首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organic photochemical syntheses in the Jovian atmosphere were simulated by irradiating, at 147 nm, gaseous mixtures of methane and ammonia with varying quantities of hydrogen. An excess of H2 did not eliminate organic synthesis but did affect the yields quantitatively and qualitatively.  相似文献   

2.
Based on the data on the wavelength dependence of geometrical albedo for the disks of Jupiter and Saturn, we determined the trends in the height variation of the aerosol optical depth in the upper atmospheric layers of these planets, the fractional methane concentration in the Jovian atmosphere (0.00125), and the monochromatic methane absorption coefficients (or the superposition of these coefficients for methane and ammonia) typical of the thermal conditions in the atmospheres of Jupiter and Saturn in the wavelength range from 527 to 956 nm.  相似文献   

3.
F.W. Taylor  A.D. Jones 《Icarus》1976,29(2):299-306
We present some results of a theoretical and laboratory program to determine the thermal infrared spectral properties of the principal gaseous constituents of the atmosphere of Jupiter. G. Birnbaum has measured laboratory spectra in the 16 to 1000 um wavelength range for hydrogen and hydrogen-helium mixtures at Jovian temperatures. These are compared to theoretically computed spectra in order to determine the temperature dependence of the line strengths in the pressure-induced rotational band and the overlap parameters from the translational band. Existing spectral data for methane do not agree well with measurements of the ν4 band at room temperature. A revised allocation of line intensities is proposed. Existing data for the ν2 (10 um) band of ammonia do agree reasonably well with measurements at room temperature and at ?77δC, but there are some important discrepancies which remain to be explained.  相似文献   

4.
G.E. Hunt 《Icarus》1973,18(4):637-648
The theory of formation of pressure-broadened methane lines and collision-narrowed hydrogen quadrupole lines in a Jovian atmosphere is studied in detail for a physically realistic model of the planet's lower atmosphere. Only observations of the center-to-limb (CTL) variations of the equivalent width of absorption lines for both of these molecules can identify the structure of the visible cloud layers. Observations of the CTL variation of methane and hydrogen quadrupole lines are the most suitable for studying the Jovian atmosphere. The CTL variations for hydrogen are much greater and more sensitive to variations of the properties of the thin upper tropospheric cloud layer than the corresponding observations of methane lines. A detailed comparison of hydrogen quadrupole with methane lines is made for the same continuum conditions, enabling us to develop a detailed understanding of the formation of the collision-narrowed hydrogen quadrupole lines in a Jovian atmosphere.  相似文献   

5.
6.
James B. Pollack 《Icarus》1973,19(1):43-58
The greenhouse effect is calculated for a series of model atmospheres of Titan containing varying proportions of methane, hydrogen, helium, and ammonia. The pressure induced transitions of hydrogen and methane are the major sources of infrared opacity. For each model atmosphere we first computed its temperature structure with a radiative-convective equilibrium computer program and then generated its brightness temperature spectrum to compare with observed values. This comparison indicates that the methane-to-hydrogen ratio is 1?.67+2, the surface pressure is at least 0.4atm, and the surface temperature at least 150°K. In addition, except possibly close to the surface, the amount of ammonia is far less than the saturation vapor value. Large amounts of helium may also be present. Many of the successful model atmospheres have methane condensation clouds in the upper troposphere, which help reconcile spectroscopic gas abundances and the observed ultraviolet albedo of Titan with the gas amounts required for the greenhouse effect. The occurrence of large amounts of hydrogen may be a prerequisite for the occurrence of large amounts of methane in the atmosphere and vice versa. This hypothesis may help explain why Titan is the only satellite in our solar system known to have an atmosphere.  相似文献   

7.
Titan, the main satellite of Saturn, has been observed by remote sensing for many years, both from interplanetary probes (Pioneer and Voyager's flybys) and from the Earth. Its N2 atmosphere, containing a small fraction of CH4 (approximately 2%), with T approximately 90 K and P approximately 1.5 bar at the ground level, is irradiated by solar UV photons and deeply bombarded by energetic particles, i.e. Saturn mangetospheric electrons and protons, interplanetary electrons and cosmic rays. The resulting energy deposition, which takes place mainly below 1000 km, initiates chemical reactions which yield gaseous hydrocarbons and nitriles and, through polymerisation processes, solid aerosol particles which grow by coagulation and settle down to the ground. At the present time, photochemical models strongly require the results of specific laboratory studies. Chemical rate constants are not well known at low temperatures, charged-particle-induced reactions are difficult to model and laboratory simulations of atmospheric processes are therefore of great interest. Moreover, the synthesis of organic compounds which have not been detected to date provides valuable information for future observations. The origin and chemical composition of aerosols depend on the nature of chemical and energy sources. Their production from gaseous species may be monitored in laboratory chambers and their optical or microphysical properties compared to those deduced from the observations of Titan's atmosphere. The development of simulation chambers of Titan's extreme conditions is necessary for a better understanding of past and future observations. Space probes will sound Titan's atmosphere by remote sensing and in situ analysis in the near future (Cassini-Huygens mission). It appears necessary, as a preliminary step to test on-board experiments in such chambers, and as a final step, when new space data have been acquired, to use them for more general scientific purposes.  相似文献   

