首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Abstract– Carbonaceous matter in Stardust samples returned from comet 81P/Wild 2 is observed to contain a wide variety of organic functional chemistry. However, some of this chemical variety may be due to contamination or alteration during particle capture in aerogel. We investigated six carbonaceous Stardust samples that had been previously analyzed and six new samples from Stardust Track 80 using correlated transmission electron microscopy (TEM), X‐ray absorption near‐edge structure spectroscopy (XANES), and secondary ion mass spectroscopy (SIMS). TEM revealed that samples from Track 35 containing abundant aliphatic XANES signatures were predominantly composed of cometary organic matter infilling densified silica aerogel. Aliphatic organic matter from Track 16 was also observed to be soluble in the epoxy embedding medium. The nitrogen‐rich samples in this study (from Track 22 and Track 80) both contained metal oxide nanoparticles, and are likely contaminants. Only two types of cometary organic matter appear to be relatively unaltered during particle capture. These are (1) polyaromatic carbonyl‐containing organic matter, similar to that observed in insoluble organic matter (IOM) from primitive meteorites, interplanetary dust particles (IDPs), and in other carbonaceous Stardust samples, and (2) highly aromatic refractory organic matter, which primarily constitutes nanoglobule‐like features. Anomalous isotopic compositions in some of these samples also confirm their cometary heritage. There also appears to be a significant labile aliphatic component of Wild 2 organic matter, but this material could not be clearly distinguished from carbonaceous contaminants known to be present in the Stardust aerogel collector.  相似文献   

2.
Here, we present the results of a multitechnique study of the bulk properties of insoluble organic material (IOM) from the Tagish Lake meteorite, including four lithologies that have undergone different degrees of aqueous alteration. The IOM C contents of all four lithologies are very uniform and comprise about half the bulk C and N contents of the lithologies. However, the bulk IOM elemental and isotopic compositions vary significantly. In particular, there is a correlated decrease in bulk IOM H/C ratios and δD values with increasing degree of alteration—the IOM in the least altered lithology is intermediate between CM and CR IOM, while that in the more altered lithologies resembles the very aromatic IOM in mildly metamorphosed CV and CO chondrites, and heated CMs. Nuclear magnetic resonance (NMR) spectroscopy, C X‐ray absorption near‐edge (XANES), and Fourier transform infrared (FTIR) spectroscopy confirm and quantitate this transformation from CR‐like, relatively aliphatic IOM functional group chemistry to a highly aromatic one. The transformation is almost certainly thermally driven, and probably occurred under hydrothermal conditions. The lack of a paramagnetic shift in 13C NMR spectra and 1s‐σ* exciton in the C‐XANES spectra, both typically seen in metamorphosed chondrites, shows that the temperatures were lower and/or the timescales were shorter than experienced by even the least metamorphosed type 3 chondrites. Two endmember models were considered to quantitatively account for the changes in IOM functional group chemistry, but the one in which the transformations involved quantitative conversion of aliphatic material to aromatic material was the more successful. It seems likely that similar processes were involved in producing the diversity of IOM compositions and functional group chemistries among CR, CM, and CI chondrites. If correct, CRs experienced the lowest temperatures, while CM and CI chondrites experienced similar more elevated temperatures. This ordering is inconsistent with alteration temperatures based on mineralogy and O isotopes.  相似文献   

3.
Abstract— We report on the molecular analyses of the water‐ and solvent‐soluble organic compounds released from the insoluble organic material (IOM) of the Murray meteorite upon treatment with weight‐equivalent amounts of water and under conditions of elevated temperature and pressure. A varied suite of compounds was identified by gas chromatography‐mass spectrometry (GC‐MS). C3‐C17 alkyl dicarboxylic acids and N‐ and O‐containing hydroaromatic and aromatic compounds were found in the water extracts. The solvent extracts contained N‐, O‐, and S‐containing aromatic compounds, a large number of their isomers and homologs, and a series of polycyclic aromatic hydrocarbons (PAHs) of up to five rings, together with noncondensed aromatic species such as substituted benzenes, biphenyl, and terphenyls as well as their substituted homologs, and hydrated PAHs. Isotopic analyses showed that residue IOMs after hydrothermal treatment had lower deuterium and 15N content than the untreated material (ΔD = ?833‰ and Δ15N = ?24.1) but did not differ from it in 13C composition. The effect of the hydrothermolytic release was recorded in significant differences between the NMR spectra of untreated and residue IOM. A possible relation to common precursors for the dicarboxylic acids found in the IOM and bulk extracts is discussed.  相似文献   

