首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract– We report an analysis of instrumental observations of a very bright fireball which terminated with a meteorite fall near the town of Jesenice in Slovenia on April 9, 2009, at 0h59m46s UT. The fireball designated EN090409 was recorded photographically and photoelectrically by two southern stations of the Czech part of the European Fireball Network (EN). Simultaneously, a part of the luminous trajectory was also captured by two all‐sky CCD systems and one video camera of the Slovenian meteor network. In addition to these optical recordings, the sonic booms produced by the Jesenice fireball were detected at 16 seismic stations located within 150 km of the trajectory. From all these records, we reconstructed the fireball’s atmospheric trajectory, basic geophysical data, the possible impact area, and the original heliocentric orbit of the meteoroid. Using a detailed fireball light curve, we modeled the atmospheric fragmentation of the meteoroid. Both the atmospheric behavior and the heliocentric orbit proved to be quite normal in comparison with other observed meteorite falls. The Jesenice orbit is markedly different from the P?íbram and Neuschwanstein orbital meteorite pair, which fell on similar dates (April 7, 1959, and April 6, 2002, respectively). Three meteorites with a total weight of 3.6 kg (until April 2010) were found in a high mountain area near the town of Jesenice. They are classified as L6 ordinary chondrites ( Bischoff et al. 2010 ).  相似文献   

2.
Abstract— The Morávka (Czech Republic) meteorite fall occurred on May 6, 2000, 11:52 UT, during the daytime. Six H5–6 ordinary chondrites with a total mass of 1.4 kg were recovered. The corresponding fireball was witnessed by thousands of people and also videotaped by 3 casual witnesses. Sonic booms were recorded by 16 seismic stations in the Czech Republic and Poland and by one infrasonic station in Germany. A total of 2.5% of the fireball eyewitnesses reported electrophonic sounds. Satellites in Earth orbit detected part of the fireball light curve. In this first paper from a series of 4 papers devoted to the Morávka meteorite fall, we describe the circumstances of the fall and determine the fireball trajectory and orbit from calibrated video records. Morávka becomes one of only 6 meteorites with a known orbit. The slope of the trajectory was 20.4° to the horizontal, the initial velocity was 22.5 km/s, and the terminal height of the fireball was 21 km. The semimajor axis of the orbit was 1.85 AU, the perihelion distance was 0.982 AU, and the inclination was 32.2°. The fireball reached an absolute visual magnitude of ?20 at a height of 33 km.  相似文献   

3.
Abstract— The L6 ordinary chondrite Villalbeto de la Peña fall occurred on January 4, 2004, at 16: 46: 45 ± 2 s UTC. The related daylight fireball was witnessed by thousands of people from Spain, Portugal, and southern France, and was also photographed and videotaped from different locations of León and Palencia provinces in Spain. From accurate astrometric calibrations of these records, we have determined the atmospheric trajectory of the meteoroid. The initial fireball velocity, calculated from measurements of 86 video frames, was 16.9 ± 0.4 km/s. The slope of the trajectory was 29.0 ± 0.6° to the horizontal, the recorded velocity during the main fragmentation at a height of 27.9 ± 0.4 km was 14.2 ± 0.2 km/s, and the fireball terminal height was 22.2 ± 0.2 km. The heliocentric orbit of the meteoroid resided in the ecliptic plane (i = 0.0 ± 0.2°), having a perihelion distance of 0.860 ± 0.007 AU and a semimajor axis of 2.3 ± 0.2 AU. Therefore, the meteorite progenitor body came from the Main Belt, like all previous determined meteorite orbits. The Villalbeto de la Peña fireball analysis has provided the ninth known orbit of a meteorite in the solar system.  相似文献   

