首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
2.
Martin Veasey 《Icarus》2011,214(1):265-274
As Mercury orbits the Sun, gravitational torques on its equatorial elliptical shape give rise to a planetary libration. The amplitude of Mercury’s libration, as determined from Earth-based radar speckle pattern observations, suggests that only the mantle participates in the motion. This indicates a decoupling between the core and the mantle, and therefore that the outermost part of the core must be fluid. If a solid inner core is present at the center of Mercury, the equatorial elliptical shape of the latter may become misaligned with that of Mercury’s mantle, leading to an internal gravitational torque between the two. If this torque is large, it may participate in the dynamics of Mercury’s libration. The goal of this work is to determine whether Mercury’s observed librations can be used to place constraints on the properties of its inner core. We present a comparison between predicted and observed librations for a range of interior models of Mercury, with various inner core sizes and fluid core densities. We show that a marginally better fit to observations can be achieved for interior models that have an inner core radius larger than 400 km. However, the improvement in fit is small, and it is not possible to draw robust conclusions on the size of Mercury’s inner core on the basis of existing libration data. Nevertheless, our study demonstrates that the influence of the inner core on the libration of Mercury could be detected with a decade worth of accurate observations.  相似文献   

3.
Longitudes of surface marking observed on Mercury by E.M. Antoniadi are determined. The most frequent of the locations are used to determine the most probable positions on Mercury's surface for the names defined on Antoniadi's 88-day planisphere. It is suggested that these locations can serve as a valid and accurate basis for Mercurian nomenclature.  相似文献   

4.
The observed density of Venus is about 2% smaller than would be expected if Venus were a twin planet of the Earth, possessing an identical internal composition and structure. In principle, this could be explained by a process of physical segregation of metal particles from silicate particles in the solar nebula prior to accretion, so that Venus accreted from relatively metal-depleted material. However, this model encounters severe difficulties in explaining the nature of the physical segregation process and also the detailed chemical composition of the Earth's mantle. Two alternative hypotheses are examined, both of which attempt to explain the density difference in terms of chemical fractionation processes. Both of these hypotheses assume that the relative abundances of the major elements Fe, Si, Mg, Al, and Ca are similar in both planets. According to the first hypothesis, a larger proportion of the total iron in Venus is present as iron oxide in the mantle, so that the core-to-mantle ratio is smaller than in the Earth. This model implies that Venus is more oxidized than the Earth, with its lower intrinsic density (i.e., corrected to equivalent pressures and temperatures) due to the larger amount of oxygen present. The difference between oxidation states is attributed to differing degrees of accretional heating arising from the relatively smaller mass of Venus. On the other hand, the second hypothesis maintains that Venus is more reduced than the Earth, with its mantle essentially devoid of oxidized iron. The difference intrinsic densities is attributed to the Earth accreting at a lower temperature than Venus as a result of the Earth's greater distance from the center of the nebula. As a result, large amounts of sulfur accreted on the Earth but not on Venus. The sulfur, which entered the core, is believed to have increased the mean density of the Earth because of its relatively high atomic weight. The hypothesis also implies that most of the Earth's potassium, because of its chalcophile properties, entered the core.These hypotheses are evaluated in the light of existing data. The second hypothesis leads to an intrinsic density for Venus which is only 0.4% smaller than that of the Earth. This difference is much smaller than is believed to exist. A wide range of chemical evidence is found to be unfavorable to this second hypothesis, but to be consistent with the interpretation that Venus is more oxidized than the Earth, as required by the first hypothesis.  相似文献   

5.
Photoelectric photometric (slit) scans of Mercury have been obtained and combined with a man of the surface markings to yield relative normal albedoes over about one quarter of the planet's total surface at a wavelength of 0·45 microns. Maximum albedo ratios at a resolution of one fifth of the planetary diameter are not less than 2 to 1 and probably near 2·5 to 1. The corresponding average lunar value is 2·3 to 1. The blurring effects of seeing conditions on previous visual estimates of Mercury's albedo ratios are briefly discussed.  相似文献   