8.
P.G.J. Irwin  K. Sihra  F.W. Taylor 《Icarus》2005,176(2):255-271
New measurements of the low-temperature near-infrared absorption of methane (Sihra, 1998, Laboratory measurements of near-infrared methane bands for remote sensing of the jovian atmosphere, Ph.D. thesis, University of Oxford) have been combined with existing, longer path-length, higher-temperature data of Strong et al. (1993, Spectral parameters of self- and hydrogen-broadened methane from 2000 to 9500 cm−1 for remote sounding of the atmosphere of Jupiter, J. Quant. Spectrosc. Radiat. Trans. 50, 309-325) and fitted with band models. The combined data set is found to be more consistent with previous low-temperature methane absorption measurements than that of Strong et al. (1993, J. Quant. Spectrosc. Radiat. Trans. 50, 309-325) but covers the same wider wavelength range and accounts for both self- and hydrogen-broadening conditions. These data have been fitted with k-coefficients in the manner described by Irwin et al. (1996, Calculated k-distribution coefficients for hydrogen- and self-broadened methane in the range 2000-9500 cm−1 from exponential sum fitting to band modelled spectra, J. Geophys. Res. 101, 26,137-26,154) and have been used in multiple-scattering radiative transfer models to assess their impact on our previous estimates of the jovian cloud structure obtained from Galileo Near-Infrared Mapping Spectrometer (NIMS) observations (Irwin et al., 1998, Cloud structure and atmospheric composition of Jupiter retrieved from Galileo NIMS real-time spectra, J. Geophys. Res. 103, 23,001-23,021; Irwin et al., 2001, The origin of belt/zone contrasts in the atmosphere of Jupiter and their correlation with 5-μm opacity, Icarus 149, 397-415; Irwin and Dyudina, 2002, The retrieval of cloud structure maps in the equatorial region of Jupiter using a principal component analysis of Galileo/NIMS data, Icarus 156, 52-63). Although significant differences in methane opacity are found at cooler temperatures, the difference in the optical depth of the atmosphere due to methane is found to diminish rapidly with increasing pressure and temperature and thus has negligible effect on the cloud structure inferred at deeper levels. Hence the main cloud opacity variation is still found to peak at around 1-2 bar using our previous analytical approach, and is thus still in disagreement with Galileo Solid State Imager (SSI) determinations (Banfield et al., 1998, Jupiter's cloud structure from Galileo imaging data, Icarus 135, 230-250; Simon-Miller et al., 2001, Color and the vertical structure in Jupiter's belts, zones and weather systems, Icarus 154, 459-474) which place the main cloud deck near 0.9 bar. Further analysis of our retrievals reveals that this discrepancy is probably due to the different assumptions of the two analyses. Our retrievals use a smooth vertically extended cloud profile while the SSI determinations assume a thin NH3 cloud below an extended haze. When the main opacity in our model is similarly assumed to be due to a thin cloud below an extended haze, we find the main level of cloud opacity variation to be near the 1 bar level—close to that determined by SSI and moderately close to the expected condensation level of ammonia ice of 0.85 bar, assuming that the abundance of ammonia on Jupiter is (7±1)×10−4 (Folkner et al., 1998, Ammonia abundance in Jupiter's atmosphere derived from the attenuation of the Galileo probe's radio signal, J. Geophys. Res. 103, 22,847-22,855; Atreya et al., 1999, A comparison of the atmospheres of Jupiter and Saturn: deep atmospheric composition, cloud structure, vertical mixing, and origin, Planet. Space Sci. 47, 1243-1262). However our data in the 1-2.5 μm range have good height discrimination and our lowest estimate of the cloud base pressure of 1 bar is still too great to be consistent with the most recent estimates of the ammonia abundance of 3.5 × solar. Furthermore the observed limited spatial distribution of ammonia ice absorption features on Jupiter suggests that pure ammonia ice is only present in regions of localised vigorous uplift (Baines et al., 2002, Fresh ammonia ice clouds in Jupiter: spectroscopic identification, spatial distribution, and dynamical implications, Icarus 159, 74-94) and is subsequently rapidly modified in some way which masks its pure absorption features. Hence we conclude that the main cloud deck on Jupiter is unlikely to be composed of pure ammonia ice and instead find that it must be composed of either NH4SH or some other unknown combination of ammonia, water, and hydrogen sulphide and exists at pressures of between 1 and 2 bar.  相似文献   

