首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The 26 km diameter Nördlinger Ries is a complex impact structure with a ring structure that resembles a peak ring. A first research drilling through this “inner crystalline ring” of the Ries was performed at the Erbisberg hill (SW Ries) to better understand the internal structure and lithology of this feature, and possibly reveal impact‐induced hydrothermal alteration. The drill core intersected the slope of a 22 m thick postimpact travertine mound, before entering 42 m of blocks and breccias of crystalline rocks excavated from the Variscan basement at >500 m depth. Weakly shocked gneiss blocks that show that shock pressure did not exceed 5 GPa occur above polymict lithic breccias of shock stage Ia (10–20 GPa), with planar fractures and planar deformation features (PDFs) in quartz. Only a narrow zone at 49.20–50.00 m core depth exhibits strong mosaicism in feldspar and {102} PDFs in quartz, which are indicative of shock stage Ib (20–35 GPa). Finally, 2 m of brecciated Keuper sediments at the base of the section point to an inverse layering of strata. While reverse grading of clast sizes in lithic breccias and gneiss blocks is consistent with lateral transport, the absence of diaplectic glass and melt products argues against dynamic overthrusting of material from a collapsing central peak, as seen in the much larger Chicxulub structure. Indeed, weakly shocked gneiss blocks are rather of local provenance (i.e., the transient crater wall), whereas moderately shocked polymict lithic breccias with geochemical composition and 87Sr/86Sr signature similar to Ries suevite were derived from a position closer to the impact center. Thus, the inner ring of the Ries is formed by moderately shocked polymict lithic breccias likely injected into the transient crater wall during the excavation stage and weakly shocked gneiss blocks of the collapsing transient crater wall that were emplaced during the modification stage. While the presence of an overturned flap is not evident from the Erbisberg drilling, a survey of all drillings at or near the inner ring point to inverted strata throughout its outer limb. Whether the central ring of the Ries represents remains of a collapsed central peak remains to be shown. Postimpact hydrothermal alteration along the Erbisberg section comprises chloritization, sulfide veinlets, and strong carbonatization. In addition, a narrow zone in the lower parts of the polymict lithic breccia sequence shows a positive Eu anomaly in its carbonate phase. The surface expression of this hydrothermal activity, i.e., the travertine mound, comprises subaerial as well as subaquatic growth phases. Intercalated lake sediments equivalent to the early parts of the evolution of the central crater basin succession confirm a persistent impact‐generated hydrothermal activity, although for less time than previously suggested.  相似文献   

2.
The ~15 Ma, 26 km diameter Ries impact structure in south‐central Germany was one of the first terrestrial impact structures where evidence of impact‐associated hydrothermal alteration was recognized. Previous studies suggested that pervasive, high‐temperature hydrothermal activity was restricted to the area within the “inner ring” (i.e., the crater‐fill impactite units). Here we present mineralogical evidence for localized hydrothermal activity in the ejecta beyond the crater rim in two previously unstudied settings: a pervasively altered lens of suevite ejecta directly overlying the Bunte Breccia at the Aumühle quarry; and suevite ejecta at depth overlain by ~20 m of lacustrine sediments sampled by the Wörnitzostheim 1965 drill core. A comprehensive set of X‐ray diffraction analyses indicates five distinct alteration regimes (1) surficial ambient weathering characterized by smectite and a minor illitic component; (2) locally restricted hydrothermal activity characterized by an illitic component and minor smectite; (3) hydrothermal activity at depth characterized by smectite, a minor illitic component, and calcite; (4) hydrothermal activity at depth characterized by smectite, a minor illitic component, calcite, zeolites, and clinochlore; and (5) pervasive hydrothermal activity at depth characterized by smectite, a minor illitic component, and minor clinochlore. These data spatially extend the Ries postimpact hydrothermal system suggesting a much more extensive, complex, and dynamic system than previously thought. Constraining the mineralogical alteration regimes at the Ries impact structure may also further our understanding of impact‐associated phyllosilicate formation on Mars with implications for climate models and habitability.  相似文献   

