to tessera. Volcanism on Lakshmi is proposed to be the result of basal melting of a thickened crustal root. According to this model, the origin and evolution of Lakshmi Planum has consisted of the following sequence of events: (1) formation of a large, elevated block of tessera surrounded by low-lying plains; (2) convergence and underthrusting of crustal segments to produce peripheral mountain ranges, thickening, and uplift of the plateau; and (3) basal melting of the thickened crust and underthrust material and surface volcanism that occurred synchronously with continued edge deformation.'Geology and Tectonics of Venus', special issue edited by Alexander T. Basilevsky (USSR Acad. of Sci., Moscow), James W. Head (Brown University, Providence). Gordon H. Pettengill (MIT. Cambridge, Massachusetts) and R. S. Saunders (J.P.L., Pasadena).  相似文献   

7.
《Icarus》1987,71(3):397-429
The results of a geological analysis of the Mariner 10 orange/UV color ratio man of Mercury (B. Hapke, C. Christman, B. Rava, and J. Mosher, Proc. Lunar Planet Sci. Conf. 11th 1980, pp. 817–822) are given. Certain errors that occured in reproducing the published version of the 1980 map are pointed out. The relationships between color and terrain are distinctly nonlunar. There is no correlation between color boundaries and the smooth plains on Mercury, in contrast to the strong correlation between color and maria-highlands contacts on the Moon. There are no large exposures of low-albedo, blue material that could be considered to be Mercurian analogs of high-FeTi lunar maria basalts on any part of Mercury imaged by Mariner 10. Three lines of evidence imply that the crust is low in Fe2+ and Ti4+: rays and ejecta blankets are bluer than most areas on Mercury; the Fe2+ band in Mercury's reflectance spectrum is very weak or nonexistent and the albedo contrasts are smaller than those on the Moon. There is no evidence in the spectral or albedo data that a lunar type of second wave of melting ever occured on Mercury; rather, the observations are most consistent with the hypothesis that the smooth plains are extrusive landforms derived from local material, possibly mobilized by the Caloris event. In several places correlations between color and topography can be explained if older, redder, higher-Fe materials underlie younger, bluer, lower-Fe surfaces. There is some evidence of late Fe-rich pyroclastic-like activity.  相似文献   

8.
Mariner 9 pictures indicate that the surface of Mars has been shaped by impact, volcanic, tectonic, erosional and depositional activity. The moonlike cratered terrain, identified as the dominant surface unit from the Mariner 6 and 7 flyby data, has proven to be less typical of Mars than previously believed, although extensive in the mid- and high-latitude regions of the southern hemisphere. Martian craters are highly modified but their size-frequency distribution and morphology suggest that most were formed by impact. Circular basins encompassed by rugged terrain and filled with smooth plains material are recognized. These structures, like the craters, are more modified than corresponding features on the Moon and they exercise a less dominant influence on the regional geology. Smooth plains with few visible craters fill the large basins and the floors of larger craters; they also occupy large parts of the northern hemisphere where the plains lap against higher landforms. The middle northern latitudes of Mars from 90 to 150† longitude contain at least four large shield volcanoes each of which is about twice as massive as the largest on Earth. Steep-sided domes with summit craters and large, fresh-appearing volcanic craters with smooth rims are also present in this region. Multiple flow structures, ridges with lobate flanks, chain craters, and sinuous rilles occur in all regions, suggesting widespread volcanism. Evidence for tectonic activity postdating formation of the cratered terrain and some of the plains units is abundant in the equatorial area from 0 to 120° longitude.Some regions exhibit a complex semiradial array of graben that suggest doming and stretching of the surface. Others contain intensity faulted terrain with broader, deeper graben separated by a complex mosaic of flat-topped blocks. An east-west-trending canyon system about 100–200 km wide and about 2500 km long extends through the Coprates-Eos region. The canyons have gullied walls indicative of extensive headward erosion since their initial formation. Regionally depressed areas called chaotic terrain consist of intricately broken and jumbled blocks and appear to result from breaking up and slumping of older geologic units. Compressional features have not been identified in any of the pictures analyzed to data. Plumose light and dark surface markings can be explained by eolian transport. Mariner 9 has thus revealed that Mars is a complex planet with its own distinctive geologic history and that it is less primitive than the Moon.  相似文献   