4.
The Ko?ice meteorite fall occurred in eastern Slovakia on February 28, 2010, 22:25 UT. The very bright bolide was imaged by three security video cameras from Hungary. Detailed bolide light curves were obtained through clouds by radiometers on seven cameras of the European Fireball Network. Records of sonic waves were found on six seismic and four infrasonic stations. An atmospheric dust cloud was observed the next morning before sunrise. After careful calibration, the video records were used to compute the bolide trajectory and velocity. The meteoroid, of estimated mass of 3500 kg, entered the atmosphere with a velocity of 15 km s?1 on a trajectory with a slope of 60° to the horizontal. The largest fragment ceased to be visible at a height of 17 km, where it was decelerated to 4.5 km s?1. A maximum brightness of absolute stellar magnitude about ?18 was reached at a height of 36 km. We developed a detailed model of meteoroid atmospheric fragmentation to fit the observed light curve and deceleration. We found that Ko?ice was a weak meteoroid, which started to fragment under the dynamic pressure of only 0.1 MPa and fragmented heavily under 1 MPa. In total, 78 meteorites were recovered in the predicted fall area during official searches. Other meteorites were found by private collectors. Known meteorite masses ranged from 0.56 g to 2.37 kg. The meteorites were classified as ordinary chondrites of type H5 and shock stage S3. The heliocentric orbit had a relatively large semimajor axis of 2.7 AU and aphelion distance of 4.5 ± 0.5 AU. Backward numerical integration of the preimpact orbit indicates possible large variations of the orbital elements in the past due to resonances with Jupiter.  相似文献   

5.
Abstract— An impressive daylight fireball was observed from Spain, Portugal, and the south of France at 16h46m45s UTC on January 4, 2004. The meteoroid penetrated into the atmosphere, generating shock waves that reached the ground and produced audible booms. The associated airwave was recorded at a seismic station located 90 km north of the fireball trajectory in Spain, and at an infrasound station in France located 750 km north‐east of the fireball. The absolute magnitude of the bolide has been determined to be ?18 ± 1 from a casual video record. The energy released in the atmosphere determined from photometric, seismic, and infrasound data was about 0.02 kilotons (kt). A massive fragmentation occurred at a height of 28 ± 0.2 km, resulting in a meteorite strewn field of 20 × 6 km. The first meteorite specimen was found on January 11, 2004, near the village of Villalbeto de la Peña, in northern Palencia (Spain). To date, about 4.6 kg of meteorite mass have been recovered during several recovery campaigns. The meteorite is a moderately shocked (S4) L6 ordinary chondrite with a cosmic‐ray‐exposure age of 48 ± 5 Ma. Radioisotope analysis shows that the original body had a mass of 760 ± 150 kg, which is in agreement with the estimated mass obtained from photometric and seismic measurements.  相似文献   

6.
Large Near-Earth-Asteroids have played a role in modifying the character of the surface geology of the Earth over long time scales through impacts. Recent modeling of the disruption of large meteoroids during atmospheric flight has emphasized the dramatic effects that smaller objects may also have on the Earth's surface. However, comparison of these models with observations has not been possible until now. Peekskill is only the fourth meteorite to have been recovered for which detailed and precise data exist on the meteoroid atmospheric trajectory and orbit. Consequently, there are few constraints on the position of meteorites in the solar system before impact on Earth. In this paper, the preliminary analysis based on 4 from all 15 video recordings of the fireball of October 9, 1992 which resulted in the fall of a 12.4 kg ordinary chondrite (H6 monomict breccia) in Peekskill, New York, will be given. Preliminary computations revealed that the Peekskill fireball was an Earth-grazing event, the third such case with precise data available. The body with an initial mass of the order of 10(4) kg was in a pre-collision orbit with a = 1.5 AU, an aphelion of slightly over 2 AU and an inclination of 5 degrees. The no-atmosphere geocentric trajectory would have lead to a perigee of 22 km above the Earth's surface, but the body never reached this point due to tremendous fragmentation and other forms of ablation. The dark flight of the recovered meteorite started from a height of 30 km, when the velocity dropped below 3 km/s, and the body continued 50 km more without ablation, until it hit a parked car in Peekskill, New York with a velocity of about 80 m/s. Our observations are the first video records of a bright fireball and the first motion pictures of a fireball with an associated meteorite fall.  相似文献   