9.
A laboratory curve of growth analysis was made on the lines in two ammonia bands located at 6450 Å and 10800 Å and the abundance of ammonia in the atmosphere of Jupiter was determined. Lines in the 6450 Å band appear to fall on the weak line section of the curve of growth, while those in the 10800 Å band fall in the transition region. The abundance values obtained from these bands are 13.0±3 m atm and 15±8 m atm, respectively.Measurements of the intensity distribution in the 6450 Å band in the laboratory and in the Jovian spectra show that the intensity of several lines in this band is highly dependent on the temperature. Strengths for some of the lines in the 6450 Å band were determined and half-widths of some strong lines were also measured. The effective pressure found from these half-width values is 2.5 atmospheres.Contributions from the University of Illinois, Chicago Circle Physics Department, No. 12.  相似文献   

10.
K.A. Young  J.S. Margolis 《Icarus》1977,30(1):129-137
The 6450 Å ammonia absorption band in the atmosphere of Jupiter was observed during the summers of 1973 and 1974. High-dispersion spectra of this band were obtained and analyzed on a line-by-line basis to derive ammonia abundances in the Jovian atmosphere. The abundances determined this way show strikingly large fluctuations.  相似文献   

11.
《Icarus》1987,72(1):35-47
Gaseous ammonia (NH3) has long been recognized as a primary source of microwave opacity in the atmosphere of Jupiter. In order to more accurately infer the abundance and distribution of ammonia from radio emission measurements in the 1 to 20-cm wavelength range and radio occultation measurements at 3.6 and 13 cm, we have made measurements of the microwave opacity from gaseous ammonia under simulated conditions for the Jovian atmosphere. Measurements of ammonia absorptivity were made at five frequencies from 1.62 to 21.7 GHz (wavelengths from 18.5 to 1.38 cm), at temperatures from 178 to 300°K, and at pressures from 1 to 6 atm, in a 90% hydrogen/10% helium atmosphere. The results of these measurements show that in the 1.38- to 18.5-cm wavelength range, the absorption from gaseous ammonia is correctly expressed by the modified Ben-Reuven lineshape as per G.L. Berge and S. Gulkis (1976, Earth-based radio observations of Jupiter: Millimeter to meter wavelengths. In Jupiter (T. Gehrels, Ed.), pp. 621–692, Univ. of Arizona Press, Tucson). When applied to the microwave opacity measured by radio occultation measurements, or the microwave opacity inferred from radio emmission measurements, these results suggest that either an abundance of ammonia 1.5 to 2.0 times greater than the solar abundance must exist at levels below the 1- to 2-bar pressure range, or that some other microwave absorber must be present.We conclude by suggesting further laboratory measurements of other potential microwave-absorbing constituents and additional investigation of the microwave absorption from ammonia in the 10- to 20-cm wavelength range and at wavelengths shortward of 1 cm.  相似文献   

12.
S.H. Gross  G.V. Ramanathan 《Icarus》1976,29(4):493-507
Observations of Io suggest that it may have an atmosphere in which sodium vapor, ammonia, and nitrogen are important constituents. Several atmospheric models consisting of these gases are treated here. These are tested as a function of total content against the Pioneer 10 observations and for stability against escape. The results suggest that the atmosphere is very tenuous and that the interpretation of the ionosphere detected by Pioneer 10 by a static model may be inconsistent with the sodium cloud observations. It is postulated that ionization may also be escaping and that sodium may be comparable in content in the atmosphere with some molecular constituent such as NH3 or N2. Sodium and this molecular component then dominate the atmosphere. It is also suggested that particle precipitation contributes to heating of the atmosphere and to the production of ionization; furthermore, the difference between day- and nighttime ionospheres and possible trailing and leading side effects may relate to the nature of the particle energy distributions. These distributions may be the result of the peculiar interaction of Io with the Jovian magnetosphere.  相似文献   