4.
Abstract– An IDP nicknamed Andric, from a stratospheric dust collector targeted to collect dust from comet 55P/Tempel‐Tuttle, contains five distinct presolar silicate and/or oxide grains in 14 ultramicrotome slices analyzed, for an estimated abundance of approximately 700 ppm in this IDP. Three of the grains are 17O‐enriched and probably formed in low‐mass red giant or asymptotic giant branch (AGB) stars; the other two grains exhibit 18O enrichments and may have a supernova origin. Carbon and N isotopic analyses show that Andric also exhibits significant variations in its N isotopic composition, with numerous discrete 15N‐rich hotspots and more diffuse regions that are also isotopically anomalous. Three 15N‐rich hotspots also have statistically significant 13C enrichments. Auger elemental analysis shows that these isotopically anomalous areas consist largely of carbonaceous matter and that the anomalies may be hosted by a variety of components. In addition, there is evidence for dilution of the isotopically heavy components with an isotopically normal endmember; this may have occurred either as a result of extraterrestrial alteration or during atmospheric entry. Isotopically primitive IDPs such as Andric share many characteristics with primitive meteorites such as the CR chondrites, which also contain isotopically anomalous carbonaceous matter and abundant presolar silicate and oxide grains. Although comets are one likely source for the origin of primitive IDPs, the presence of similar characteristics in meteorites thought to come from the asteroid belt suggests that other origins are also possible. Indeed the distinction between cometary and asteroidal sources is somewhat blurred by recent observations of icy comet‐like planetesimals in the outer asteroid belt.  相似文献   

5.
Abstract– The insoluble organic matter (IOM) of an unequilibrated enstatite chondrite Sahara (SAH) 97096 has been investigated using a battery of analytical techniques. As the enstatite chondrites are thought to have formed in a reduced environment at higher temperatures than carbonaceous chondrites, they constitute an interesting comparative material to test the heterogeneities of the IOM in the solar system and to constrain the processes that could affect IOM during solar system evolution. The SAH 97096 IOM is found in situ: as submicrometer grains in the network of fine‐grained matrix occurring mostly around chondrules and as inclusions in metallic nodules, where the carbonaceous matter appears to be more graphitized. IOM in these two settings has very similar δ15N and δ13C; this supports the idea that graphitized inclusions in metal could be formed by metal catalytic graphitization of matrix IOM. A detailed comparison between the IOM extracted from a fresh part and a terrestrially weathered part of SAH 97096 shows the similarity between both IOM samples in spite of the high degree of mineral alteration in the latter. The isolated IOM exhibits a heterogeneous polyaromatic macromolecular structure, sometimes highly graphitized, without any detectable free radicals and deuterium‐heterogeneity and having mean H‐ and N‐isotopic compositions in the range of values observed for carbonaceous chondrites. It contains some submicrometer‐sized areas highly enriched in 15N (δ15N up to 1600‰). These observations reinforce the idea that the IOM found in carbonaceous chondrites is a common component widespread in the solar system. Most of the features of SAH 97096 IOM could be explained by the thermal modification of this main component.  相似文献   

6.
Organic matter (OM) was widespread in the early solar nebula and might have played an important role for the delivery of prebiotic molecules to the early Earth. We investigated the textures, isotopic compositions, and functional chemistries of organic grains in the Renazzo carbonaceous chondrite by combined high spatial resolution techniques (electron microscopy–secondary ion mass spectrometry). Morphologies are complex on a submicrometer scale, and some organics exhibit a distinct texture with alternating layers of OM and minerals. These layered organics are also characterized by heterogeneous 15N isotopic abundances. Functional chemistry investigations of five focused ion beam‐extracted lamellae by electron energy loss spectroscopy reveal a chemical complexity on a nanometer scale. Grains show absorption at the C‐K edge at 285, 286.6, 287, and 288.6 eV due to polyaromatic hydrocarbons, different carbon‐oxygen, and aliphatic bonding environments with varying intensity. The nitrogen K‐edge functional chemistry of three grains is shown to be highly complex, and we see indications of amine (C‐NHx) or amide (CO‐NR2) chemistry as well as possible N‐heterocycles and nitro groups. We also performed low‐loss vibrational spectroscopy with high energy resolution and identified possible D‐ and G‐bands known from Raman spectroscopy and/or absorption from C=C and C‐O stretch modes known from infrared spectroscopy at around 0.17 and 0.2 eV energy loss. The observation of multiglobular layered organic aggregates, heterogeneous 15N‐anomalous compositions, and indication of NHx‐(amine) functional chemistry lends support to recent ideas that 15N‐enriched ammonia (NH3) was a powerful agent to synthesize more complex organics in aqueous asteroidal environments.  相似文献   

