首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A euphotic zone seems to exist at about 1 cm subsurface in the Martian epilith. At this depth visible light is still intense enough to be utilized by conceivable photosynthetic organisms; but the germicidal ultraviolet intensities at the Martian surface have been reduced to values manageable by terrestrial life. Such euphotic zone organisms would experience moderately high Martian temperatures at equatorial latitudes and can be dispersed readily during global dust stroms. During such storms the Martian euphotic zone may reach the surface. The aerosol content of the Martian atmosphere can be monitored by multiband single line scans of the sun at large zenith angles by the Viking lander camera; and the postulated euphotic zone organisms can be searched for with the Viking lander sample arm and biology experiments.  相似文献   

2.
The Phoenix Lander landed on Mars on 25 May 2008. It has instruments on board to explore the geology and climate of subpolar Mars and to explore if life ever arose on Mars. Although the Phoenix mission is not a life detection mission per se, it will look for the presence of organic compounds and other evidence to support or discredit the notion of past or present life.The possibility of extant life on Mars has been raised by a reinterpretation of the Viking biology experiments [Houtkooper, J. M., Schulze-Makuch, D., 2007. A possible biogenic origin for hydrogen peroxide on Mars: the Viking results reinterpreted. International Journal of Astrobiology 6, 147-152]. The results of these experiments are in accordance with life based on a mixture of water and hydrogen peroxide instead of water. The near-surface conditions on Mars would give an evolutionary advantage to organisms employing a mixture of H2O2 and H2O in their intracellular fluid: the mixture has a low freezing point, is hygroscopic and provides a source of oxygen. The H2O2-H2O hypothesis also explains the Viking results in a logically consistent way. With regard to its compatibility with cellular contents, H2O2 is used for a variety of purposes in terran biochemistry. The ability of the anticipated organisms to withstand low temperatures and the relatively high water vapor content of the atmosphere in the Martian arctic, means that Phoenix will land in an area not inimical to H2O2-H2O-based life. Phoenix has a suite of instruments which may be able to detect the signatures of such putative organisms.  相似文献   

3.
Stephen D. Wall 《Icarus》1981,47(2):173-183
A thin light-colored ground covering appeared on the surface of Mars near the Viking 2 lander from Ls = 230° to Ls = 16°, a total of 249 Mars days, during the lander's first winter on the surface. This paper presents a reduction of applicable lander imagery during the period. Imaging sequences, relative surface albedo, spectral reflectance estimates, and limited photometric data are presented and compared with previous laboratory measurements. Photometric data are best fit by an average Minnaert k = 1.1 (blue), k = 1.0 (green), and k = 0.95 (red). Appearance and disappearance rates, spectral reflectance, and photometric data all tend to confirm an earlier proposal that the covering was a combination of H2O and CO2, which fell already condensed onto dust particles brought northward by the season's first major dust storm. Under this assumption, the covering thickness is estimated to be between 0.5 and a few millimeters.  相似文献   

4.
Mirages on Mars     
The possibility of observing mirages on Mars from the Viking lander cameras is examined. A simple model for the production of both inferior and superior mirages is developed. Assuming the atmospheric index of refraction to be a linear function of density (i.e., temperature), ray curvatures are calculated through layers of large, expected thermal gradient.Assuming the Martian morning inversions of Gierasch and Goody (1968), calculations of ray curvature show the superior mirage to be an unlikely occurrence on Mars since the downward curvature of the ray through the inversion layer is less than the downward curvature of the planet. In order to examine the nature of inferior mirages we select a reasonable expression for temperature profile in the surface layer fitted to the midafternoon, midlatitude summer results of Gierasch and Goody. Integration of the expression for ray curvature yields a relation for the minimum distance between the lander cameras and an inferior mirage as a function of the surface superadiabatic lapse rate. Such calculations indicate that the Viking lander cameras will record inferior mirages at horizontal distances of a kilometer or so from the lander. Given the appearance of an inferior mirage at a measured minimum distance from the observer it should be a simple matter to calculate the corresponding mean temperature lapse rate at the surface.  相似文献   