13.
J.S. Margolis  G.E. Hunt 《Icarus》1973,18(4):593-598
The hydrogen quadrupole absorption lines are uniquely characterized by the property of being collision narrowed. For the 3-0 and 4-0 bands the lines continue to narrow to below the pressure levels in the Jovian atmosphere where they appear to be formed. Since the collision narrowing is the reverse of the case for ordinary molecular absorptions the use of the Curtis-Godson approximation must be reconsidered. We have done this using the line shape for this process derived by Galatry and find that the Curtis-Godson approximation represents the absorption very well through the inhomogeneous Jovian atmosphere. The hydrogen quadrupole absorptions, 3-0 S (l) and 4-0 S (l), have been analysed by a procedure which has been shown to give self-consistent results for the methane 3v3 manifolds. The 3-0 S(1) line is strongly saturated and even the weak 4-0 S(l) line (equiv width ~ 8mÅ) exhibits a 10% saturation. We derive a mixing ratio (by volume) of approx 7 x 10?4 for methane to hydrogen in agreement with earlier results.  相似文献   

14.
Glenn S. Orton 《Icarus》1977,32(1):41-57
The mean thermal structure of the Jovian atmosphere near the temperature minimum (0.1 bar) is recovered by inversion of thermal radiance data. Improvements over previous studies of this type are made in two respects. (1) Care is taken to select data sources which are on a consistent calibration scale and from a frequency region which minimizes the variance in the recovered temperature. (2) The accuracy in the temperature recovery vs the vertical resolution capability is studied quantitatively. The contributions of various sources of systematic error, which generate significant uncertainty in the recovered thermal structure, are assessed. Sources of systematic error include assumptions about the stratospheric NLTE source function, the extent of cloud cover, the methane mixing ratio, and the calibration scale. Future investigations are outlined which would reduce such uncertainties and provide consistency with a wider range of data on the Jovian upper atmosphere.  相似文献   

15.
Eric Chassefière 《Icarus》2009,204(1):137-271
The observations of methane made by the PFS instrument onboard Mars Express exhibit a definite correlation between methane mixing ratio, water vapor mixing ratio, and cloud optical depth. The recent data obtained from ground-based telescopes seem to confirm the correlation between methane and water vapor. In order to explain this correlation, we suggest that the source of gaseous methane is atmospheric, rather than at the solid surface of the planet, and that this source may consist of metastable submicronic particles of methane clathrate hydrate continuously released to the atmosphere from one or several clathrate layers at depth, according to the phenomenon of “anomalous preservation” evidenced in the laboratory. These particles, lifted up to middle atmospheric levels due to their small size, and therefore filling the whole atmosphere, serve as condensation nuclei for water vapor. The observed correlation between methane and water vapor mixing ratios could be the signature of the decomposition of the clathrate crystals by condensation-sublimation processes related to cloud activity. Under the effect of water condensation on crystal walls, metastability could be broken and particles be eroded, resulting in a subsequent irreversible release of methane to the gas phase. Using PFS data, and according to our hypothesis, the lifetime of gaseous methane is estimated to be smaller than an upper limit of 6 ± 3 months, much smaller than the lifetime of 300 yr calculated from atmospheric chemical models. The reason why methane has a short lifetime might be the occurrence of heterogeneous chemical decomposition of methane in the subsurface, where it is known since Viking biology experiments that oxidants efficiently decompose organic matter. If true, it is shown by using existing models of H2O2 penetration in the regolith that methane could prevent H2O2 from penetrating in the subsurface, and further oxidizing the soil, at depths larger than a few millimeters. The present source of methane clathrate, acting over the last few hundred thousand or million years, could have given rise to the thin CO2-ice layer covering the permanent water ice south polar cap. The hypothesis proposed in this paper requires, to be validated, a number of laboratory experiments studying the stability of methane clathrates in martian atmospheric conditions, and the kinetics and amplitude of clathrate particle erosion in presence of condensing water vapor. Detailed future observations of methane, and associated modeling, will allow to more accurately quantify the production rate of methane clathrate, its temporal variability at seasonal scale, and possibly to locate the source(s) of clathrates at the surface.  相似文献   

16.
The recent discovery of methane on Mars has led to much discussion concerning its origin. On Earth, the isotopic signatures of methane vary with the nature of its production. Specifically, the ratios among 12CH4, 13CH4, and 12CH3D differ for biotic and abiotic origins. On Mars, measuring these ratios would provide insights into the origins of methane and measurements of water isotopologues co-released with methane would assist in testing their chemical relationship. Since 1997, we have been measuring HDO and H2O in Mars’ atmosphere and comparing their ratio to that in Earth’s oceans. We recently incorporated a line-by-line radiative transfer model (LBLRTM) into our analysis. Here, we present a map for [HDO]/[H2O] along the central meridian (154°W) for Ls=50°. From these results, we constructed models to determine the observational conditions needed to quantify the isotopic ratios of methane in Mars’ atmosphere. Current ground-based instruments lack the spectral resolution and sensitivity needed to make these measurements. Measurements of the isotopologues of methane will likely require in situ sampling.  相似文献   

