首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 534 毫秒
1.
Abstract— Clasts of deep-seated crystalline basement rocks in suevites of the Ries crater, Germany, were catalogued lithologically and classified with regard to their degree of shock metamorphism. The sample suite consisted of 806 clasts from 10 outcrops in fallout suevites and 447 clasts from drill cores encountering crater suevite in the crater interior. These clasts can be grouped into seven types of metamorphic and nine types of igneous rocks. One hundred forty-three clasts, representing these lithologies, were analyzed for major element bulk composition. The fallout suevite contains on average 4 vol% of crystalline basement clasts, 0.4 vol% of sedimentary rocks, 16 vol% of glass bodies (some of them aerodynamically shaped), and 79 vol% of groundmass. On average, 52% of all crystalline clasts are from metamorphic sources and 42% are of igneous origin. Using the shock classification of Stöffler (1974), 8% of all crystalline clasts appear unshocked (<10 Gpa), and 34, 30 and 27% of clasts are shocked to stages I (10–35 Gpa), II (35–45 GPa) and III (45–60 GPa), respectively. The bulk composition of suevite glasses is consistent with the modal proportions of crystalline rock types observed in the clast populations. This indicates that the glasses originate by shock-fusion of a similarly composed basement. The crater suevite contains the same crystalline rock types that occur in the fallout suevites. The bore hole “Nördlingen 1973” yields an average of 62 vol% metamorphic and 38 vol% igneous rocks. The crater suevite differs from fallout suevites by a higher clast/glass ratio, by preponderance (65–95%) of clasts shocked to stage I only, and by the absence of aerodynamically shaped glass bodies. The source of crystalline clasts and melt particles of suevites is a volume of rocks, located deep in the crystalline basement, to which the projectile transmittted most of its energy so that only rocks of the basement were shocked by pressures exceeding 10 GPa (deep-burst impact model). Fallout suevites were ejected, propelled by an expanding plume of vaporized rock, and withdrew preferentially from this volume melt and highly shocked clasts, leaving in the transient cavity the crater suevite with more clasts of modest shock levels and less melt.  相似文献   

2.
Abstract— The 24 km diameter Ries impact crater in southern Germany is one of the most studied impact structures on Earth. The Ries impactor struck a Triassic to Upper Jurassic sedimentary sequence overlying Hercynian crystalline basement. At the time of impact (14.87 × 0.36 Ma; Storzer et al., 1995), the 350 m thick Malm limestone was present only to the south and east of the impact site. To the north and west, the Malm had been eroded away, exposing the underlying Dogger and Lias. The largest proportion of shocked target material is in the impact-melt-bearing breccia suevite. The suevite had been believed to be derived entirely from the crystalline basement. Calcite in the suevite has been interpreted as a postimpact hydrothermal deposit. From optical inspection of 540 thin sections of suevite from 32 sites, I find that calcite in the suevite shows textural evidence of liquid immiscibility with the silicate impact melt. Textural evidence of liquid immiscibility between silicate and carbonate melt in the Ries suevite includes carbonate globules within silicate glass, silicate globules embedded in carbonate, deformable and coalescing carbonate spheres within silicate glass, sharp menisci or cusps and budding between silicate and carbonate melt, fluidal textures and gas vesicles in carbonate schlieren, a quench crystallization sequence of the carbonate, spinifex textured quenched carbonate, separate carbonate spherules in the suevite mineral-fragment matrix, and inclusions of mineral fragments suspended in carbonate blebs. Given this evidence of liquid immiscibility, the carbonate in the suevite therefore has—like the silicate melt—a primary origin by impact-shock melting. Evidence of carbonate-silicate liquid immiscibility is abundant in the suevites from the southwest to east of the Ries crater. The rarer suevites to the west to northeast of the crater are nearly devoid of carbonate melts. This correspondence between the occurrence of outcropping limestones at the target surface and the formation of carbonate melt indicates that the Malm limestones are the source rocks of the carbonate impact melt. This correspondence shows that the suevites preserve a compositional memory of their source rocks. From the regional distribution of suevites with or without immiscible carbonate melts, it is inferred that the Ries impactor hit the steep Albtrauf escarpment at its toe, in an oblique impact from the north.  相似文献   