7.
Abstract– Insight into the chemical history of an ungrouped type 2 carbonaceous chondrite meteorite, Wisconsin Range (WIS) 91600, is gained through molecular analyses of insoluble organic matter (IOM) using solid‐state 13C nuclear magnetic resonance (NMR) spectroscopy, X‐ray absorption near edge structure spectroscopy (XANES), and pyrolysis‐gas chromatography coupled with mass spectrometry (pyr‐GC/MS), and our previous bulk elemental and isotopic data. The IOM from WIS 91600 exhibits similarities in its abundance and bulk δ15N value with IOM from another ungrouped carbonaceous chondrite Tagish Lake, while it exhibits H/C, δ13C, and δD values that are more similar to IOM from the heated CM, Pecora Escarpment (PCA) 91008. The 13C NMR spectra of IOM of WIS 91600 and Tagish Lake are similar, except for a greater abundance of CHxO species in the latter and sharper carbonyl absorption in the former. Unusual cross‐polarization (CP) dynamics is observed for WIS 91600 that indicate the presence of two physically distinct organic domains, in which the degrees of aromatic condensation are distinctly different. The presence of two different organic domains in WIS 91600 is consistent with its brecciated nature. The formation of more condensed aromatics is the likely result of short duration thermal excursions during impacts. The fact that both WIS 91600 and PCA 91008 were subjected to short duration heating that is distinct from the thermal history of type 3 chondrites is confirmed by Carbon‐XANES. Finally, after being briefly heated (400 °C for 10 s), the pyrolysis behavior of Tagish Lake IOM is similar to that of WIS 91600 and PCA 91008. We conclude that WIS 91600 experienced very moderate, short duration heating at low temperatures (<500 °C) after an episode of aqueous alteration under conditions that were similar to those experienced by Tagish Lake.  相似文献   

8.
Abstract— Insoluble organic matter (IOM) dominates the HF/HCl residue of the Orgueil (CI) carbonaceous chondrite meteorite. The IOM is composed primarily of two C‐rich particle types. The first has a fluffy texture similar to crumpled tissue paper, and the second type occurs as solid or hollow nanospheres. High‐resolution transmission electron microscope (HRTEM) images of the fluffy material show it is poorly ordered, with small, irregularly shaped regions having fringes with 0.34–0.38 nm spacings and locally 0.21 nm cross‐fringes. Nanodiamonds occur in the fluffy material. The rounded C‐rich particles are common in the residue and their HRTEM images show neither fringes nor nanodiamonds. Both types of carbonaceous materials have a high aromatic component, as revealed by electron energy‐loss spectroscopy (EELS), with up to 10 at% substitution by S, N, and O. The average compositions of the fluffy material and nanospheres are C100S1.9N3.7O4.9 and C100S2.4N5.0O3.9, respectively. The structural and chemical heterogeneity of the carbonaceous materials may represent material from multiple sources.  相似文献   