7.
Abstract— The fireball accompanying the Park Forest meteorite fall (L5) was recorded by ground‐based videographers, satellite systems, infrasound, seismic, and acoustic instruments. This meteorite shower produced at least 18 kg of recovered fragments on the ground (Simon et al. 2004). By combining the satellite trajectory solution with precise ground‐based video recording from a single site, we have measured the original entry velocity for the meteoroid to be 19.5 ± 0.3 km/s. The earliest video recording of the fireball was made near the altitude of 82 km. The slope of the trajectory was 29° from the vertical, with a radiant azimuth (astronomical) of 21° and a terminal height measured by infrared satellite systems of 18 km. The meteoroid's orbit has a relatively large semi‐major axis of 2.53 ± 0.19 AU, large aphelion of 4.26 ± 0.38 AU, and low inclination. The fireball reached a peak absolute visual magnitude of ?22, with three major framentation episodes at the altitudes of 37, 29, and 22 km. Acoustic recordings of the fireball airwave suggest that fragmentation was a dominant process in production of sound and that some major fragments from the fireball remained supersonic to heights as low as ?10 km. Seismic and acoustic recordings show evidence of fragmentation at 42, 36, 29, and 17 km. Examination of implied energies/initial masses from all techniques (satellite optical, infrasound, seismic, modeling) leads us to conclude that the most probable initial mass was (11 ± 3) × 103 kg, corresponding to an original energy of ?0.5 kt TNT (2.1 times 1012 J) and a diameter of 1.8 m. These values correspond to an integral bolometric efficiency of 7 ± 2%. Early fragmentation ram pressures of <1 MPa and major fragmentations occurring with ram pressures of 2–5 MPa suggest that meter‐class stony near‐Earth asteroids (NEAs) have tensile strengths more than an order of magnitude lower than have been measured for ordinary chondrites. One implication of this observation is that the rotation period for small, fast‐rotating NEAs is likely to be >30 seconds.  相似文献   

8.
Large Near-Earth-Asteroids have played a role in modifying the character of the surface geology of the Earth over long time scales through impacts. Recent modeling of the disruption of large meteoroids during atmospheric flight has emphasized the dramatic effects that smaller objects may also have on the Earth's surface. However, comparison of these models with observations has not been possible until now. Peekskill is only the fourth meteorite to have been recovered for which detailed and precise data exist on the meteoroid atmospheric trajectory and orbit. Consequently, there are few constraints on the position of meteorites in the solar system before impact on Earth. In this paper, the preliminary analysis based on 4 from all 15 video recordings of the fireball of October 9, 1992 which resulted in the fall of a 12.4 kg ordinary chondrite (H6 monomict breccia) in Peekskill, New York, will be given. Preliminary computations revealed that the Peekskill fireball was an Earth-grazing event, the third such case with precise data available. The body with an initial mass of the order of 104 kg was in a pre-collision orbit with a = 1.5 AU, an aphelion of slightly over 2 AU and an inclination of 5. The no-atmosphere geocentric trajectory would have lead to a perigee of 22 km above the Earth's surface, but the body never reached this point due to tremendous fragmentation and other forms of ablation. The dark flight of the recovered meteorite started from a height of 30 km, when the velocity dropped below 3 km/s, and the body continued 50 km more without ablation, until it hit a parked car in Peekskill, New York with a velocity of about 80 m/s. Our observations are the first video records of a bright fireball and the first motion pictures of a fireball with an associated meteorite fall.  相似文献   

9.
Abstract– We report an analysis of the first instrumentally observed meteorite fall in Australia, which was recorded photographically and photoelectrically by two eastern stations of the Desert Fireball Network (DFN) on July 20, 2007. The meteoroid with an initial mass of 22 kg entered the atmosphere with a low speed of 13.36 km s?1 and began a luminous trajectory at an altitude of 62.83 km. In maximum, it reached ?9.6 absolute magnitude and terminated after a 5.7 s and 64.7 km long flight at an altitude of 29.59 km with a speed of 5.8 km s?1. The angle of the atmospheric trajectory to the Earth’s surface was 30.9°. The first organized search took place in October 2008 and the first meteorite (150 g) was found 97 m southward from the predicted central line at the end of the first day of searching (October 3, 2008). The second stone (174 g) was recovered 39 m northward from the central line, both exactly in the predicted mass limits. During the second expedition in February 2009, a third fragment of 14.9 g was found again very close (~100 m) from the predicted position. Total recovered mass is 339 g. The meteorite was designated Bunburra Rockhole (BR) after a nearby landscape structure. This first DFN sample is an igneous achondrite. Initial petrography indicated that BR was a brecciated eucrite but detailed analyses proved that BR is not a typical eucrite, but an anomalous basaltic meteorite ( Bland et al. 2009 ). BR was delivered from an unusual, Aten type orbit (a < 1 AU) where virtually the entire orbit was contained within Earth’s orbit. BR is the first achondrite fall with a known orbit and it is one of the most precise orbits ever calculated for a meteorite dropping fireball.  相似文献   