9.
The age relations between 36 impact craters with dark paraboloids and other geologic units and structures at these localities have been studied through photogeologic analysis of Magellan SAR images of the surface of Venus. Geologic settings in all 36 sites, about 1000 × 1000 km each, could be characterized using only 10 different terrain units and six types of structures. These units and structures form a major stratigraphic and geologic sequence (from oldest to youngest): 1) tessera terrain; 2) densely fractured terrains associated with coronae and in the form of remnants among plains; 3) fractured and ridged plains and ridge belts; 4) plains with wrinkle ridges; 5) ridges associated with coronae annulae and ridges of arachnoid annulae which are contemporary with wrinkle ridges of the ridged plains; 6) smooth and lobate plains; 7) fractures of coronae annulae, and fractures not related to coronae annulae, which disrupt ridged and smooth plains; 8) rift-associated fractures; 9) craters with associated dark paraboloids, which represent the youngest 10% of the Venus impact crater population (Campbellet al., 1992), and are on top of all volcanic and tectonic units except the youngest episodes of rift-associated fracturing and volcanism; surficial streaks and patches are approximately contemporary with dark-paraboloid craters.Mapping of such units and structures in 36 randomly distributed large regions (each 106 km2) shows evidence for a distinctive regional and global stratigraphic and geologic sequence. On the basis of this sequence we have developed a model that illustrates several major themes in the history of Venus. Most of the history of Venus (that of its first 80% or so) is not preserved in the surface geomorphological record. The major deformation associated with tessera formation in the period sometime between 0.5–1.0 b.y. ago (Ivanov and Basilevsky, 1993) is the earliest event detected. In the terminal stages of tessera formation, extensive parallel linear graben swarms representing a change in the style of deformation from shortening to extension were formed on the tessera and on some volcanic plains that were emplaced just after (and perhaps also during the latter stages of the major compressional phase of tessera emplacement. Our stratigraphic analyses suggest that following tessera formation, extensive volcanic flooding resurfaced at least 85% of the planet in the form of the presently-ridged and fractured plains. Several lines of evidence favor a high flux in the post-tessera period but we have no independent evidence for the absolute duration of ridged plains emplacement. During this time, the net state of stress in the lithosphere apparently changed from extensional to compressional, first in the form of extensive ridge belt development, followed by the formation of extensive wrinkle ridges on the flow units. Subsequently, there occurred local emplacement of smooth and lobate plains units which are presently essentially undeformed. The major events in the latest 10% of the presently preserved history of Venus (less than 50 m.y. ago) are continued rifting and some associated volcanism, and the redistribution of eolian material largely derived from impact crater deposits.Detailed geologic mapping and stratigraphic synthesis are necessary to test this sequence and to address many of the outstanding problems raised by this analysis. For example, we are uncertain whether this stratigraphic sequence corresponds to geologic events which were generally synchronous in all the sites and all around the planet, or whether the sequence is simply a typical sequence of events which occurred in different places at different times. In addition, it is currently unknown whether the present state represents a normal consequence of the general thermal evolution of Venus (and is thus representative of the level of geological activity predicted for the future), or if Venus, has been characterized by a sequence of periodic global changes in the composition and thermal state of its crust and upper mantle (in which case, Venus could in the future return to levels of deformation and resurfacing typical of the period of tessera formation).  相似文献   