3.
In situ U‐Pb measurements on zircons of the Ries impact crater are presented for three samples from the quarry at Polsingen. The U‐Pb data of most zircons plot along a discordia line, leading to an upper intercept of Carboniferous age (331 ± 32 Ma [2σ]). Four zircons define a concordia age of 313.2 ± 4.4 Ma (2σ). This age most probably represents the age of a granite from the basement target rocks. From granular textured zircon grains (including baddeleyite and anatase/Fe‐rich phases, first identified in the Ries crater), most probably recrystallized after impact (13 analyses, 4 grains), a concordia age of 14.89 ± 0.34 Ma (2σ) and an error weighted mean 206Pb*/238U age of Ma 14.63 ± 0.43 (2σ) is derived. Including the youngest concordant ages of five porous textured zircon grains (24 spot analyses), a concordia age of 14.75 ± 0.22 Ma (2σ) and a mean 206Pb*/238U age of 14.71 ± 0.26 Ma (2σ) can be calculated. These results are consistent with previously published 40Ar/39Ar ages of impact glasses and feldspar. Our results demonstrate that even for relatively young impact craters, reliable U‐Pb ages can be obtained using in situ zircon dating by SIMS. Frequently the texture of impact shocked zircon grains is explained by decomposition at high temperatures and recrystallization to a granular texture. This is most probably the case for the observed granular zircon grains having baddeleyite/anatase/Fe‐rich phases. We also observe non‐baddeleyite/anatase/Fe‐rich phase bearing zircons. For these domains, reset to crater age is more frequently for high U,Th contents. We tentatively explain the higher susceptibility to impact resetting of high U,Th domains by enhanced Pb loss and mobilization due to higher diffusivity within former metamict domains that were impact metamorphosed more easily into porous as well as granular textures during decomposition and recrystallization, possibly supported by Pb loss during postimpact cooling and/or hydrothermal activity.  相似文献   

4.
We present the results of numerical modeling of the formation of the Ries crater utilizing the two hydrocodes SOVA and iSALE. These standard models allow us to reproduce crater shape, size, and morphology, and composition and extension of the continuous ejecta blanket. Some of these results cannot, however, be readily reconciled with observations: the impact plume above the crater consists mainly of molten and vaporized sedimentary rocks, containing very little material in comparison with the ejecta curtain; at the end of the modification stage, the crater floor is covered by a thick layer of impact melt with a total volume of 6–11 km3; the thickness of true fallback material from the plume inside the crater does not exceed a couple of meters; ejecta from all stratigraphic units of the target are transported ballistically; no separation of sedimentary and crystalline rocks—as observed between suevites and Bunte Breccia at Ries—is noted. We also present numerical results quantifying the existing geological hypotheses of Ries ejecta emplacement from an impact plume, by melt flow, or by a pyroclastic density current. The results show that none of these mechanisms is consistent with physical constraints and/or observations. Finally, we suggest a new hypothesis of suevite formation and emplacement by postimpact interaction of hot impact melt with water or volatile‐rich sedimentary rocks.  相似文献   

5.
Abstract– We present a case modeling study of impact crater formation in H2O‐bearing targets. The main goal of this work was to investigate the postimpact thermal state of the rock layers modified in the formation of hypervelocity impact craters. We present model results for a target consisting of a mixture of H2O‐ice and rock, assuming an ice/water content variable with depth. Our model results, combined with results from previous work using dry targets, indicate that for craters larger than about 30 km in diameter, the onset of postimpact hydrothermal circulation is characterized by two stages: first, the formation of a mostly dry, hot central uplift followed by water beginning to flow in and circulate through the initially dry and hot uplifted crustal rocks. The postimpact thermal field in the periphery of the crater is dependent on crater size: in midsize craters, 30–50 km in diameter, crater walls are not strongly heated in the impact event, and even though ice present in the rock may initially be heated enough to melt, overall temperatures in the rock remain below melting, undermining the development of a crater‐wide hydrothermal circulation. In large craters (with diameters more than 100 km or so), the region underneath the crater floor and walls is heated well above the melting point of ice, thus facilitating the onset of an extended hydrothermal circulation. These results provide preliminary constraints in characterizing the many water‐related features, both morphologic and spectroscopic, that high‐resolution images of Mars are now detecting within many Martian craters.  相似文献   