10.
The Kri?evci H6 meteorite was recovered on the basis of fireball data obtained by the cameras of the Croatian Meteor Network. The fireball, which occurred on February 4, 2011, 23:20:40 UT, was also observed by meteor cameras in Slovenia and by the Autonomous Fireball Observatory in Martinsberg, Austria, which belongs to the European Fireball Network. Here, we present detailed data on fireball trajectory, velocity, deceleration, light curve, and orbit. We also modeled the atmospheric fragmentation of the meteoroid on the basis of the light curve and deceleration. The initial mass of the meteoroid was between 25–100 kg, most probably about 50 kg. Severe fragmentation occurred at heights of approximately 60 and 31 km, under dynamic pressures of 0.1 and 3 MPa, respectively. The peak absolute magnitude of ?13.7 was reached during the second severe fragmentation event. The recovered 291 g meteorite was probably the only fragment with a terminal mass exceeding 100 g. The orbit had a low inclination of 0.6 degrees, perihelion distance 0.74 AU, and semimajor axis 1.54 AU. Kri?evci can be ranked among the 10 best documented meteorite falls.  相似文献   

11.
Abstract– The Grimsby meteorite (H4–6) fell on September 25, 2009. As of mid‐2010, 13 fragments totaling 215 g have been recovered. Records of the accompanying fireball from the Southern Ontario Meteor Network, including six all‐sky video cameras, a large format CCD, infrasound and radar records, have been used to characterize the trajectory, speed, orbit, and initial mass of the meteoroid. From the four highest quality all‐sky video records, the initial entry velocity was 20.91 ± 0.19 km s?1 while the derived radiant has a local azimuth of 309.40° ± 0.19° and entry angle of 55.20° ± 0.13°. Three major fragmentation episodes are identified at 39, 33, and 30 km height, with corresponding uncertainties of approximately 2 km. Evidence for early fragmentation at heights of approximately 70 km is found in radar data; dynamic pressure of this earliest fragmentation is near 0.1 MPa while the main flare at 39 km occurred under ram pressures of 1.5 MPa. The fireball was luminous to at least 19.7 km altitude and the dynamic mass estimate of the largest remaining fragment at this height is approximately several kilograms. The initial mass is constrained to be <100 kg from infrasound data and ablation modeling, with a most probable mass of 20–50 kg. The preatmospheric orbit is typical of an Apollo asteroid with a likely immediate origin in either the 3:1 or ν6 resonances.  相似文献   

12.
Abstract— The fall of the Puerto Lápice eucrite occurred on May 10, 2007, at 17 h 57 m 30 ± 30 s UTC. Its daylight fireball was witnessed by hundreds of people from Spain, and produced a meteorite fall associated with a large strewn field of fragments. There were no direct pictures of the fireball, but several pictures of the fireball's train were taken from different locations in Spain. Additional theodolite calibrations of visual records were made in order to find the most probable fireball trajectory based on the available data. The shape of the meteorite strewn field was considered as well. Although the orbit of the Puerto Lápice meteoroid could not be computed due to the absence of velocity data, we assumed a likely range of geocentric velocities and computed a range of possible orbits. All solutions show that the body was in an Apollo‐type orbit, with low inclination and perihelion distance just below 1 astronomical unit (AU). This is the first case that an orbit can be discussed for an HED meteorite fall.  相似文献   

13.
A bright fireball (TN920729) of minus-ninth absolute magnitude flew above Dushanbe (Tajikistan) at 22:12 UT on the night of July 29/30, 1992, and was photographed at two observatories (Gissar and Sanglok) of the Academy of Sciences of Tajikistan. The length of the photographed portion of the fireball trajectory and the luminous duration were equal to 40.4 km and 1.98 s, respectively. The coordinates of the radiant, velocity, and orbital elements of the fireball were determined. The fireball was found to belong to the -Capricornids shower. The mass and density of the fireball progenitor were inferred from photometric measurements of the plates and found to be equal to 0.574 kg and 2 g/cm3, respectively.  相似文献   