9.
Raman spectroscopy was used to investigate insoluble organic matter (IOM) from a range of chondritic meteorites, and a suite of interplanetary dust particles (IDPs). Three monochromatic excitation wavelengths (473 nm, 514 nm, 632 nm) were applied sequentially to assess variations in meteorite and IDP Raman peak parameters (carbon D and G bands) as a function of excitation wavelength (i.e., dispersion). Greatest dispersion occurs in CVs > OCs > CMs > CRs with type 3 chondrites compared at different excitation wavelengths displaying conformable relationships, in contrast to type 2 chondrites. These findings indicate homogeneity in the structural nature of type 3 chondrite IOM, while organic matter (OM) in type 2 chondrites appears to be inherently more heterogeneous. If type 2 and type 3 chondrite IOM shares a common source, then thermal metamorphism may have a homogenizing effect on the originally more heterogeneous OM. IDP Raman G bands fall on an extension of the trend displayed by chondrite IOM, with all IDPs having Raman parameters indicative of very disordered carbon, with almost no overlap with IOM. The dispersion effect displayed by IDPs is most similar to CMs for the G band, but intermediate between CMs and CRs for the D band. The existence of some overlapping Raman features in the IDPs and IOM indicates that their OM may share a common origin, but the IDPs preserve more pristine OM that may have been further disordered by ion irradiation. H, C, and N isotopic data for the IDPs reveal that the disordered carbon in IDPs corresponds with higher δ15N and lower δ13C.  相似文献   

10.
Insoluble organic matter (IOM) and hydrothermally treated IOM extracted from two carbonaceous chondrites, Murchison and Allende, was studied using sulfur K‐edge XANES (X‐ray absorption near edge structure) and μ‐Raman spectroscopy, with the aim to understand their IOM's sulfur speciation and structural order, and how aqueous alteration or thermal metamorphism may have transformed these materials. We found that the sulfur‐functional group chemistry of both the Murchison IOM and hydrothermally treated IOM samples have a large chemical variability ranging from oxidation states of S?2 to S+6, and exhibit a transformation in their oxidation state after the hydrothermal treatment (HT) to produce thiophenes and thiol compounds. Sulfoxide and sulfite peaks are also present in Murchison. Sulfates considered intrinsic to Murchison are most likely preaccretionary in nature, and not a result of reactions with water at high temperatures on the asteroid parent body. We argue that the reduced sulfides may have formed in the CM parent body, while the thiophenes and thiol compounds are a result of the HT. Micro‐Raman spectra show the presence of aliphatic and aromatic moieties in Murchison's material as observed previously, which exhibits no change after HT. Because the Murchison IOM was modified, as seen by XANES analysis, absence of a change observed using micro‐Raman indicated that although the alkyl carbons of IOM were cleaved, the aromatic network was not largely modified after HT. By contrast, Allende IOM contains primarily disulfide and elemental sulfur, no organic sulfur, and shows no transformation after HT. This nontransformation of Allende IOM after HT would indicate that parent body alteration of sulfide to sulfate is not feasible up to temperatures of 300°C. The reduced sulfur products indicate extreme secondary chemical processing from the precursor compounds in its parent body at temperatures as high as 624°C, as estimated from μ‐Raman D band parameters. The Raman parameters in Allende IOM that was interpreted in terms of amorphous carbon with regions of large clusters of benzene rings, was transformed after the HT to those with fewer benzene rings.  相似文献   

11.
Abstract– Stable hydrogen, carbon, and nitrogen isotopic ratios (δD, δ13C, and δ15N) of organic compounds can reveal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may indicate the most likely of these pathways. We have applied gas chromatography with mass spectrometry and combustion isotope ratio mass spectrometry to measure the compound‐specific C, N, and H stable isotopic ratios of amino acids from seven CM and CR carbonaceous chondrites: CM1/2 Allan Hills (ALH) 83100, CM2 Murchison, CM2 Lewis Cliff (LEW) 90500, CM2 Lonewolf Nunataks (LON) 94101, CR2 Graves Nunataks (GRA) 95229, CR2 Elephant Moraine (EET) 92042, and CR3 Queen Alexandra Range (QUE) 99177. We compare the isotopic compositions of amino acids in these meteorites with predictions of expected isotopic enrichments from potential formation pathways. We observe trends of decreasing δ13C and increasing δD with increasing carbon number in the α‐H, α‐NH2 amino acids that correspond to predictions made for formation via Strecker‐cyanohydrin synthesis. We also observe light δ13C signatures for β‐alanine, which may indicate either formation via Michael addition or via a pathway that forms primarily small, straight‐chain, amine‐terminal amino acids (n‐ω‐amino acids). Higher deuterium enrichments are observed in α‐methyl amino acids, indicating formation of these amino acids or their precursors in cold interstellar or nebular environments. Finally, individual amino acids are more enriched in deuterium in CR chondrites than in CM chondrites, reflecting different parent‐body chemistry.  相似文献   