5.
A series of calculated thermal histories of Mars is presented, and their possible relation to surface tectonic history is discussed. The models include convective heat transport through an empirical approximation, and heating by radioactivity and core segregation. Initial temperature, Ti, and the timing and duration of core segregation are treated as free parameters. Ti is the main determinant of Martian thermal evolution: as it is varied from 20 to 100% of the present mean temperature, the maximum in surface heat flux moves from very recent to very early in Martian history. For the latter cases, the details of core segregation control the detailed timing of a peak in the thermal flux that exceeded 100 mW/m2. It is suggested that the early disruption of cratered terrain crust in the northern hemisphere and subsequent volcanic resurfacing may have been related to core segregation. This would be consistent with a scenario in which an early period of core segregation generated a marked peak in the thermal flux that may have lead to extensivev partial melting and volcanism. This scenario would require Mars to have had an initial mean temperature comparable to the present value.  相似文献   

6.
Joel S. Levine 《Icarus》1976,28(2):165-169
The presence of 28% argon on Mars as calculated by Levine and Riegler and indirectly inferred from Soviet Mars-6 lander data has important implications for the outgassing history of H2O, CO2, and N2 on Mars. Even if the terrestrial volatile outgassing ratio is only approximately valid for Mars, then large quantities of H2O [of the order of 105 gcm?2 (about 108 more H2O than is currently present in the Martian atmosphere)] and about 104 gcm?2 of CO2 (about 103 times more CO2 than found at present in the Martian atmosphere) and some 450 gcm?2 of N2 may have outgassed over the history of Mars.  相似文献   

7.
The Gas Exchange Experiment of the Viking mission accepts a sample of Martian soil, incubates this soil with nutrient medium, and periodically samples the enclosed atmosphere over this soil for the gases H2, N2, O2, CH4, Kr, and CO2. These gases are analyzed by an automated gas chromatograph, and the data are transmitted to Earth. The design of the experiment and the qualitative and quantitative changes, if any, of gas composition should allow conclusions to be made on the presence of life on Mars. Data and theory substantiating this approach are presented.  相似文献   

8.
A location of the Viking 1 Lander on the surface of Mars has been determined by correlating topographic features in the lander pictures with similar features in the Viking orbiter pictures. Radio tracking data narrowed the area of search for correlating orbiter and lander features and an area was found on the orbiter pictures in which there is good agreement with topographic features on the lander pictures. This location, when plotted on the 1:250,000 scale photomosaic of the Yorktown Region of Mars (U.S. Geological Survey, 1977) is at 22.487°N latitude and 48.041°W longitude.  相似文献   

9.
Surface materials exposed throughout the equatorial region of Mars have been classified and mapped on the basis of spectral reflectance properties determined by the Viking II Orbiter vidicon cameras. Frames acquired at each of three wavelengths (0.45 ± 0.03 μm, 0.53 ± 0.05 μm, and 0.59 ± 0.05 μm) during the approach of Viking Orbiter II in Martian summer (Ls = 105°) were mosaicked by computer. The mosaics cover latitudes 30°N to 63°S for 360° of longitude and have resolutions between 10 and 20 km per line pair. Image processing included Mercator transformation and removal of an average Martian photometric function to produce albedo maps at three wavelengths. The classical dark region between the equator and ~30°S in the Martian highlands is composed of two units: (i) and ancient unit consisting of topographic highs (ridges, crater rims, and rugged plateaus riddled with small dendritic channels) which is among the reddest on the planet (0.59/0.45 μm ? 3); and (ii) intermediate age, smooth, intercrater volcanic plains displaying numerous mare ridges which are among the least red on Mars (0.59/0.45 μm ? 2). The relatively young shield volcanoes are, like the oldest unit, dark and very red. Two probable eolian deposits are recognized in the intermediate and high albedo regions. The stratigraphically lower unit is intermediate in both color (0.59/ 0.45 μm ? 2.5) and albedo. The upper unit has the highest albedo, is very red (0.59/0.45 μm ? 3), and is apparently the major constituent of the annual dust storms as its areal extent changes from year to year. The south polar ice cap and condensate clouds dominate the southernmost part of the mosaics.  相似文献   