3.
Abstract— The 1.07 Ma well‐preserved Bosumtwi impact structure in Ghana (10.5 km in diameter) formed in 2 Ga‐old metamorphosed and crystalline rocks of the Birimian system. The interior of the structure is largely filled by the 8 km diameter Lake Bosumtwi, and the crater rim and region in the environs of the crater is covered by tropical rainforest, making geological studies rather difficult and restricted to road cuts and streams. In early 1999, we undertook a shallow drilling program to the north of the crater rim to determine the extent of the ejecta blanket around the crater and to obtain subsurface core samples for mineralogical, petrological, and geochemical studies of ejecta of the Bosumtwi impact structure. A variety of impactite lithologies are present, consisting of impact glassrich suevite and several types of breccia: lithic breccia of single rock type, often grading into unbrecciated rock, with the rocks being shattered more or less in situ without much relative displacement (autochthonous?), and lithic polymict breccia that apparently do not contain any glassy material (allochtonous?). The suevite cores show that melt inclusions are present throughout the whole length of the cores in the form of vesicular glasses with no significant change of abundance with depth. Twenty samples from the 7 drill cores and 4 samples from recent road cuts in the structure were studied for their geochemical characteristics to accumulate a database for impact lithologies and their erosion products present at the Bosumtwi crater. Major and trace element analyses yielded compositions similar to those of the target rocks in the area (graywacke‐phyllite, shale, and granite). Graywacke‐phyllite and granite dikes seem to be important contributors to the compositions of the suevite and the road cut samples (fragmentary matrix), with a minor contribution of Pepiakese granite. The results also provide information about the thickness of the fallout suevite in the northern part of the Bosumtwi structure, which was determined to be ≤15 m and to occupy an area of ?1.5 km2. Present suevite distribution is likely to be caused by differential erosion and does not reflect the initial areal extent of the continuous Bosumtwi ejecta deposits. Our studies allow a comparison with the extent of the suevite at the Ries, another well‐preserved impact structure.  相似文献   

4.
Abstract— The suevite breccia of the Chicxulub impact crater, Yucatàn, Mexico, is more variable and complex in terms of composition and stratigraphy than suevites observed at other craters. Detailed studies (microscope, electron microprobe, SEM, XRF) have been carried out on a noncontinuous set of samples from the drill hole Yucatàn 6 (Y6) located 50 km SW from the center of the impact structure. Three subunits can be distinguished in the suevite: the upper unit is a fine‐grained carbonate‐rich suevite breccia with few shocked basement clasts, mostly altered melt fragments, and formerly melted carbonate material; the middle suevite is a coarse‐grained suevite with shocked basement clasts and altered silicate melt fragments; the lower suevite unit is composed of shocked basement and melt fragments and large evaporite clasts. The matrix of the suevite is not clastic but recrystallized and composed mainly of feldspar and pyroxene. The composition of the upper members of the suevite is dominated by the sedimentary cover of the Yucatàn target rock. With depth in well Y6, the amount of carbonate decreases and the proportion of evaporite and silicate basement rocks increases significantly. Even at the thin section scale, melt phases of different chemistry can be identified, showing that no widespread homogenization of the melt took place. The melt compositions also reflect the heterogeneity of the deep Yucatàn basement. Calcite with characteristic feathery texture indicates the existence of formerly pure carbonate melt. The proportion of carbonate to evaporite clasts is less than 5:1, except in the lower suevite where large evaporite clasts are present. This proportion constrains the amount of CO2 and SOX released by the impact event.  相似文献   