14.
We propose that the Taurid meteor shower may contain bodies able to survive and be recovered as meteorites. We review the expected properties of meteorite‐producing fireballs, and suggest that end heights below 35 km and terminal speeds below 10 km s?1 are necessary conditions for fireballs expected to produce meteorites. Applying the meteoroid strength index (PE criteria) of Ceplecha and McCrosky (1976) to a suite of 33 photographically recorded Taurid fireballs, we find a large spread in the apparent meteoroid strengths within the stream, including some very strong meteoroids. We also examine in detail the flight behavior of a Taurid fireball (SOMN 101031) and show that it has the potential to be a (small) meteorite‐producing event. Similarly, photographic observations of a bright, potential Taurid fireball recorded in November of 1995 in Spain show that it also had meteorite‐producing characteristics, despite a very high entry velocity (33 km s?1). Finally, we note that the recent Maribo meteorite fall may have had a very high entry velocity (28 km s?1), further suggesting that survival of meteorites at Taurid‐like velocities is possible. Application of a numerical entry model also shows plausible survival of meteorites at Taurid‐like velocities, provided the initial meteoroids are fairly strong and large, both of which are characteristics found in the Taurid stream.  相似文献   

15.
Abstract– The fall of the Berduc meteorite took place on April 7, 2008, at 01 h 02 min 28 s ± 1 s UTC. A daylight fireball was witnessed by hundreds of people from Argentina and Uruguay, and also recorded by an infrasound array in Paraguay. From the available data, the fireball trajectory and radiant have been reconstructed with moderate accuracy. The modeled trajectory was tested to fit the infrasound and strewn field data. From the computed apparent radiant α = 87 ± 2° and δ = ?11 ± 2° and taking into account a range of plausible initial velocities, we obtained a range of orbital solutions. All of them suggest that the progenitor meteoroid originated from the main asteroid belt and followed an orbit of low inclination. Based on petrography, mineral chemistry, magnetic susceptibility, and bulk chemistry, the Berduc meteorite is classified as an L6 ordinary chondrite.  相似文献   

16.
Fireball networks establish the trajectories of meteoritic material passing through Earth's atmosphere, from which they can derive pre‐entry orbits. Triangulated atmospheric trajectory data require different orbit determination methods to those applied to observational data beyond the Earth's sphere of influence, such as telescopic observations of asteroids. Currently, the vast majority of fireball networks determine and publish orbital data using an analytical approach, with little flexibility to include orbital perturbations. Here, we present a novel numerical technique for determining meteoroid orbits from fireball network data and compare it to previously established methods. The re‐entry of the Hayabusa spacecraft, with its known pre‐Earth orbit, provides a unique opportunity to perform this comparison as it was observed by fireball network cameras. As initial sightings of the Hayabusa spacecraft and capsule were made at different altitudes, we are able to quantify the atmosphere's influence on the determined pre‐Earth orbit. Considering these trajectories independently, we found the orbits determined by the novel numerical approach to align closer to JAXA's telemetry in both cases. Using simulations, we determine the atmospheric perturbation to become significant at ~90 km—higher than the first observations of typical meteorite dropping events. Using further simulations, we find the most substantial differences between techniques to occur at both low entry velocities and Moon passing trajectories. These regions of comparative divergence demonstrate the need for perturbation inclusion within the chosen orbit determination algorithm.  相似文献   

17.
Three bright fireballs belonging to the August θ‐Aquillid (ATA) meteor shower were photographed by the Tajikistan fireball network in 2009. Two of them are classified as the meteorite‐dropping fireballs according to the determined parameters of the atmospheric trajectories, velocities, masses, and densities. Detection of the more dense bodies among cometary meteoroids points to a heterogeneous composition of the parent comet, and supports the suggestion that some meteorites might originate in the outer solar system, in the given case from the Jupiter‐family comet reservoir. A search for the stream's parent was undertaken among the near‐Earth asteroids (NEAs); as a result, the asteroid 2004MB6 was identified as a possible progenitor of the ATA meteoroid stream. Investigation of the orbital evolution of the 2004MB6 and the fireball‐producing meteoroid TN170809A showed that both objects have similar secular variations in the orbital elements during 7 kyr. The comet‐like orbit of the 2004MB6 and its association with the ATA shower suppose a cometary origin of the asteroid.  相似文献   