6.
Several hydrated silicate deposits on Mars are observed within craters and are interpreted as excavated Noachian material. Toro crater (71.8°E, 17.0°N), located on the northern edge of the Syrtis Major Volcanic Plains, shows spectral and morphologic evidence of impact-induced hydrothermal activity. Spectroscopic observations were used to identify extensive hydrated silicate deposits, including prehnite, chlorites, smectites, and opaline material, a suite of phases that frequently results from hydrothermal alteration in terrestrial craters and also expected on Mars from geochemical modeling of hydrothermal environments. When combined with altimetry and high-resolution imaging data, these deposits appear associated predominantly with the central uplift and with portions of the northern part of the crater floor. Detailed geologic mapping of these deposits reveals geomorphic features that are consistent with hydrothermal activity that followed the impact event, including vent-like and conical mound structures, and a complex network of tectonic structures caused by fluid interactions such as fractures and joints. The crater age has been calculated from the cumulative crater size-frequency distributions and is found to be Early Hesperian. The evidence presented here provides support for impact-induced hydrothermal activity in Toro crater, that extends phyllosilicate formation processes beyond the Noachian era.  相似文献   

7.
The Flynn Creek impact structure is an approximately 3.8 km diameter, marine‐target impact structure, which is located in north central Tennessee, USA. The target stratigraphy consists of several hundreds of meters of Ordovician carbonate strata, specifically Knox Group through Catheys‐Leipers Formation. Like other, similarly sized marine‐target impact craters, Flynn Creek's crater moat‐filling deposits include, in stratigraphic order, gravity‐driven slump material, aqueous resurge deposits, and secular (postimpact) aqueous settling deposits. In the present study, we show that Flynn Creek also possesses previously undescribed erosional resurge gullies and an annular, sloping surface that comprises an outer crater rim surrounding an inner, nested bowl‐shaped crater, thus forming a concentric crater structure. Considering this morphology, the Flynn Creek impact structure has a crater shape that has been referred to at other craters as an “inverted sombrero.” In this paper, we describe the annular rim and the inner crater at Flynn Creek using geographic information system technology. We relate these geomorphic features to the marine environment of crater formation, and compare the Flynn Creek impact structure with other marine‐target impact structures having similar features.  相似文献   

8.
Seven impact melts from various places in the Nördlinger Ries were dated by 40Ar‐39Ar step‐heating. The aim of these measurements was to increase the age data base for Ries impact glasses directly from the Ries crater, because there is only one Ar‐Ar step‐heating spectrum available in the literature. Almost all samples display saddle‐shaped age spectra, indicating the presence of excess argon in most Ries glass samples, most probably inherited argon from incompletely degassed melt and possibly also excess argon incorporated during cooling from adjacent phases. In contrast, moldavites usually contain no inherited argon, probably due to their different formation process implying solidification during ballistic transport. The plateau age of the only flat spectrum is 14.60 ± 0.16 (0.20) Ma (2σ), while the total age of this sample is 14.86 ± 0.20 (0.22) Ma (isochron age: 14.72 ± 0.18 [0.22] Ma [2σ]), proofing the chronological relationship of the Ries impact and moldavites. The total ages of the other samples range between 15.77 ± 0.52 and 20.4 ± 1.0 Ma (2σ), implying approximately 2–40% excess 40Ar (compared to the nominal age of the Ries crater) in respective samples. Thus, the age of 14.60 ± 0.16 (0.20) (2σ) (14.75 ± 0.16 [0.20 Ma] [2σ], calculated using the most recent suggestions for the K decay constants) can be considered as reliable and is within uncertainties indistinguishable from the most recent compilation for the age of the moldavite tektites.  相似文献   