10.
《Icarus》1987,70(1):153-161
Viking XRF analyses of the Martian regolith are compared with typical igneous rocks of the Earth, the Moon, the eucrite parent asteroid, and especially the shergottites, nakhlites, and Chassigny (SNC) meteorites, which are suspected to be basalts and mafic cumulates from Mars. A striking feature of the Martian regolith, compared to igneous rocks with similar molar (Mg + Fe)/Si ratios, is its extraordinarily low Ca/Si ratio. The regolith's low Ca/Si ratio is probably not a result of simple mixing (isochemical weathering) of SNC-like rocks with other igneous rocks, unless the regolith contains a large component of rock with an improbable combination of extremely low Ca/Si and (Mg + Fe)/Si, and yet low K2O and Zr. Several other models might conceivably account for the low Ca/Si ratio, but I suggest that most of the “missing” Ca was removed from the regolith as Ca-carbonate. Formation of a mass of carbonate equivalent to a global shell 20 m thick would suffice to remove 1000 mbar of CO2 from the Martian atmosphere. Thus, the peculiar Ca/Si ratio of the Martian regolith tends to support the hypothesis that the climate of Mars was once far warmer and wetter than it is today.  相似文献   

11.
Terrestrial and Martian atmospheres are both characterised by a large variety of mesoscale meteorological events, occurring at horizontal scales of hundreds of kilometres and below. Available measurements from space exploration and recently developed high-resolution numerical tools have given insights into Martian mesoscale phenomena, as well as similarities and differences with their terrestrial counterparts. The remarkable intensity of Martian mesoscale events compared to terrestrial phenomena mainly results from low density and strong radiative control. This is exemplified in the present paper by discussing two mesoscale phenomena encountered in the lowest atmospheric levels of both planets with notable differences: nighttime katabatic winds (drainage flow down sloping terrains) and daytime boundary layer convection (vertical growth of mixed layer over heated surfaces). While observations of katabatic events are difficult on Earth, except over vast ice sheets, intense clear-cut downslope circulations are expected to be widespread on Mars. Convective motions in the daytime Martian boundary layer are primarily driven by radiative contributions, usually negligible on Earth where sensible heat flux dominates, and exhibit turbulent variances one order of magnitude larger. Martian maximum heat fluxes are not attained close to the surface as on Earth but a few hundreds of metres above, which implies generalised definitions for mixing layer scales such as vertical velocity w?. Measurements on Mars of winds in uneven topographical areas and of heat fluxes over flat terrains could be useful to assess general principles of mesoscale meteorology applicable to both terrestrial and Martian environments.  相似文献   

12.
The thermo-mechanical properties of planetary surface and subsurface layers control to a high extent in which way a body interacts with its environment, in particular how it responds to solar irradiation and how it interacts with a potentially existing atmosphere. Furthermore, if the natural temperature profile over a certain depth can be measured in situ, this gives important information about the heat flux from the interior and thus about the thermal evolution of the body. Therefore, in most of the recent and planned planetary lander missions experiment packages for determining thermo-mechanical properties are part of the payload. Examples are the experiment MUPUS on Rosetta's comet lander Philae, the TECP instrument aboard NASA's Mars polar lander Phoenix, and the mole-type instrument HP3 currently developed for use on upcoming lunar and Mars missions. In this review we describe several methods applied for measuring thermal conductivity and heat flux and discuss the particular difficulties faced when these properties have to be measured in a low pressure and low temperature environment. We point out the abilities and disadvantages of the different instruments and outline the evaluation procedures necessary to extract reliable thermal conductivity and heat flux data from in situ measurements.  相似文献   