10.
Geophysical data have led to the interpretation that Beta Regio, a 2000×25000 km wide topographic rise with associated rifting and volcanism, formed due to the rise of a hot mantle diapir interpreted to be caused by a mantle plume. We have tested this hypothesis through detailed geologic mapping of the V-17 quadrangle, which includes a significant part of the Beta Regio rise, and reconnaissance mapping of the remaining parts of this region. Our analysis documents signatures of an early stage of uplift in the formation of the Agrona Linea fracture belts before the emplacement of regional plains and their deformation by wrinkle ridging. We see evidence that the Theia rift-associated volcanism occurred during the first part of post-regional-plains time and cannot exclude that it continued into later time. We also see evidence that Devana Chasma rifting was active during the first and the second parts of post-regional-plains time. These data are consistent with uplift, rifting and volcanism associated with a mantle diapir. Geophysical modeling shows that diapiric upwelling may continue at the present time. Together these data suggest that the duration of mantle diapir activity was as long as several hundred million years. The regional plains north of Beta rise and the area east and west of it were little affected by the Beta-forming plume, but the broader area (at least 4000 km across), whose center-northern part includes Beta Regio, could have experienced earlier uplift as morphologically recorded in formation of tessera transitional terrain.  相似文献   

11.
Improved measurements of the target elevations of 885 impact craters on Venus indicate that they are nearly random with respect to elevation. Although a slight deficit of craters at high elevations and an excess at low elevations is observed, the differences are marginally significant. Using a high-resolution digital map and database of all major volcanic, tectonic and impact features, we examine the distribution of impacts within volcanic and tectonic features, and the distribution of volcanism and tectonism with elevation. We show that the observed crater hypsometry results from resurfacing at higher elevations by volcanic and tectonic features superimposed on less active plains.The distribution of impacts in the map units has two distinct patterns: (1) the plains and shield fields (70%) have high crater densities and low proportions of tectonized or embayed craters; and (2) the remaining volcanic and tectonic features (30%) have low crater densities and high proportions of modified craters. The plains and shield fields appear to represent a much lower level of resurfacing activity. Simple area-balance calculations indicate that resurfacing at higher elevations by tectonic and volcanic features plausibly explains the observed crater hypsometry. However, the subtlety of the effects suggests that either (1) little resurfacing has occurred during the period of crater accumulation, or (2) resurfacing acts almost equally at all elevations. The apparent low activity of the plains and their abundance at lower elevations makes it unlikely that resurfacing is balanced with respect to elevation. It appears that the plains have been mostly quiescent since their emplacement, and that subsequent resurfacing occurs mostly in the highlands as a result of volcanism, corona formation, and rifting. We estimate that since the end of plains emplacement about 14% of Venus has been resurfaced by volcanism and about 6% by tectonic deformation.  相似文献   

12.
The Apollo orbital geochemistry, photogeologic, and other remote sensing data sets were used to identify and characterize geochemical anomalies on the eastern limb and farside of the Moon and to investigate the processes responsible for their formation. The anomalies are located in the following regions: (1) Balmer basin, (2) terrain northeast of Mare Smythii, (3) near Langemak crater, (4) Pasteur crater, (5) terrain northwest of Milne basin, (6) northeast of Mendeleev basin, (7) north and northeast of Korolev basin, (8) terrain north of Taruntius crater, and (9) terrain north of Orientale basin. The anomalies are commonly associated with Imbrian- or Nectarian-aged light plains units which exhibit dark-haloed impact craters. The results of recent spectral reflectance studies of dark-haloed impact craters plus consideration of the surface chemistry of the anomalies strongly indicate that those geochemical anomalies associated with light plains deposits which display dark-haloed impact craters result from the presence of basaltic units that are either covered by varying thickness of highland debris or have a surface contaminated with significant amounts of highlands material. The burial or contamination of ancient volcanic surfaces by varying amounts of highland material appears to have been an important (though not the dominant) process in the formation of lunar light plains. Basaltic volcanism on the eastern limb and farside of the Moon was more extensive in both space and time than has been accepted.  相似文献   