6.
Compared with the other terrestrial planets, Mercury has anomalously low mass and high iron content. Equilibrium condensation and inhomogeneous accretional models are not compatible with these properties, unless the solar nebula's thermal structure and history meet stringent conditions. Also, such models predict a composition which does not allow a presently molten core. It appears that most of the solid matter which originally condensed in Mercury's zone has been removed. The planet's composition may be explained if the removal process was only slightly more effective for silicates than for iron. It is proposed that planetesimal orbits in the inner solar nebula decayed because of gas drag. This process is a natural consequence of the non-Keplerian rotation of a centrally condensed nebula. A simple quantitative model shows good agreement with the observed mass distribution of the terrestrial planets. The rate of orbital decay is slower for larger and/or denser bodies, because of their smaller area-to-mass ratios. With plausible assumptions as to planetesimal sizes and compositions, this process can produce fractionation of the sense required to produce an iron-rich planet. Cosmogonical implications are discussed.  相似文献   

7.
Long-period (more than 20 min) quasi-periodic pulsations (QPP) occurring in the Earth's magnetic field (EMF) before the proton flare are studied by the method of spectral correlation analysis of geomagnetic field H-component. The corresponding data have been obtained at six stations located from 12°41'E up to 180° 52'E and from 52°04'N up to 68°52'N.QPP space-time distribution is shown to be correlated with that of the Earth's ionosphere current systems. The results obtained indicate that QPP of the EMF are influenced by QPP of the solar X-ray and ultraviolet radiation modulated by oscillation processes in the active solar region.  相似文献   

8.
The discovery of Mercury's magnetosphere by Mariner 10 was surprising since the conventional view of regenerative planetary dynamos had been that the spin requirement would likely have been in excess of the observed spin rate of Mercury. Also internal fluid motions were not expected to be sufficiently large. This paper explores the alternative model of the formation of Mercury's magnetosphere via electromagnetic induction forced by the solar wind. It is shown, however, that the constraints are so severe as to limit severely the applicability of such a model. Although induction is easily observed on the Moon, the modification of the magnetic boundary condition associated with a plasma magnetosphere on Mercury rules out its formation via induction except for interplanetary driving fields which are decreasing in amplitude. That model is explored but retains the difficulty that induced magnetospheres tend to be of small radial and temporal extent compared to that inferred by Ness et al. for Mercury.  相似文献   

9.
We have determined the global fracture patterns resulting from combinations of stresses due to tidal despinning and contraction or expansion. We find that Mercury's lineament pattern is consistent with a history of despinning and contraction. According to our model, the observed tectonic pattern implies that the despinning process reached completion before the planet ceased contracting. Our model predicts a stress due to contraction which is up to 1.8 times the maximum despinning stress on Mercury. The maximum contractional stress could be as large as 4 times the maximum despinning stress if the oldest fractures on the planet are N-S thrust faults in the equatorial region.  相似文献   

10.
Jack D. Drummond 《Icarus》1982,49(1):143-153
A compilation of theoretical meteor radiants is presented for all numbered (through 2525) asteroids which approach the Earth's orbit to within 0.20 AU. On the basis of orbital similarity, asteroids associated with current meteor streams and Prairie Network fireballs are listed; plausible associations with medieval fireball radiants are also given. The best defunct comet candidates in terms of meteoric evidence appear to be 2101 Adonis and 2201 1947XC. Asteroids which may be either extinct comets or perturbed main belt asteroids accompanied by collisional debris (represented by fireballs) are 1917 Cuyo, 2202 Pele, 2061 Anza, and 2340 Hathor. 1566 Icarus and 1981 Midas are the only asteroids whose orbits approach to less than 0.07 AU of the Earth's orbit, have a northern radiant, and still show no certain meteoric activity. The majority of Atens, Apollos, and Amors do not pass sufficiently close (<0.07 AU) to the Earth's orbit for a reasonable expectation of meteoric activity, or have radiants south of ?20° declination, requiring southern hemisphere observations.  相似文献   