12.
The Sutter's Mill (SM) meteorite fell in El Dorado County, California, on April 22, 2012. This meteorite is a regolith breccia composed of CM chondrite material and at least one xenolithic phase: oldhamite. The meteorite studied here, SM2 (subsample 5), was one of three meteorites collected before it rained extensively on the debris site, thus preserving the original asteroid regolith mineralogy. Two relatively large (10 μm sized) possible diamond grains were observed in SM2‐5 surrounded by fine‐grained matrix. In the present work, we analyzed a focused ion beam (FIB) milled thin section that transected a region containing these two potential diamond grains as well as the surrounding fine‐grained matrix employing carbon and nitrogen X‐ray absorption near‐edge structure (C‐XANES and N‐XANES) spectroscopy using a scanning transmission X‐ray microscope (STXM) (Beamline 5.3.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory). The STXM analysis revealed that the matrix of SM2‐5 contains C‐rich grains, possibly organic nanoglobules. A single carbonate grain was also detected. The C‐XANES spectrum of the matrix is similar to that of insoluble organic matter (IOM) found in other CM chondrites. However, no significant nitrogen‐bearing functional groups were observed with N‐XANES. One of the possible diamond grains contains a Ca‐bearing inclusion that is not carbonate. C‐XANES features of the diamond‐edges suggest that the diamond might have formed by the CVD process, or in a high‐temperature and ‐pressure environment in the interior of a much larger parent body.  相似文献   

13.
Abstract— Isotopic variations have been reported for many elements in iron meteorites, with distinct N signatures found in the metal and graphite of IAB irons. In this study, a dozen IAB/IIICD iron meteorites (see Table 1 for new classifications) were analyzed by stepwise pyrolysis to resolve nitrogen components. Although isotopic heterogeneity has been presumed to be lost in thermally processed parent objects, the high‐resolution nitrogen isotopic data indicate otherwise. At least one reservoir has a light nitrogen signature, δ15N = ?(74 ± 2)‰, at 900 °C to 1000 °C, with a possible second, even lighter, reservoir in Copiapo (δ15N ≤ ?82‰). These releases are consistent with metal nitride decomposition or low‐temperature metal phase changes. Heavier nitrogen reservoirs are observed in steps ≤700 °C and at 1200 °C to 1400 °C. The latter release has a δ15N signature with a limit of ≥?16‰. Xenon isotopic signatures are sensitive indicators for the presence of inclusions because of the very low abundances of Xe in metal. The combined high‐temperature release shows 131Xe and 129Xe excesses to be consistent with shifts expected for Te(n,γ) reaction in troilite by epithermal neutrons, but there are also possible alterations in the isotopic ratios likely due to extinct 129I and cosmic‐ray spallation. The IAB/IIICD iron data imply that at least one light N component survived the formation processes of iron parent objects which only partially exchanged nitrogen between phases. Preservation of separate N reservoirs conflicts with neither the model of impact‐heating effects for these meteorites nor reported age differences between metal and silicates.  相似文献   

14.
Abstract— Thirteen presolar silicon carbide grains—three of supernova (SN) origin and ten of asymptotic giant branch (AGB) star origin—were examined with time‐of‐flight‐secondary ion mass spectrometry (TOF‐SIMS). The grains had been extracted from two different meteorites—Murchison and Tieschitz—using different acid residue methods. At high lateral resolution of ~300 nm, isotopic and elemental heterogeneities within the micrometer‐sized grains were detected. The trace elemental abundances, when displayed in two‐element correlation plots, of Li, Mg, K, and Ca show a clear distinction between the two different meteoritic sources. The different concentrations might be attributed to differences of the host meteorites and/or of extraction methods whereas the stellar source seems to be less decisive. In one SN grain with 26Mg‐enrichment from extinct 26Al, the acid treatment, as part of the grain separation procedure, affected the Mg/Al ratio in the outer rim and therefore the inferred initial 26Al/27Al ratio. A second SN grain exhibits a lateral heterogeneity in 26Al/27Al, which either is due to residual Al‐rich contamination on the grain surface or to the condensation chemistry in the SN ejecta.  相似文献   