9.
The Kamenetsk impact structure is a deeply eroded simple crater that formed in crystalline rocks of the Ukrainian Shield. This study presents structural, lithologic, and shock metamorphic evidence for an impact origin of the Kamenetsk structure, which was previously described as a paleovolcano. The Kamenetsk structure is an oval depression that is 1.0–1.2 km in diameter and 130 m deep. The structure is deeply eroded, and only the lower part of the sequence of lithic breccia has been preserved in the deepest part of the crater to recent time, while the predominant part of impact rocks and postimpact sediments was eroded. Manifestations of shock metamorphism of minerals, especially planar deformation features in quartz and feldspars, were determined by petrographic investigations of lithic breccia that allowed us to determine the impact origin of the Kamenetsk structure. The erosion of the crater and surrounding target to a minimal depth of 220 m preceded the deposition of the postimpact sediments. The time of the formation of the Kamenetsk structure is bracketed within a wide interval from 2.0 to 2.1 Ga, the age of the crystalline target rocks, to the Late Miocene age of the sediments overlaying the crater. The deep erosion of the structure suggests it is probably Paleozoic in age.  相似文献   

10.
In this interview, Dieter Stöffler (Fig. 1) describes how his interest in meteorites and impact craters dates from his Ph.D. studies at the University of Tübingen when it was learned that the Ries crater was formed by impact. A paper by Dieter's advisor, Wolf von Engelhardt, also triggered an interest in meteorites. After graduation, Dieter helped to establish a laboratory for high pressure mineralogy and he examined rocks from the Ries crater, which led to the concept of progressive shock metamorphism. The group also worked on newly returned Apollo samples and guided astronauts over the crater. A year at the NASA Ames Research Center taught Dieter about experimental impact research with a light‐gas gun. After a few more years at Tübingen, Dieter obtained a professorship at the University of Münster where he created the Institute of Planetology, got involved in planning space missions including comet sample return, and continued high pressure mineralogy in collaboration with colleagues in Freiburg. Through several decades of research, Dieter and colleagues have documented the effects of shock on all the major rock‐forming minerals and devised widely accepted schemes for the classification of shocked rocks. After the unification of Germany, Dieter became Director of the Natural History Museum in Berlin, during which he made much progress rebuilding the laboratories and the collections. Dieter also helped to create a museum and research center in the Ries crater. He received the Barringer Award of the Meteoritical Society in 1994 and several prestigious awards in Germany.  相似文献   

11.
Abstract— The 24 km diameter Ries impact crater in southern Germany is one of the most studied impact structures on Earth. The Ries impactor struck a Triassic to Upper Jurassic sedimentary sequence overlying Hercynian crystalline basement. At the time of impact (14.87 × 0.36 Ma; Storzer et al., 1995), the 350 m thick Malm limestone was present only to the south and east of the impact site. To the north and west, the Malm had been eroded away, exposing the underlying Dogger and Lias. The largest proportion of shocked target material is in the impact-melt-bearing breccia suevite. The suevite had been believed to be derived entirely from the crystalline basement. Calcite in the suevite has been interpreted as a postimpact hydrothermal deposit. From optical inspection of 540 thin sections of suevite from 32 sites, I find that calcite in the suevite shows textural evidence of liquid immiscibility with the silicate impact melt. Textural evidence of liquid immiscibility between silicate and carbonate melt in the Ries suevite includes carbonate globules within silicate glass, silicate globules embedded in carbonate, deformable and coalescing carbonate spheres within silicate glass, sharp menisci or cusps and budding between silicate and carbonate melt, fluidal textures and gas vesicles in carbonate schlieren, a quench crystallization sequence of the carbonate, spinifex textured quenched carbonate, separate carbonate spherules in the suevite mineral-fragment matrix, and inclusions of mineral fragments suspended in carbonate blebs. Given this evidence of liquid immiscibility, the carbonate in the suevite therefore has—like the silicate melt—a primary origin by impact-shock melting. Evidence of carbonate-silicate liquid immiscibility is abundant in the suevites from the southwest to east of the Ries crater. The rarer suevites to the west to northeast of the crater are nearly devoid of carbonate melts. This correspondence between the occurrence of outcropping limestones at the target surface and the formation of carbonate melt indicates that the Malm limestones are the source rocks of the carbonate impact melt. This correspondence shows that the suevites preserve a compositional memory of their source rocks. From the regional distribution of suevites with or without immiscible carbonate melts, it is inferred that the Ries impactor hit the steep Albtrauf escarpment at its toe, in an oblique impact from the north.  相似文献   