13.
T.R. McGetchin  J.R. Smith 《Icarus》1978,34(3):512-536
The density of the Martian mantle is estimated to be about 3.55 g/cm3 (Reasenberg, 1977). Model mineral assemblages for the Martian mantle (at 30 kbar) were calculated using a modified CIPW norm scheme by adding FeO to model terrestrial mantle compositions. The density of the resulting mineral assemblages vary with increasing FeO content. With pyrolite starting compositions for the terrestrial mantle, the resulting model Martian mantle with density of 3.55 g/cm3 is not garnet-lherzolite like the Earth; rather it is an assemblage properly called oxide-garnet wehrlite: oxide (periclase-wüstite) 2%; garnet 11%; olivine 73%; clinopyroxene 12%; with no orthopyroxene. Partial melting of such an assemblage wouldyield iron-rich, ultrabasic lavas, with extremely low viscosities. Specifically, model partial melts, assuming production from the quaternary eutectic (inferred to be near: op7 g42 cpx43 ox8) yields an ultrabasic (SiO2, 41 to 44%) picritic alkali-basaltic melt (norm composition ne 2.5, plag 32, or 2.4, di 20, ol 37, mt 4.4 and ilm, tr), with a computed viscosity of about 12 P at 1200°C. This model for the composition of the Martian surface lavas (derived from geophysical data and petrologic arguments) is in remarkable agreement with a recently published model by Maderazzo and Huguenin (1977) (derived from reflection spectroscopy, experimental and theoretical models for weathering in the Martian environment). The result also appears to be consistent with recent interpretations (Rasool and Le Sergeant, 1977) of Viking atmospheric chemistry results, namely that the Martian crust is potassium poor. There are a number of geological implications which follow, including (1) superfluid lavas may account for some flood and erosional features observed on Mars; (2) the XRF inorganic chemistry experiment on Vikings 1 and 2 (Baird, 1976) indeed may be measuring compositions approaching primary lavas, contrary to current interpretations which favor a rather mature (weathered) soil; (3) ultrabasic (ferrokimberlitic) ash might be a major constituent of the Martian soil, especially if cosmological models concerning the incorporation of a much volatile material within the early accreting Mars are correct—a matter of current debate; (4) a number of mineral assemblages not previously considered are possible in the Martian mantle depending principally on the activity of volatile substances, (S, O, C, H); it is possible that some very unusual magmas are produced on partial melting; and (5) some ferro-granite melts might be produced by liquid immiscibility.  相似文献   

14.
The paper contains the data on the thermal and physical characteristic of the surface regolith of the Martian satellite Phobos obtained from the spaceborne remote sensing (with the Mariner 9, Viking, and Mars Global Surveyor orbiters and the Phobos-2 spacecraft) and the results of the numerical modeling of the thermal regime in the surface regolith (on diurnal and seasonal scales) performed for the prospective landing site in the Lagado Planitia region located in the anti-Martian hemisphere of Phobos.  相似文献   