5.
Abstract— The chemical composition of suevites, displaced Cretaceous target rocks, and impact‐generated dikes within these rocks from the Yaxcopoil‐1 (Yax‐1) drill core, Chicxulub impact crater, Mexico, is reported and compared with the data from the Yucatán 6 (Y6) samples. Within the six suevite subunits of Yax‐1, four units with different chemical compositions can be distinguished: a) upper/lower sorted and upper suevite (depth of 795–846 m); b) middle suevite (depth of 846–861 m); c) brecciated impact melt rock (depth of 861–885 m); and d) lower suevite (depth of 885–895 m). The suevite sequence (a), (b), and (d) display an increase of the CaO content and a decrease of the silicate basement component from top to bottom. In contrast, the suevite of Y6 shows an inverse trend. The different distances of the Yax‐1 and Y6 drilling sites from the crater center (~60, and ~47 km, respectively) lead to different suevite sequences. Within the Cretaceous rocks of Yax‐1, a suevitic dike (depth of ~916 m) does not display chemical differences when compared with the suevite, while an impact melt rock dike (depth of ~1348 m) is significantly enriched in immobile elements. A clastic breccia dike (depth of ~1316 m) is dominated by material derived locally from the host rock, while the silicate‐rich component is similar to that found in the suevite. Significant enrichments of the K2O content were observed in the Yax‐1 suevite and the impact‐generated dikes. All impactites of Yax‐1 and Y6 are mixtures of a crystalline basement and a carbonate component from the sedimentary cover. An anhydrite component in the impactites is missing (Yax‐1) or negligible (Y6).  相似文献   

6.
We report results of an interdisciplinary project devoted to the 26 km‐diameter Ries crater and to the genesis of suevite. Recent laboratory analyses of “crater suevite” occurring within the central crater basin and of “outer suevite” on top of the continuous ejecta blanket, as well as data accumulated during the past 50 years, are interpreted within the boundary conditions imposed by a comprehensive new effort to model the crater formation and its ejecta deposits by computer code calculations (Artemieva et al. 2013). The properties of suevite are considered on all scales from megascopic to submicroscopic in the context of its geological setting. In a new approach, we reconstruct the minimum/maximum volumes of all allochthonous impact formations (108/116 km3), of suevite (14/22 km3), and the total volume of impact melt (4.9/8.0 km3) produced by the Ries impact event prior to erosion. These volumes are reasonably compatible with corresponding values obtained by numerical modeling. Taking all data on modal composition, texture, chemistry, and shock metamorphism of suevite, and the results of modeling into account, we arrive at a new empirical model implying five main consecutive phases of crater formation and ejecta emplacement. Numerical modeling indicates that only a very small fraction of suevite can be derived from the “primary ejecta plume,” which is possibly represented by the fine‐grained basal layer of outer suevite. The main mass of suevite was deposited from a “secondary plume” induced by an explosive reaction (“fuel‐coolant interaction”) of impact melt with water and volatile‐rich sedimentary rocks within a clast‐laden temporary melt pool. Both melt pool and plume appear to be heterogeneous in space and time. Outer suevite appears to be derived from an early formed, melt‐rich and clast‐poor plume region rich in strongly shocked components (melt ? clasts) and originating from an upper, more marginal zone of the melt pool. Crater suevite is obviously deposited from later formed, clast‐rich and melt‐poor plumes dominated by unshocked and weakly shocked clasts and derived from a deeper, central zone of the melt pool. Genetically, we distinguish between “primary suevite” which includes dike suevite, the lower sublayer of crater suevite, and possibly a basal layer of outer suevite, and “secondary suevite” represented by the massive upper sublayer of crater suevite and the main mass of outer suevite.  相似文献   