12.
Granitoid rock samples from the assumed center of the Keurusselkä impact site were subjected to a systematic study of fluid‐inclusion compositions and densities in various microstructures of the shocked quartz. The results are consistent with the following impact‐induced model of formation. After cessation of all major regional tectonic activity and advanced erosional uplift of the Fennoscandian shield, a meteorite impact (approximately 1.1 Ga) caused the formation of planar fractures (PFs) and planar deformation features (PDFs) and the migration of shock‐liberated metamorphic fluid (CO2 ± H2O) to the glass in the PDFs. Postimpact annealing of the PDFs led to the formation of CO2 (±H2O) fluid‐inclusion decorated PDFs. The scarce fluid‐inclusion implosion textures (IPs) suggest a shock pressure of 7.6–10 GPa. The postimpact pressure release and associated heating initiated hydrothermal activity that caused re‐opening of some PFs and their partial filling by moderate‐salinity/high temperature (>200 °C) H2O (+ chlorite + quartz) and moderate‐density CO2. The youngest postimpact endogenic sub‐ and nonplanar microfractures (MFs) are characterized by low‐density CO2 and low‐salinity/low‐temperature (<200 °C) H2O.  相似文献   

13.
Abstract— Using detailed geological, petrographic, geochemical, and geographical constraints we have performed numerical modeling studies that relate the Steinheim crater (apparent diameter Da = 3.8 km), the Ries crater (Da = 24 km) in southern Germany, and the moldavite (tektite) strewn field in Bohemia and Moravia (Czech Republic), Lusatia (East Germany), and Lower Austria. The moldavite strewn field extends from ~200 to 450 km from the center of the Ries to the east‐northeast forming a fan with an angle of ~57°. An oblique impact of a binary asteroid from a west‐southwest direction appears to explain the locations of the craters and the formation and distribution of the moldavites. The impactor must have been a binary asteroid with two widely separated components (some 1.5 and 0.15 km in diameter, respectively). We carried out a series of three‐dimensional hydrocode simulations of a Ries‐type impact. The results confirm previous results suggesting that impacts around 30–50° (from the horizontal) are the most favorable angles for near‐surface melting, and, consequently for the formation of tektites. Finally, modeling of the motion of impact‐produced tektite particles through the atmosphere produces, in the downrange direction, a narrow‐angle distribution of the moldavites tektites in a fan like field with an angle of ~75°. An additional result of modeling the motion of melt inside and outside the crater is the preferred flow of melt from the main melt zone of the crystalline basement downrange towards the east‐northeast rim. This explains perfectly the occurrence of coherent impact melt bodies (some tens of meters in size) in a restricted zone of the downrange rim of the Ries crater. The origin of these melt bodies, which represent chemically a mixture of crystalline basement rocks similar to the main melt mass contained (as melt particles <0.5 m in size) in the suevite, do not occur at any other portion of the Ries crater rim and remained enigmatic until now. Although the calculated distribution of moldavites still deviates to some degree from the known distribution, our results represent an important step toward a better understanding of the origin and distribution of the high‐velocity surface melts and the low‐velocity, deep‐seated melt resulting from an oblique impact on a stratified target.  相似文献   