11.
The evolution of the atmosphere of the earth   总被引:1,自引:0,他引:1  
Michael H. Hart 《Icarus》1978,33(1):23-39
Computer simulations of the evolution of the Earth's atmospheric composition and surface temperature have been carried out. The program took into account changes in the solar luminosity, variations in the Earth's albedo, the greenhouse effect, variation in the biomass, and a variety of geochemical processes. Results indicate that prior to two billion years ago the Earth had a partially reduced atmosphere, which included N2, CO2, reduced carbon compounds, some NH3, but no free H2. Surface temperatures were higher than now, due to a large greenhouse effect. When free O2 appeared the temperature fell sharply. Had Earth been only slightly further from the Sun, runaway glaciation would have occured at that time. Simulations also indicate that a runaway greenhouse would have occured early in Earth's history had Earth been only a few percent closer to the Sun. It therefore appears that, taking into account the possibilities of either runaway glaciation or a runaway greenhouse effect, the continously habitable zone about a solar-type star is rather narrow, extending only from roughly 0.95 to 1.01 AU.  相似文献   

12.
The shape of the magnetosphere has been calculated self-consistently for inclinations of the Earth's magnetic dipole from perpendicular to the solar wind. Inclination angles of 0–35° have been chosen in steps of 5° and various smooth trends in the surface characteristics with increasing inclination angle noted. The surface points and the complete field at the surface points have been calculated for the entire surfaces. The neutral point region has been given precise study in one degree steps and is found to be tangent to the solar wind velocity and to have a smooth continuous curvature. The inclusion of the Earth's bow shock pressure and other sources of current have not been included at this stage of our program.  相似文献   

13.
Theoretical physical models of the Martia interior are presented in the light of new and revised data and constraints. These models include thermal evolution, densities, and seismic wave velocities. The interior of Mars appears to be Earth-like in many respects. Although thermal models indicate that Mars has passed its peak of evolution it may still have an asthenosphere and may be moderately active tectonically. Mars has an Fe-FeS core with a radius of and may be moderately active tectonically. Mars has an Fe-FeS core with a radius of 1500–2000 km. The mantle is enriched in FeO with an olivine composition of about Fo75. Theoretically determined seismic wave velocities are relatively well constrained in the mantle with upper-mantle Pn velocities ranging from 7.64 to 7.80 km/sec. However, there are wide variations in VP in the core dependent on composition. The shadow zone due to the core is larger than the Earth's.  相似文献   

14.
Detailed magnetic fields in the Earth's tail are calculated from a proposed model containing Beard's tail surface and a current sheet inferred from satellite observations. The component inside and perpendicular to the neutral sheet permits us to construct the drift pattern in the magnetic equatorial plane for charged particles. The computed results are in reasonable agreement with the experimental results, although some deviations are noted.  相似文献   

15.
D.K. Yeomans 《Icarus》1981,47(3):492-499
The distribution of dust surrounding periodic comet Tempel-Tuttle has been mapped by analyzing the associated Leonid meteor shower data over the 902–1969 interval. The majority of dust ejected from the parent comet evolves to a position lagging the comet and outside the comet's orbit. The outgassing and dust ejection required to explain the parent comet's deviation from pure gravitational motion would preferentially place dust in a position leading the comet and inside the comet's orbit. Hence it appears that radiation pressure and planetary perturbations, rather than ejection processes, control the dynamic evolution of the Leonid particles. Significant Leonid meteor showers are possible roughly 2500 days before or after the parent comet reaches perihelion but only if the comet passes closer than 0.025 AU inside or 0.010 AU outside the Earth's orbit. Although the conditions in 1998–1999 are optimum for a significant Leonid meteor shower, the event is not certain because the dust particle distribution near the comet is far from uniform. As a by-product of this study, the orbit of comet Tempel-Tuttle has been redetermined for the 1366–1966 observed interval.  相似文献   