7.
Abstract— We present major and trace element data as well as petrographic observations for impactites (suevitic groundmass, bulk suevite, and melt rock particles) and target lithologies, including Cretaceous anhydrite, dolomite, argillaceous limestone, and oil shale, from the Yaxcopoil‐1 borehole, Chixculub impact structure. The suevitic groundmass and bulk suevite have similar compositions, largely representing mixtures of carbonate and silicate components. The latter are dominated by melt rock particles. Trace element data indicate that dolomitic rocks represented a significant target component that became incorporated into the suevites; in contrast, major elements indicate a strong calcitic component in the impactites. The siliceous end‐member requires a mafic component in order to explain the low SiO2 content. Multicomponent mixing of various target rocks, the high alteration state, and dilution by carbonate complicate the determination of primary melt particle compositions. However, two overlapping compositional groups can be discerned—a high‐Ba, low‐Ta group and a high‐Fe, high‐Zn, and high‐Hf group. Cretaceous dolomitic rocks, argillaceous limestone, and shale are typically enriched in U, As, Br, and Sb, whereas anhydrite contains high Sr contents. The oil shale samples have abundances that are similar to the North American Shale Composite (NASC), but with a comparatively high U content. Clastic sedimentary rocks are characterized by relatively high Th, Hf, Zr, As, and Sb abundances. Petrographic observations indicate that the Cretaceous rocks in the Yaxcopoil‐1 drill core likely register a multistage deformation history that spans the period from pre‐ to post‐impact. Contrary to previous studies that claimed evidence for the presence of impact melt breccia injection veins, we have found no evidence in our samples from a depth of 1347–1348 m for the presence of melt breccia. We favor that clastic veinlets occur in a sheared and altered zone that underwent intense diagenetic overprint prior to the impact event.  相似文献   

8.
9.
Abstract— The Obolon impact structure, 18 km in diameter, is situated at the northeastern slope of the Ukrainian Shield near its margin with the Dnieper‐Donets Depression. The crater was formed in crystalline rocks of the Precambrian basement that are overlain by marine Carboniferous and continental Lower Triassic deposits. The post‐impact sediments comprise marine Middle Jurassic (Bajocian and Bathonian) and younger Mesozoic and Cenozoic deposits. Today the impact structure is buried beneath an about 300‐meter‐thick sedimentary rock sequence. Most information on the Obolon structure is derived from two boreholes in the western part of the crater. The lowest part of the section in the deepest borehole is composed by allogenic breccia of crystalline basement rocks overlain by clast‐rich impact melt rocks and suevites. Abundant shock metamorphic effects are planar deformation features (PDFs) in quartz and feldspars, kink bands in biotite, etc. Coesite and impact diamonds were found in clast‐rich impact melt rocks. Crater‐fill deposits are a series of sandstones and breccias with blocks of sedimentary rocks that are covered by a layer of crystalline rock breccia. Crystalline rock breccias, conglomeratic breccias, and sandstones with crystalline rock debris have been found in some boreholes around the Obolon impact structure to a distance of about 50 km from its center. Those deposits are always underlain by Lower Triassic continental red clay and overlain by Middle Jurassic marine clay. The K‐Ar age of impact melt glasses is 169 Ma, which corresponds to the Middle Jurassic (Bajocian) age. The composition of crater‐fill rocks within the crater and sediments outside the Obolon structure testify to its formation under submarine conditions.  相似文献   

10.
Abstract— Results of a detailed paleomagnetic and rock magnetic study of samples of the impact breccia sequence cored in the Yaxcopoil‐1 (Yax‐1) borehole between about 800 m and 896 m are presented. The Yax‐1 breccia sequence occurs from 794.63 m to 894.94 m and consists of redeposited melt‐rich, clast‐size sorted, fine‐grained suevites; melt‐rich, no clast‐size sorting, medium‐grained suevites; coarse suevitic melt agglomerates; coarse melt‐rich heterogeneous suevites; brecciated suevites; and coarse carbonate and silicate melt suevites. The low‐field susceptibility ranges from ?0.3 to 4018 times 10?6 SI, and the NRM intensity ranges from 0.02 mA/m up to 37510 mA/m. In general, the NRM intensity and magnetic susceptibility present wide ranges and are positively correlated, pointing to varying magnetic mineral contents and textures of the melt‐rich breccia sequence. The vectorial composition and magnetic stability of NRM were investigated by both stepwise alternating field and thermal demagnetization. In most cases, characteristic single component magnetizations are observed. Both upward and downward inclinations are present through the sequence, and we interpret the reverse magnetization as the primary component in the breccias. Both the clasts and matrix forming the breccia appear to have been subjected to a wide range of temperature/pressure conditions and show distinct rock magnetic properties. An extended interval of remanence acquisition and secondary partial or total remagnetization may explain the paleomagnetic results.  相似文献   