13.
Mariners 6 and 7 photographs of the equatorial region of Mars document a three-stage evolution of that part of the Martian surface: (1) High- and intermediate-albedo cratered terrains in Meridiani Sinus, Margaritifer Sinus-Thymiamata, Deucalionis Regio-Sabaeus Sinus, and Hellespontus; (2) low-albedo moderately cratered terrain and dark crater fill in Meridiani Sinus, Thymiamata, and Deucalionis Regio-Sabaeus Sinus and possible volcanism in the Hellas-Hellespontus border; and (3) high-albedo surficial deposits, banked-up crater fill, a possible bright-ray crater in Meridiani Sinus, chaotic terrain on the edge of the Margaritifer Sinus mesa, featureless terrain in Hellas and Edom, sinuous channel-like reentrants on scarps at the Hellas-Hellespontus boundary. Regional faulting seems to have occurred following formation of the old cratered plains and prior to formation of low-albedo plains in Meridiani Sinus and also prior to formation of canyon-like reentrants and featureless terrain along the Hellas-Hellespontus boundary.Mars has had a complex history of dynamic evolution, possibly analogous to the more stable regions of Earth. Its geochemical differentiation and thermal regime should account for long-term postaccretional tectonic and volcano-tectonic processes as well as for fluid media on its surface sufficient to cause erosion, including the cutting of large canyons.  相似文献   

14.
We discuss a change in the resurfacing regimes of Venus and probable ways of forming the terrain types that make up the surface of the planet. The interpretation of the nature of the terrain types and their morphologic features allows us to characterize their scientific priority and the risk of landing on their surface to be estimated. From the scientific point of view, two terrain types are of special interest and represent easily achievable targets: the lower unit of regional plains and the smooth plains associated with impact craters. Regional plains are probably a melting from the upper fertile mantle. The material of smooth plains of impact origin is a well-mixed and representative sample of the Venusian crust. The lower unit of regional plains is the most widespread one on the surface of Venus, and it occurs within the boundaries of all of the precalculated approach trajectories of the lander. Smooth plains of impact origin are crossed by the approach trajectories precalculated for 2018 and 2026.  相似文献   

15.
The interplanetary mission, Venera-D, which is currently being planned, includes a lander. For a successful landing, it is necessary to estimate the frequency distributions of slopes of the Venusian surface at baselines that are comparable with the horizontal dimensions of lander (1–3 m). The available data on the topographic variations on Venus preclude estimates of the frequency of the short-wavelength slopes. In our study, we applied high-resolution digital terrain models (DTM) for specific areas in Iceland to estimate the slopes on Venus. The Iceland DTMs have 0.5 m spatial and 0.1 m vertical resolution. From the set of these DTMs, we have selected those that morphologically resemble typical landscapes on Venus such as tessera, shield, regional, lobate, and smooth plains. The mode of the frequency distribution of slopes on the model tessera terrain is within a 30°–40° range and a fraction of the surface has slopes <7°, which is considered as the upper safety limit. This is the primary interest. The frequency distribution of slopes on the model tessera is not changed significantly as the baseline is changed from 1 m to 3 m. The terrestrial surfaces that model shield and regional plains on Venus have a prominent slope distribution mode between 8°–20° and the fraction of the surfaces with slopes <7° is less than 30% on both 1 m and 3 m baselines. A narrow, left-shifted histogram characterizes the model smooth plains surfaces. The fraction of surfaces with slopes <7° is about 65–75% for the shorter baseline (1 m). At the longer baseline, the fraction of the shallow-sloped surfaces is increased and fraction of the steep slopes is decreased significantly. The fraction of surfaces with slopes <7° for the 3-m baseline is about 75–88% for the terrains that model both lobate and smooth plains.  相似文献   

16.
John K. Harmon 《Icarus》2008,196(1):298-301
Radar imagery from July 2005 Arecibo observations has provided new information on surface relief over the southern portion of Caloris Basin and the smooth plains to the south of the basin. A lobe of smooth plains has been identified in the Mariner-unimaged region southwest of Mozart Crater that coincides precisely with topographically down-bowed terrain seen in earlier Arecibo radar altimetry. A 105-km-diameter crater has been found at 193.6° W, 25.6° N that appears to be the largest crater in the Caloris basin floor.  相似文献   