15.
It has been reported by several groups that methane in the Martian atmosphere is both spatially and temporally variable. Gough et al. (2010) suggested that temperature dependent, reversible physical adsorption of methane onto Martian soils could explain this variability. However, it is also useful to consider if there might be chemical destruction of methane (and compensating sources) operating on seasonal time scales. The lifetime of Martian methane due to known chemical loss processes is long (on the order of hundreds of years). However, observations constrain the lifetime to be 4 years or less, and general circulation models suggest methane destruction must occur even faster (<1 year) to cause the reported variability and rapid disappearance. The Martian surface is known to be highly oxidizing based on the Viking Labeled Release experiments in which organic compounds were quickly oxidized by samples of the regolith. Here we test if simulated Martian soil is also oxidizing towards methane to determine if this is a relevant loss pathway for Martian methane. We find that although two of the analog surfaces studied, TiO2·H2O2 and JSC-Mars-1 with H2O2, were able to oxidize the complex organic compounds (sugars and amino acids) used in the Viking Labeled Release experiments, these analogs were unable to oxidize methane to carbon dioxide within a 72 h experiment. Sodium and magnesium perchlorate, salts that were recently discovered at the Phoenix landing site and are potential strong oxidants, were not observed to directly oxidize either the organic solution or methane. The upper limit reaction coefficient, α, was found to be <4×10?17 for methane loss on TiO2·H2O2 and <2×10?17 for methane loss on JSC-Mars-1 with H2O2. Unless the depth of soil on Mars that contains H2O2 is very deep (thicker than 500 m), the lifetime of methane with respect to heterogeneous oxidation by H2O2 is probably greater than 4 years. Therefore, reaction of methane with H2O2 on Martian soils does not appear to be a significant methane sink, and would not destroy methane rapidly enough to cause the reported atmospheric methane variability.  相似文献   

16.
Gerald G. Schaber 《Icarus》1980,42(2):159-184
High-resolution Viking Orbiter images (10 to 15 m/pixel) contain significant information on Martian surface roughness at 25- to 100-m lateral scales, whereas Earth-based radar observations of Mars are sensitive to roughness at lateral scales of 1 to 30 m, or more. High-rms slopes predicted for the Tharsis-Memnonia-Amazonis volcanic plains from extremely weak radar returns (low peak radar cross section) are qualitatively confirmed by the Viking image data. Large-scale, curvilinear (but parallel) ridges on lava flows in the Memnonia Fossae region are interpreted as innate flow morphology caused by compressional foldover of moving lava sheets of possible rhyolite-dacite composition. The presence or absence of a recent mantle of fine-grained eolian material on the volcanic surfaces studied was determined by the visibility of fresh impact craters with diameters less than 50 m. Lava flows south and west of Arsia Mons, and within the large region of low thermal inertia centered on Tharsis Montes (H. H. Kieffer et al., 1977, J. Geophys. Res.82, 4249–4291), were found to possess such a recent mantle. At predawn residual temperatures ≥ ?10K (south boundary of this low-temperature region), lava flows are shown to have relatively old eolian mantles. Lava flows with surfaces modified by eolian erosion and deposition occur west-northwest of Apollinaris Patera at the border of the cratered equatorial uplands and southern Elysium Planitia. Nearby yardangs, for which radar observations indicate very high-rms slopes, are similar to terrestrial features of similar origin.  相似文献   

17.
Ground-based observations of the occultation of ? Gem by Mars on April 8, 1976 have been reduced in the manner of French et al. [Icarus 33, 186–202 (1978)] to yield the scale height and temperature profiles of the Martian atmosphere for number densities between 1013 and 1015 cm?3. The deduced variations in temperature are remarkably similar to those obtained by Elliot et al. [Astrophys. J.217, 661–679 (1977)] and to the in situ measurements from the Viking landers.  相似文献   