11.
Abstract— A small area littered with loose decimeter-sized fragments of glass and melt fragment-bearing suevite has been discovered on the western rim of the Roter Kamm impact crater in southern Namibia. The clast population and results of major and trace element chemical analyses are consistent with this breccia having been formed from granitoid basement lithologies only, without contribution from the metasedimentary Gariep and Cenozoic cover sequences. It is assumed that the limited amount of impact melt observed in the Roter Kamm structure could be the result of melt dissipation due to explosive shock-induced devolatilization of the significant marble component of the Gariep supracrustal cover. Preservation of very limited remnants of impact breccia on the rim of the Roter Kamm crater suggests a relatively deep level of erosion of the crater rim.  相似文献   

12.
Abstract— The ~400 Ma old Ilyinets impact structure was formed in the Precambrian basement of the Ukrainian Shield and is now mostly covered by Quaternary sediments. Various impact breccias and melts are exposed in its southern section. The crater is a complex structure with a central uplift that is surrounded by an annular deposit of breccias and melt rocks. In the annulus, brecciated basement rocks are overlain by up to 80 m of glass-poor suevitic breccia, which is overlain (and partly intercalated) by glass-rich suevite with a thickness of up to 130 m. Impact-melt rocks occur within and on top of the suevites—in some cases in the form of devitrified bomb-shaped impact-glass fragments. We have studied the petrographic and geochemical characteristics of 31, mostly shocked, target rock samples (granites, gneisses, and one amphibolite) obtained from drill cores within the structure, and impact breccias and melt rock samples from drill cores and surface exposures. Multiple sets of planar deformation features (PDFs) are common in quartz, potassium feldspar, and plagioclase of the shocked target rocks. The breccias comprise more or less devitrified impact melt with shocked clasts. The impact-melt rocks (“bombs”) show abundant vesicles and, in some cases, glass is still present as brownish patches and schlieren. All impact breccias (including the melt rocks) are strongly altered and have significantly elevated K contents and lower Na contents than the target rocks. The alteration could have occurred in an impact-induced hydrothermal system. The bomb-shaped melt rocks have lower Mg and Ca contents than other rock types at the crater. Compared to target rocks, only minor enrichments of siderophile element contents (e.g., Ni, Co, Ir) in impact-melt rocks were found.  相似文献   

13.
Abstract— The impact breccias encountered in drill hole Yaxcopoil‐1 (Yax‐1) in the Chicxulub impact structure have been subdivided into six units. The two uppermost units are redeposited suevite and suevite, and together are only 28 m thick. The two units below are interpreted as a ground surge deposit similar to a pyroclastic flow in a volcanic regime with a fine‐grained top (unit 3; 23 m thick; nuée ardente) and a coarse breccia (unit 4; ~15 m thick) below. As such, they consist of a mélange of clastic matrix breccia and melt breccia. The pyroclastic ground surge deposit and the two units 5 and 6 below are related to the ejecta curtain. Unit 5 (~24 m thick) is a silicate impact melt breccia, whereas unit 6 (10 m thick) is largely a carbonate melt breccia with some clastic‐matrix components. Unit 5 and 6 reflect an overturning of the target stratigraphy. The suevites of units 1 and 2 were deposited after emplacement of the ejecta curtain debris. Reaction of the super‐heated breccias with seawater led to explosive activity similar to phreomagmatic steam explosion in volcanic regimes. This activity caused further brecciation of melt and melt fragments. The fallback suevite deposit of units 1 and 2 is much thinner than suevite deposits at larger distances from the center of the impact structure than the 60 km of the Yax‐1 drill site. This is evidence that the fallback suevite deposit (units 1 and 2) originally was much thicker. Unit 1 exhibits sedimentological features suggestive of suevite redeposition. Erosion possibly has occurred right after the K/T impact due to seawater backsurge, but erosion processes spanning thousands of years may also have been active. Therefore, the top of the 100 m thick impactite sequence at Yaxcopoil, in our opinion, is not the K/T boundary.  相似文献   