15.
We recorded one‐ and two‐dimensional solid‐state nuclear magnetic resonance spectra of meteoric insoluble organic matter with unprecedented sensitivity and resolution permitting us to reveal unambiguous spectroscopic fingerprints relevant to its molecular and isotopic features. Two‐dimensional 1H‐1H and 1H‐13C correlation experiments have unveiled the spatial proximity between aliphatic and aromatic groups proving a highly branched character of a rigid macromolecular network composed of short aliphatic chains linking together small aromatic units. One‐dimensional 2H and two‐dimensional 1H‐2H correlation spectroscopy delivered evidence of significant reduction in the deuterium enrichment of aromatic species relevant to interstellar processes, proto‐planetary disk chemistry, and to determining the origin of the meteoritic insoluble organic matter. The experimental approach developed in this work opens new perspectives for systematic and nondestructive analysis at the molecular level of meteoritic insoluble organic matter even with a very small amount of sample from some particularly rare chondrites.  相似文献   

16.
Abstract– Coordinated in situ transmission electron microscopy and isotopic measurements of carbonaceous phases in interplanetary dust particles were performed to determine their origins. Five different types of carbonaceous materials were identified based on their morphology and texture, observed by transmission electron microscopy: globular, vesicular, dirty, spongy, and smooth. Flash heating experiments were performed to explore whether some of these morphologies are the result of atmospheric entry processes. Each of these morphologies was found to have isotopically anomalous H and N. Rare C isotopic anomalies were also observed. The isotopic and morphological properties of several of these phases, particularly the organic globules, are remarkably similar to those observed in other extraterrestrial materials including carbonaceous chondrites, comet 81P/Wild 2 particles collected by the Stardust spacecraft, and Antarctic micrometeorites, indicating that they were widespread in the early solar system. The ubiquitous nature and the isotopic anomalies of the nanoglobules and some other morphologies strongly suggest that these are very primitive phases. Given that some of the isotopic anomalies (D and 15N excesses) are indicative of mass fractionation chemical reactions in a very cold environment, and some others (13C and 15N depletions) have other origins, these carbonaceous phases come from different reservoirs. Whatever their origins, these materials probably reflect the first stages of the evolution of solar system organic matter, having originated in the outermost regions of the protosolar disk and/or interstellar cold molecular clouds.  相似文献   

17.
Abstract– Asteroids and their fragments have impacted the Earth for the last 4.5 Gyr. Carbonaceous meteorites are known to contain a wealth of indigenous organic molecules, including amino acids, which suggests that these meteorites could have been an important source of prebiotic organic material during the origins of life on Earth and possibly elsewhere. We report the detection of extraterrestrial amino acids in thermally altered type 3 CV and CO carbonaceous chondrites and ureilites recovered from Antarctica. The amino acid concentrations of the thirteen Antarctic meteorites ranged from 300 to 3200 parts‐per‐billion (ppb), generally much less abundant than in amino acid‐rich CI, CM, and CR carbonaceous chondrites that experienced much lower temperature aqueous alteration on their parent bodies. In contrast to low‐temperature aqueously altered meteorites that show complete structural diversity in amino acids formed predominantly by Strecker–cyanohydrin synthesis, the thermally altered meteorites studied here are dominated by small, straight‐chain, amine terminal (n‐ω‐amino) amino acids that are not consistent with Strecker formation. The carbon isotopic ratios of two extraterrestrial n‐ω‐amino acids measured in one of the CV chondrites (δ13C approximately ?25‰) are consistent with 13C‐depletions observed previously in hydrocarbons produced by Fischer‐Tropsch type reactions. The predominance of n‐ω‐amino acid isomers in thermally altered meteorites hints at cosmochemical mechanisms for the preferential formation and preservation of a small subset of the possible amino acids.  相似文献   