18.
Throughout the northern equatorial region of Mars, extensive areas have been uniformly stripped, roughly to a constant depth. These terrains vary widely in their relative ages. A model is described here to explain this phenomenon as reflecting the vertical distribution of H2O liquid and ice in the crust. Under present conditions the Martian equatorial regions are stratified in terms of the stability of water ice and liquid water. This arises because the temperature of the upper 1 or 2 km is below the melting point of ice and liquid is stable only at greater depth. It is suggested here that during planetary outgassing earlier in Martian history H2O was injected into the upper few kilometers of the crust by subsurface and surface volcanic eruption and lateral migration of the liquid and vapor. As a result, a discontinuity in the physical state of materials developed in the Martian crust coincident with the depth of H2O liquid-ice phase boundary. Material above the boundary remained pristine; material below underwent diagenetic alteration and cementation. Subsequently, sections of the ice-laden zone were erosionally stripped by processes including eolian deflation, gravitational slump and collapse, and fluvial transport due to geothermal heating and melting of the ice. The youngest plains which display this uniform stripping may provide a minimum stratigraphic age for the major period of outgassing of the planet. Viking results suggest that the total amount of H2O outgassed is less than half that required to fill the ice layer, hence any residual liquid eventually found itself in the upper permafrost zone or stored in the polar regions. Erosion stopped at the old liquid-ice interface due to increased resistance of subjacent material and/or because melting of ice was required to mobilize the debris. Water ice may remain in uneroded regions, the overburden of debris preventing its escape to the atmosphere. Numerous morphological examples shown in Viking and Mariner 9 images suggest interaction of impact, volcanic, and gravitational processes with the ice-laden layer. Finally, volcanic eruptions into ice produces a highly oxidized friable amorphous rock, palagonite. Based on spectral reflectance properties, these materials may provide the best analog to Martian surface materials. They are easily eroded, providing vast amounts of eolian debris, and have been suggested (Toulmin et al., 1977) as possible source rocks for the materials observed at the Viking landing sites.  相似文献   

19.
We present the results of extensive numerical modeling of the Martian interior. Yoder et al. in 2003 reported a mean moment of inertia of Mars that was somewhat smaller than the previously used value and the Love number k2 obtained from observations of solar tides on Mars. These values of k2 and the mean moment of inertia impose a strong new constraint on the model of the planet. The models of the Martian interior are elastic, while k2 contains both elastic and inelastic components. We thoroughly examined the problem of partitioning the Love number k2 into elastic and inelastic components. The information necessary to construct models of the planet (observation data, choice of a chemical model, and the cosmogonic aspect of the problem) are discussed in the introduction. The model of the planet comprises four submodels—a model of the outer porous layer, a model of the consolidated crust, a model of the silicate mantle, and a core model. We estimated the possible content of hydrogen in the core of Mars. The following parameters were varied while constructing the models: the ferric number of the mantle (Fe#) and the sulfur and hydrogen content in the core. We used experimental data concerning the pressure and temperature dependence of elastic properties of minerals and the information about the behavior of Fe(γ-Fe ), FeS, FeH, and their mixtures at high P and T. The model density, pressure, temperature, and compressional and shear velocities are given as functions of the planetary radius. The trial model M13 has the following parameters: Fe#=0.20; 14 wt % of sulfur in the core; 50 mol % of hydrogen in the core; the core mass is 20.9 wt %; the core radius is 1699 km; the pressure at the mantle-core boundary is 20.4 GPa; the crust thickness is 50 km; Fe is 25.6 wt %; the Fe/Si weight ratio is 1.58, and there is no perovskite layer. The model gives a radius of the Martian core within 1600–1820 km while ≥30 mol % of hydrogen is incorporated into the core. When the inelasticity of the Martian interior is taken into account, the Love number k2 increases by several thousandths; therefore, the model radius of the planetary core increases as well. The prognostic value of the Chandler period of Mars is 199.5 days, including one day due to inelasticity. Finally, we calculated parameters of the equilibrium figure of Mars for the M13 model: J 2 0 = 1.82 × 10?3, J 4 0 = ?7.79 × 10?6, e c-m D = 1/242.3 (the dynamical flattening of the core-mantle boundary).  相似文献   

20.
An isothermal reservoir of carbon dioxide in gaseous contact with the Martian atmosphere would reduce the amplitude and advance the phase of global atmospheric pressure fluctuations caused by seasonal growth and decline of polar CO2 frost caps. Adsorbed carbon dioxide in the upper ~10 m of Martian regolith is sufficient to buffer the present atmosphere on a seasonal basis. Available observations and related polar cap models do not confirm or refute the operation of such a mechanism. Implications for the amplitude and phase of seasonal pressure fluctuations are subject to direct test by the upcoming Viking mission to Mars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号