14.
Abstract– 40Ar/39Ar dating of recrystallized K‐feldspar melt particles separated from partially molten biotite granite in impact melt rocks from the approximately 24 km Nördlinger Ries crater (southern Germany) yielded a plateau age of 14.37 ± 0.30 (0.32) Ma (2σ). This new age for the Nördlinger Ries is the first age obtained from (1) monomineralic melt (2) separated from an impact‐metamorphosed target rock clast within (3) Ries melt rocks and therewith extends the extensive isotopic age data set for this long time studied impact structure. The new age goes very well with the 40Ar/39Ar step‐heating and laser probe dating results achieved from mixed‐glass samples (suevite glass and tektites) and is slightly younger than the previously obtained fission track and K/Ar and ages of about 15 Ma, as well as the K/Ar and 40Ar/39Ar age data obtained in the early 1990s. Taking all the 40Ar/39Ar age data obtained from Ries impact melt lithologies into account (data from the literature and this study), we suggest an age of 14.59 ± 0.20 Ma (2σ) as best value for the Ries impact event.  相似文献   

15.
Hyperspectral imaging can be used to rapidly identify and map the spatial distributions of many minerals. Here, hyperspectral mapping in three wavelength regions (visible and near‐infrared, shortwave infrared, and thermal infrared) was applied to drill cores (ST001, ST002, and ST003) penetrating a continuous sequence of crater‐fill breccias from the Steen River impact structure in Alberta, Canada. The combined data sets reveal distinct mineralogical layering, with breccias derived predominantly from sedimentary rocks overlying those derived from granitic basement. This stratigraphy demonstrates that the breccias were not appreciably disturbed following deposition, which is inconsistent with formation models of similar breccias (suevites) by explosive impact melt–fluid interaction. At Steen River, volatiles from sedimentary target rocks were an inherent part of forming these enigmatic breccias. Approximately three quarters of terrestrial impact structures contain sedimentary target rocks; therefore, the role of volatiles in producing so‐called suevitic breccias may be more widespread than previously realized. The hyperspectral maps, specifically within the SWIR wavelength region, also delineate minerals associated with postimpact hydrothermal activity, including ammoniated clay and feldspar minerals not detectable using traditional techniques. These nitrogen‐bearing minerals may have originated from microbial processes, associated with oil‐ and gas‐producing units in the crater vicinity. Such minerals may have important implications for the production of habitable environments by impact‐induced hydrothermal activity on Earth and Mars.  相似文献   

16.
The Glasford structure in Illinois (USA) was recognized as a buried impact crater in the early 1960s but has never been reassessed in light of recent advances in planetary science. Here, we document shatter cones and previously unknown quartz microdeformation features that support an impact origin for the Glasford structure. We identify the 4 km wide structure as a complex buried impact crater and describe syn‐ and postimpact deposits from its annular trough. We have informally designated these deposits as the Kingston Mines unit (KM). The fossils and sedimentology of the KM indicate a marine depositional setting. The various intervals within the KM constitute a succession of breccia, carbonate, sandstone, and shale similar to marine sedimentary successions preserved in other craters. Graptolite specimens retrieved from the KM place the time of deposition at approximately 455 ± 2 Ma (Late Ordovician, Sandbian). This age determination suggests a possible link between the Glasford impact and the Ordovician meteorite shower, an increase in the rate of terrestrial meteorite impacts attributed to the breakup of the L‐chondrite parent body in the main asteroid belt.  相似文献   

17.
Abstract— Alteration of surficial suevites at Ries crater, Germany was studied by means of X‐ray diffraction and scanning electron microscopy. Here, we discuss the origin of hydrous silicate (clay) phases in these suevites that have been previously interpreted as resulting from post‐impact hydrothermal processes. The results of this study indicate that the dominant alteration phases are dioctahedral Al‐Fe montmorillonite and halloysite, which are typical low temperature clay minerals. We suggest that the surficial suevites are not altered by hydrothermal processes and that alteration occurred by low temperature subsurface weathering processes. If the surficial suevites were indeed hydrothermally modified during the early stages of post‐impact cooling, then the alteration was of limited character and is completely masked by later weathering.  相似文献   