18.
Abstract— A new insight into carbon and hydrogen isotope variations of insoluble organic matter (IOM) is provided from seven CM chondrites, including Murchison and six Antarctic meteorites (Y‐791198, Y‐793321, A‐881280, A‐881334, A‐881458 and B‐7904) as well as Murchison IOM residues after hydrous pyrolysis at 270–330 °C for 72 h. Isotopic compositions of bulk carbon (δ13Cbulk) and hydrogen (δD) of the seven IOMs vary widely, ranging from ?15.1 to ?7.6%0 and +133 to +986%0, respectively. Intramolecular carboxyl carbon (δ13CCOOH) is more enriched in 13C by 7.5. 11%0 than bulk carbon. After hydrous pyrolysis of Murchison IOM at 330 °C, H/C ratio, δ13Cbulk, δ13CCOOH, and δD values decrease by up to 0.31, 3.5%0, 5.5%0, and 961%0, respectively. The O/C ratio increases from 0.22 to 0.46 at 270 °C and to 0.25 at 300 °C, and decreases to 0.10 at 330 °C. δ13Cbulk‐δD cross plot of Murchison IOM and its pyrolysis residues shows an isotopic sequence. Of the six Antarctic IOMs, A‐881280, A‐881458, Y‐791198 and B‐7904 lie on or near the isotopic sequence depending on the degree of hydrous and/or thermal alteration, while A‐881334 and Y‐793321 consist of another distinct isotope group. A δ13Cbulk‐δ13CCOOH cross‐plot of IOMs, including Murchison pyrolysis residues, has a positive correlation between them, implying that the oxidation process to produce carboxyls is similar among all IOMs. These isotope distributions reflect various degree of alteration on the meteorite parent bodies and/or difference in original isotopic compositions before the parent body processes.  相似文献   

19.
Abstract– We have determined the elemental abundances and the isotopic compositions of noble gases in a bulk sample and an HF/HCl residue of the Saratov (L4) chondrite using stepwise heating. The Ar, Kr, and Xe concentrations in the HF/HCl residue are two orders of magnitude higher than those in the bulk sample, while He and Ne concentrations from both are comparable. The residue contains only a portion of the trapped heavy noble gases in Saratov; 40 ± 9% for 36Ar, 58 ± 12% for 84Kr, and 48 ± 10% for 132Xe, respectively. The heavy noble gas elemental pattern in the dissolved fraction is similar to that in the residue but has high release temperatures. Xenon isotopic ratios of the HF/HCl residue indicate that there is no Xe‐HL in Saratov, but Ne isotopic ratios in the HF/HCl residue lie on a straight line connecting the cosmogenic component and a composition between Ne‐Q and Ne‐HL. This implies that the Ne isotopic composition of Q has been changed by incorporating Ne‐HL (Huss et al. 1996) or by being mass fractionated during the thermal metamorphism. However, it is most likely that the Ne‐Q in Saratov is intrinsically different from this component in other meteorites. The evidence of this is a lack of correlation between the isotopic ratio of Ne‐Q and petrologic types of meteorites (Busemann et al. 2000). A neutron capture effect was observed in the Kr isotopes, and this process also affected the 128Xe/132Xe ratio. The 3He and 21Ne exposure ages for the bulk sample are 33 and 35 Ma, respectively.  相似文献   

20.
Insoluble organic matter (IOM) is the major organic component of chondritic meteorites and may be akin to organic materials from comets and interplanetary dust particles (IDPs). Reflectance spectra of IOM in the range 0.35–25 μm are presented as a tool for interpreting organic chemistry from remote measurements of asteroids, comets, IDPs, and other planetary bodies. Absorptions in the IOM spectra were strongly related to elemental H/C (atom) ratio. The aliphatic 3.4 μm absorption in IOM spectra increased linearly in strength with increasing H/C for H/C > 0.4, but was absent at lower H/C values. When meteorite spectra from the Reflectance Experiment Laboratory (RELAB) spectral catalog (n = 85) were reanalyzed at 3.4 μm, this detection limit (H/C > 0.4) persisted. Aromatic absorption features seen in IOM spectra were not observed in the meteorite spectra due to overlapping absorptions. However, the 3.4 μm aliphatic absorption strength for the bulk meteorites was correlated with both H/C of the meteorite's IOM and bulk C (wt%). Gaussian modeling of the 3 μm region provided an additional estimate of bulk C for the meteorites, along with bulk H (wt%), which is related to phyllosilicate abundance. These relationships lay the foundation for determining organic and phyllosilicate abundances from reflectance spectra. Both the full IOM spectra and the spectral parameters discussed here will aid in the interpretation of data from asteroid missions (e.g., OSIRIS‐REx, Hayabusa2), and may be able to place unknown spectral samples within the context of the meteorite collection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号