17.
Ninety voyager images ranging in phase angle from 3 to 143° and covering the spectral range from 0.34 to 0.58 μm were analyzed to derive the photometric properties of Europa. At small phase angles the disk-integrated phase curve is remarkable in that it shows little or no evidence of an opposition effect (in agreement with earlier Earth-based observations by Millis and Thompson, Icarus26, 408, 1975). The phase integral determined in the Voyager clear filter (centered near 0.47 μm) is 1.09 ± 0.11, in good agreement with previous estimates based on radiometry. The bolometric Bond albedo is 0.62 ± 0.14. The scattering properties of Europa in general, and of the two major terrain types (bright plains and darker mottled terrain) in particular, cannot be represented by a lunar-like photometric law. However, an equation which is a linear superposition of a lunar-like scattering law and a Lambert component provides an adequate simple representation of the scattering properties. The plains are photometrically more homogeneous than the darker mottled terrain. In the Voyager clear filter, the average normal reflectance is 0.71 for the plains on both the leading and trailing hemispheres; for the darker mottled terrain the values are 0.60 on the leading hemisphere, and 0.48 on the trailing one.  相似文献   

18.
Recent high resolution, high incidence angle Arecibo radar images of southern Ishtar Terra and flanking plains of Guinevere and Sedna on Venus reveal details of topographic features resolved by Pioneer Venus. The high incidence angles of Arecibo images favor the detection of surface roughness-related features, and complement recently obtained low incidence angle Venera 15/16 images in which changes in surface topographic slope are well portrayed. Four provinces have been defined on the basis of radar characteristics in Arecibo images and topography. Volcanism and tectonism are the dominant processes in the mapped area, which has an average age of about 0.5–1.0 billion years (Ivanov et al., 1986). These processes vary in relative significance in the mapped provinces and it is likely that geologic activity has occurred simultaneously in all four provinces. On the basis of stratigraphic evidence, however, a general sequence is proposed which represents the major activity in each area. The low predominantly volcanic plains of Guinevere and Sedna Planitiae are the relatively oldest terrain. A major region of complex tectonic deformation, the Southern Ishtar Transition Zone, postdates much of the low plains and delineates the steep-sloped flanks of Ishtar Terra. Lakshmi Planum is characterized by a distinctive volcanic style (large low edifices, calderas, flanking plains) and at least in part postdates the Southern Ishtar Transition Zone. Relatively recent plains-style volcanism occurs locally in Sedna Planitia and embays the Southern Ishtar Transition Zone. Compressional deformation appears to dominate the mountains of the Ishtar plateau, but the nature of the tectonic deformation in the Southern Ishtar Transition Zone is very complex and likely represents a combination of extension, compression and strikeslip deformation. Arecibo data reveal additional coronae in the lowlands, suggesting that corona formation is an even more widespread process than indicated by the Venera data.  相似文献   