18.
Abstract— Using visual observations that were reported 140 years ago in the Comptes Rendus de l'Académie des Sciences de Paris, we have determined the atmospheric trajectory and the orbit of the Orgueil meteorite, which fell May 14, 1864, near Montauban, France. Despite the intrinsic uncertainty of visual observations, we were able to calculate a reasonably precise atmospheric trajectory and a moderately precise orbit for the Orgueil meteoroid. The atmosphere entry point was ?70 km high and the meteoroid terminal point was ?20 km high. The calculated luminous path was ?150 km with an entry angle of 20°. These characteristics are broadly similar to that of other meteorites for which the trajectory is known. Five out of six orbital parameters for the Orgueil orbit are well constrained. In particular, the perihelion lies inside the Earth's orbit (q ?0.87 AU), as is expected for an Earth‐crossing meteorite, and the orbital plane is close to the ecliptic (i ?0°). The aphelion distance (Q) depends critically on the pre‐atmospheric velocity. From the calculated atmospheric path and the fireball duration, which was reported by seven witnesses, we have estimated the pre‐atmospheric velocity to be larger than 17.8 km/sec, which corresponds to an aphelion distance Q larger than 5.2 AU, the semi‐major axis of Jupiter orbit. These results suggest that Orgueil has an orbit similar to that of Jupiter‐family comets (JFCs), although an Halley‐type comet cannot be excluded. This is at odds with other meteorites that have an asteroidal origin, but it is compatible with 140 years of data‐gathering that has established the very special nature of Orgueil compared to other meteorites. A cometary origin of the Orgueil meteorite does not contradict cosmochemistry data on CI1 chondrites. If CI1 chondrites originate from comets, it implies that comets are much more processed than previously thought and should contain secondary minerals. The forthcoming return of cometary samples by the Stardust mission will provide a unique opportunity to corroborate (or contradict) our hypothesis.  相似文献   

19.
Abstract— Terminal bursts and fragmentations of meteoritic fireballs in the atmosphere may now be accurately located in four dimensions (three spatial + temporal) using seismic arrival times of their acoustic waves recorded by seismometer, camera, microphone, and/or infrasound stations on the ground. A computer program, SUPRACENTER, calculates travel times by ray tracing through realistic atmospheres (that include winds) and locates source positions by minimization of travel time residuals. This is analogous to earthquake hypocenter location in the solid Earth but is done through a variably moving medium. Inclusion of realistic atmospheric ray tracing has removed the need for the simplifying assumption of an isotropic atmosphere or an approximation to account for “wind drift.” This “drift” is on the order of several km when strong, unidirectional winds are present in the atmosphere at the time of a fireball's occurrence. SUPRACENTER‐derived locations of three seismically recorded fireballs: 1) the October 9, 1997 El Paso superbolide; 2) the January 25, 1989 Mt. Adams fireball; and 3) the May 6, 2000 Morávka fireball (with its associated meteorite fall), are consistent with (and, probably, an improvement upon) the locations derived from eyewitness, photographic, and video observations from the respective individual events. If direct acoustic seismic arrivals can be quickly identified for a fireball event, terminal burst locations (and, potentially, trajectory geometry and velocity information) can be quickly derived, aiding any meteorite recovery efforts during the early days after the fall. Potentially, seismic records may yield enough trajectory information to assist in the derivation of orbits for entering projectiles.  相似文献   

20.
We provide the circumstances and details of the fireball observation, search expeditions, recovery, strewn field, and physical characteristics of the Ko?ice meteorite that fell in Slovakia on February 28, 2010. The meteorite was only the 15th case of an observed bolide with a recovered mass and subsequent orbit determination. Despite multiple eyewitness reports of the bolide, only three videos from security cameras in Hungary were used for the strewn field determination and orbit computation. Multiple expeditions of professionals and individual searchers found 218 fragments with total weight of 11.3 kg. The strewn field with the size of 5 × 3 km is characterized with respect to the space distribution of the fragments, their mass and size‐frequency distribution. This work describes a catalog of 78 fragments, mass, size, volume, fusion crust, names of discoverers, geographic location, and time of discovery, which represents the most complex study of a fresh meteorite fall. From the analytical results, we classified the Ko?ice meteorite as an ordinary H5 chondrite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号