17.
McDonald GD  Thompson WR  Sagan C 《Icarus》1992,99(1):131-142
Low-pressure continuous-flow laboratory simulations of plasma induced chemistry in H2/He/CH4/NH3 atmospheres show radiation yields of hydrocarbons and nitrogen-containing organic compounds that increase with decreasing pressure in the range 2-200 mbar. Major products of these experiments that have been observed in the Jovian atmosphere are acetylene (C2H2), ethylene (C2H4), ethane (C2H6), hydrogen cyanide (HCN), propane (C3H8), and propyne (C3H4). Major products that have not yet been observed on Jupiter include acetonitrile (CH3CN), methylamine (CH3NH2), propene (C3H6), butane (C4H10), and butene (C4H8). Various other saturated and unsaturated hydrocarbons, as well as other amines and nitriles, are present in these experiments as minor products. We place upper limits of 10(6)-10(9) molecules cm-2 sec-1 on production rates of the major species from auroral chemistry in the Jovian stratosphere, and calculate stratospheric mole fraction contributions. This work shows that auroral processes may account for 10-100% of the total abundances of most observed organic species in the polar regions. Our experiments are consistent with models of Jovian polar stratospheric aerosol haze formation from polymerization of acetylene by secondary ultraviolet processing.  相似文献   

18.
It is suggested that in a reducing environment such as the Jovian atmosphere, GeH4 may be spectroscopically active. Absorption features might be detectable in the 4.7μ window in the Jovian upper atmosphere.  相似文献   

19.
Results of the experiments on model impact vaporization of peridotite, a mineral analogue of stony asteroids, in a nitrogen–methane atmosphere are presented. Nd-glass laser (γ = 1.06 µm) was used for simulation. Pulse energy was ~600–700 J, pulse duration ~10–3 s, vaporization tempereature ~4000–5000 K. The gaseous medium (96% vol. of N2 and 4% vol. of CH4, P = 1 atm) was a possible analogue of early atmospheres of terrestrial planets and corresponded to the present-day atmosphere composition of Titan, a satellite of Saturn. By means of pyrolytic gas chromatography/mass spectrometry, it is shown that solid condensates obtained in laser experiments contain relatively complex lowand high-molecular weight (kerogen-like) organic compounds. The main products of condensate pyrolysis were benzene and alkyl benzenes (including long-chain ones), unbranched aliphatic hydrocarbons, and various nitrogen-containing compounds (aliphatic and aromatic nitriles and pyrrol). It is shown that the nitrogen–methane atmosphere favors the formation of complex organic compounds upon hypervelocity impacts with the participation of stony bodies even with a small methane content in it. In this process, falling bodies may not contain carbon, hydrogen, and other chemical elements necessary for the formation of the organic matter. In such conditions, a noticeable contribution to the impact-induced synthesis of complex organic substances is probably made by heterogeneous catalytic reactions, in particular, Fischer–Tropsch type reactions.  相似文献   

20.
L.A. Capone  S.S. Prasad 《Icarus》1973,20(2):200-212
This paper reports results obtained on ionosphere formation in the Jovian upper atmosphere with special reference to some of the recently available reaction rates, and to recent models of the Jovian neutral atmosphere based on the possibility of a warmer mesopause. We find that the role of the hypothetical radiative association of H+ to H2 to form H3+, as brought to light in our earlier study, is still important, even with a reaction rate as low as 10?15 cm3sec?1. In the lower regions of the ionosphere three-body processes leading to the formation of H3+ and H5+ ions, which have very fast dissociative recombination rates, produce a dramatic reduction in the electron density. When no radiative association takes place, and the H+ ions are lost by radiative recombination alone, we confirm that the photochemical equilibrium profile is also the diffusive equilibrium profile. However, with collisional-radiative recombination, whose rate becomes altitude-dependent, diffusion tends to bring about some redistribution of the ionization. Inclusion of radiative association enhances the role of diffusion. In this case, diffusion brings about all the expected changes. In particular, the differences in the electron density profile, originated in the lower-middle ionosphere by radiative association, are propagated up to all higher altitudes by diffusion. The rate constant of radiative association is, however, unknown. It is hoped that the critical importance of this reaction for the Jovian ionosphere will be an incentive towards a careful laboratory determination of its rate coefficient. In the older models of the Jovian ionosphere the major ions were H+ which were lost only by pure radiative recombination. This led to high electron densities and practically no diurnal change. In contrast, our new models have relatively much smaller electron densities, especially in lower regions, and may be susceptible to significant diurnal variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号