18.
Suevite and melt breccia compositions in the boreholes Enkingen and Polsingen are compared with compositions of suevites from other Ries boreholes and surface locations and discussed in terms of implications for impact breccia genesis. No significant differences in average chemical compositions for the various drill cores or surface samples are noted. Compositions of suevite and melt breccia from southern and northeastern sectors of the Ries crater do not significantly differ. This is in stark contrast to the published variations between within‐crater and out‐of‐crater suevites from northern and southern sectors of the Bosumtwi impact structure, Ghana. Locally occurring alteration overprint on drill cores—especially strong on the carbonate‐impregnated suevite specimens of the Enkingen borehole—does affect the average compositions. Overall, the composition of the analyzed impact breccias from Ries are characterized by very little macroscopically or microscopically recognized sediment‐clast component; the clast populations of suevite and impact melt breccia are dominated consistently by granitic and intermediate granitoid components. The Polsingen breccia is significantly enriched in a dioritic clast component. Overall, chemical compositions are of intermediate composition as well, with dioritic‐granodioritic silica contents, and relatively small contributions from mafic target components. Selected suevite samples from the Enkingen core have elevated Ni, Co, Cr, and Ir contents compared with previously analyzed suevites from the Ries crater, which suggest a small meteoritic component. Platinum‐group element (PGE) concentrations for some of the enriched samples indicate somewhat elevated concentrations and near‐chondritic ratios of the most immobile PGE, consistent with an extraterrestrial contribution of 0.1–0.2% chondrite‐equivalent.  相似文献   

19.
The Terny impact structure, located in central Ukraine, displays a variety of diagnostic indicators of shock metamorphism, including shatter cones, planar deformation features in quartz, diaplectic glass, selective melting of minerals, and whole rock melting. The structure has been modified by erosion and subsequently buried by recent sediments. Although there are no natural outcrops of the deformed basement rocks within the area, mining exploration has provided surface and subsurface access to the structure, exposing impact melt rocks, shocked parautochthonous target rocks, and allochthonous impact breccias, including impact melt‐bearing breccias similar to suevites observed at the Ries structure. We have collected and studied samples from surface and subsurface exposures to a depth of approximately 750 m below the surface. This analysis indicates the Terny crater is centered on geographic coordinates 48.13° N, 33.52° E. The center location and the distribution of shock pressures constrain the transient crater diameter to be no less than approximately 8.4 km. Using widely accepted morphometric scaling relations, we estimate the pre‐erosional rim diameter of Terny crater to be approximately 16–19 km, making it close in original size to the well‐preserved El'gygytgyn crater in Siberia. Comparison with El'gygytgyn yields useful insights into the original morphology of the Terny crater and indicates that the amount of erosion Terny experienced prior to burial probably does not exceed 320 m.  相似文献   

20.
The Ries crater is a well‐preserved, complex impact crater that has been extensively used in the study of impact crater formation processes across the solar system. However, its geologic structure, especially the megablock zone, still poses questions regarding crater formation mechanics. The megablock zone, located between the inner crystalline ring and outer, morphologic crater rim, consists of allochthonous crystalline and sedimentary blocks, Bunte Breccia deposits, patches of suevite, and parautochthonous sedimentary blocks that slumped into the crater during crater modification. Our remote sensing detection method in combination with a shallow drilling campaign and geoelectric measurements at two selected megablocks proved successful in finding new megablock structures (>25 m mean diameter) within the upper approximately 1.5 m of the subsurface in the megablock zone. We analyzed 1777 megablocks of the megablock zone, 81 of which are new discoveries. In our statistical analysis, we also included 2318 ejecta blocks >25 m beyond the crater rim. Parautochthonous megablocks show an increase in total area and size toward the final crater rim. The sizes of allochthonous megablocks generally decrease with increasing radial range, but inside the megablock zone, the coverage with postimpact sediments obscures this trend. The size‐frequency distribution of all megablocks obeys a power‐law distribution with an exponent between approximately ?1.7 and ?2.3. We estimated a total volume of 95 km3 of Bunte Breccia and 47 km3 of megablocks. Ejecta volume calculations and a palinspastic restoration of the extension within the megablock zone indicate that the transient cavity diameter was probably 14–15 km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号