19.
We have mapped 18,000+ circular mounds in a portion of southern Acidalia Planitia using their sizes, shapes, and responses in Nighttime IR. We estimate that 40,000+ of these features could occur in the area, with a distribution generally corresponding to the southern half of the proposed Acidalia impact basin. The mounds have average diameters of about 1 km and relief up to 180 m and most overlie units mapped as Early Amazonian.High resolution images of mound surfaces show relatively smooth veneers, apron-like extensions onto the plains, moats, and concentric circular crestal structures. Some images show lobate and flow-like features associated with the mounds. Albedo of the mounds is generally higher than that of the surrounding plains. Visible and near-infrared spectra suggest that the mounds and plains have subtle mineralogical differences, with the mounds having enhanced coatings or possibly greater quantities of crystalline ferric oxides.Multiple analogs for these structures were assessed in light of new orbital data and regional mapping. Mud volcanism is the closest terrestrial analogy, though the process in Acidalia would have had distinctly martian attributes. This interpretation is supported by the geologic setting of the Acidalia which sits at the distal end of the Chryse-Acidalia embayment into which large quantities of sediments were deposited through the Hesperian outflow channels. In its distal position, Acidalia would have been a depocenter for accumulation of mud and fluids from outflow sedimentation.Thus, the profusion of mounds in Acidalia is likely to be a consequence of this basin’s unique geologic setting. Basinwide mud eruption may be attributable to overpressure (developed in response to rapid outflow deposition) perhaps aided by regional triggers for fluid expulsion related to events such as tectonic or hydrothermal pulses, destabilization of clathrates, or sublimation of a frozen body of water. Significant release of gas may have been involved, and the extensive mud volcanism could have created long-lived conduits for upwelling groundwaters, providing potential habitats for an in situ microbiota.Mud volcanism transports minimally-altered materials from depth to the surface, and mud volcanoes in Acidalia, therefore, could provide access to samples from deep zones that would otherwise be inaccessible. Since the distal setting of Acidalia also would favor concentration and preservation of potentially-present organic materials, samples brought to the surface by mud volcanism could include biosignatures of possible past or even present life. Accordingly, the mounds of Acidalia may offer a new class of exploration target.  相似文献   

20.
The geologic/morphologic map of the northern mid-to-high latitudes of Venus prepared by a Soviet science team on the basis of Venera 15/16 mission radar image coverage is analyzed and used to define six discrete assemblages of geologic/morphologic units that have well-defined geographic distributions. These assemblages have distinctive and differing geological and tectonic expressions and include: Plains Assemblage - which is dominated by lowland smooth plains and lowland rolling plains interpreted to be of volcanic origin, and a high concentration of small volcanic domes; Plains-Corona Assemblage - which is dominated by lowland smooth plains and lowland rolling plains interpreted to be of volcanic origin, at least ten coronae structures concentrated in the northern half of the region, and at least five large volcanoes, generally concentrated in the southern and western half of the region; Plains-Ridge Belt Assemblage - which is dominated by lowland smooth plains and lesser amounts of lowland rolling plains, major occurrences of ridge belts in a distinctive fan-shaped pattern, and very minor and patchy occurrences of tessera; Plains-Corona-Tessera Assemblage - which is dominated by approximately equal amounts of lowland smooth plains and lowland rolling plains, at least five coronae concentrated in the northern part of the region, a small number of large volcanoes, also in the northern part of the region, and numerous small patches of tesserae scattered throughout, and the highest abundance of small volcanic domes observed in the northern hemisphere; Tessera-Ridge Belt Assemblage — which is dominated by a few large areas (Fortuna, Laima, Tellus) and several smaller areas (Dekla, Meni) of tesserae, ridge belts generally arrayed in an angular and often orthogonal pattern different from the fan-shaped pattern of the Plains-Ridge Belt Assemblage, lowland rolling plains and lesser amounts of lowland smooth plains, and an upland rise (Bell Regio); Tessera-Mountain Belt Assemblage - which is centered on the two volcanoes Colette and Sacajawea in Lakshmi Planum, and characterized by the peripheral mountain belt/tessera pairs, with the tessera on the outboard side: Danu/Clotho (S), Akna/Atropos (W), Freyja/ltzpapalotl (N), and Maxwell/Fortuna (E).The distribution and characteristics of assemblages demonstrate that vertical and horizontal tectonic forces are operating on the crust and lithosphere of Venus in different ways in specific localized areas. Alternative models are outlined for the origin of each assemblage and the relationship between assemblages, and important unresolved questions are identified. A key to the further understanding of these assemblages is the origin of ridge belts and tessera terrain.'Geology and Tectonics of Venus', special issue edited by Alexander T. Basilevsky (USSR Acad. of Sci., Moscow), James W. Head (Brown University, Providence), Gordon H. Pettengill (MIT. Cambridge, Massachusetts) and R. S. Saunders (J.P.L., Pasadena).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号