16.
A new theory of the superrotation of upper atmosphere is worked out on the basis of global deposition of meteoroids assuming that a certain constant influx of meteoroids is continually falling upon the Earth's atmosphere. On the average the meteoroids are shown to carry a greater amount of orbital angular momentum than that corresponding to the Earth's orbit about the Sun. It is argued that the excess of orbital angular momentum appears as extra spin angular momentum in the atmospheric layer in which the meteoroids are arrested and this is used to calculate the velocity difference which can be maintained across a certain layer of the atmosphere. It is found that a global deposition of 34 tons/day of meteoric material is required to account for the observed superrotation which agrees with the recent estimates on meteoric mass influx on the Earth.  相似文献   

17.
Igor V. Holin 《Icarus》2010,207(2):545-548
Current data reveal that Mercury is a dynamic system with a core which has not yet solidified completely and is at least partially decoupled from the mantle. Radar speckle displacement experiments have demonstrated that the accuracy in spin-dynamics determination for Earth-like planets can approach 10−5. The extended analysis of space-time correlation properties of radar echoes shows that the behavior of speckles does not prevent estimation of Mercury’s instantaneous spin-vector components to accuracy of a few parts in 107. This limit can be reached with more powerful radar facilities and leads to constraining the interior in more detail from effects of spin dynamics, e.g., from observation of the core-mantle interplay through high precision monitoring of the 88-day spin-variation of Mercury’s crust.  相似文献   

18.
Joseph A. Burns 《Icarus》1976,28(4):453-458
Mercury, currently rotating very slowly, probably rotated faster in the past. If Mercury's rotation period had been near 8 hours initially, similar to that of most solar system bodies today, it would have been flattened by a few percent. As Mercury was slowed by solar tides, craters which were circular when they were emplaced would have been distorted by the same few percent. Substantial surface stresses, well above the fracture stress, would have been produced unless stress relief occurred; these stresses should have produced tensional fractures near the poles and two intersecting sets of shear planes in equatorial regions. Satellite orbits about the slowly spinning Mercury have been shown to collapse onto its surface: the impact craters resulting from these hypothetical lost satellites should be elongated along the orbit paths, which probably lie near the equator. However, none of these features has been found on the Mariner 10 images. They may be obscured by the effects of tidal heating that should cause an overall internal temperature increase of about 100°K although the increase would be substantially more in certain regions. Radial tides, sometimes called push-pull tides, are important at the present time because Mercury's large orbital eccentricity causes the planet to undergo significant tidal flexing each orbital period; the contemporary tidal heating due to this mechanism is estimated at more than 1016 erg/sec.  相似文献   

19.
MESSENGER Neutron Spectrometer (NS) observations of cosmic-ray-generated thermal neutrons provide the first direct measurements of Mercury’s surface elemental composition. Specifically, we show that Mercury’s surface is enriched in neutron-absorbing elements and has a measured macroscopic neutron-absorption cross section of 45-81 × 10−4 cm2/g, a range similar to the neutron absorption of lunar basalts from Mare Crisium. The expected neutron-absorbing elements are Fe and Ti, with possible trace amounts of Gd and Sm. Fe and Ti, in particular, are important for understanding Mercury’s formation and how its surface may have changed over time through magmatic processes. With neutron Doppler filtering - a neutron energy separation technique based on spacecraft velocity - we demonstrate that Mercury’s surface composition cannot be matched by prior models, which have characteristically low abundances of Fe, Ti, Gd, and Sm. While neutron spectroscopy alone cannot separate the relative contributions of individual neutron-absorbing elements, these results provide strong new constraints on the nature of Mercury’s surface materials. For example, if all the measured neutron absorption were due to the presence of an Fe-Ti oxide and that oxide were ilmenite, then Mercury’s surface would have an ilmenite content of 7-18 wt.%. This result is in general agreement with the inference from color imaging and visible-near-infrared spectroscopy that Mercury’s overall low reflectance is consistent with a surface composition that is enriched in Fe-Ti oxides. The incorporation of substantial Fe and Ti in oxides would imply that the oxygen fugacity of basalts on Mercury is at the upper range of oxygen fugacities inferred for basalts on the Moon.  相似文献   

20.
The theory of superrotation of the Earth's atmosphere by global deposition of meteoroids recently developed by the author (Mitra, 1974) is extended after a slight refinement to explain the rotation period of Venusian clouds. A satisfactory agreement with observations is obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号