14.
Abstract— The Kärdla crater is a 4 km‐wide impact structure of Late Ordovician age located on Hiiumaa Island, Estonia. The 455 Ma‐old buried crater was formed in shallow seawater in Precambrian crystalline target rocks that were covered with sedimentary rocks. Basement and breccia samples from 13 drill cores were studied mineralogically, petrographically, and geochemically. Geochemical analyses of major and trace elements were performed on 90 samples from allochthonous breccias, sub‐crater and surrounding basement rocks. The breccia units do not include any melt rocks or suevites. The remarkably poorly mixed sedimentary and crystalline rocks were deposited separately within the allochthonous breccia suites of the crater. The most intensely shockmetamorphosed allochthonous granitoid crystalline‐derived breccia layers contain planar deformation features (PDFs) in quartz, indicating shock pressures of 20–35 GPa. An apparent K‐enrichment and Ca‐Na‐depletion of feldspar‐ and hornblende‐bearing rocks in the allochthonous breccia units and sub‐crater basement is interpreted to be the result of early stage alteration in an impact‐induced hydrothermal system. The chemical composition of the breccias shows no definite sign of an extraterrestrial contamination. By modeling of the different breccia units with HMX‐mixing, the indigenous component was determined. From the abundances of the siderophile elements (Cr, Co, Ni, Ir, and Au) in the breccia samples, no unambiguous evidence for the incorporation of a meteoritic component above about 0.1 wt% chondrite‐equivalent was found.  相似文献   

15.
Abstract– Melt‐bearing impactites dominated by suevite, and with a minor content of clast‐rich impact melt rock, are found within the central part of the Gardnos structure. They are preserved as the eroded remnants in the relatively small complex impact structure with a present diameter of 5 km. These rocks have been mapped in the field and in the Branden drill core, and described according to mineralogy/petrology, including matrix, litho clast, and melt content, as well as geochemistry. Based on our extensive field mapping, a simple 3‐D model of the original crater was constructed to estimate tentative volumes for the melt‐bearing impactites. The variations in lithic and melt fragment content and chemistry of suevite matrix can mostly be explained by incorporation of mafic rocks into a dominant mixture of granitic, gneissic, and quartzitic target rocks, reflecting mixing of material from different parts of the crater. Melt fragments within suevite occur with a variety of shapes and textures, probably related to different original target rock composition, to the various temperatures the individual fragments were subjected to during the impact event and deposition processes. This study discusses the impact‐related deposits based on a sedimentological approach. Their overall composition and structures indicate dominating gravity flow processes in the final transportation and deposition of the suevite.  相似文献   

16.
We present the results of numerical modeling of the formation of the Ries crater utilizing the two hydrocodes SOVA and iSALE. These standard models allow us to reproduce crater shape, size, and morphology, and composition and extension of the continuous ejecta blanket. Some of these results cannot, however, be readily reconciled with observations: the impact plume above the crater consists mainly of molten and vaporized sedimentary rocks, containing very little material in comparison with the ejecta curtain; at the end of the modification stage, the crater floor is covered by a thick layer of impact melt with a total volume of 6–11 km3; the thickness of true fallback material from the plume inside the crater does not exceed a couple of meters; ejecta from all stratigraphic units of the target are transported ballistically; no separation of sedimentary and crystalline rocks—as observed between suevites and Bunte Breccia at Ries—is noted. We also present numerical results quantifying the existing geological hypotheses of Ries ejecta emplacement from an impact plume, by melt flow, or by a pyroclastic density current. The results show that none of these mechanisms is consistent with physical constraints and/or observations. Finally, we suggest a new hypothesis of suevite formation and emplacement by postimpact interaction of hot impact melt with water or volatile‐rich sedimentary rocks.  相似文献   

17.
The interface between impact melt rocks and underlying footwall lithologies within the Manicouagan impact structure is defined by a zone of dynamic mixing (<20 m thick). This zone transitions as a continuum from clast‐free to clast‐bearing impact melt rocks, through melt‐bearing breccias to melt‐free breccias. Field observations; microscopy; and major, trace, and rare earth element analysis indicate that the breccias are derived by blending two endmembers during the impact process: impact melt and brecciated footwall. The product is a basal breccia sequence, which locally includes the rock type referred to as suevite. In this occurrence, the suevite is a submelt sheet variety, in contrast to similar lithologies that are developed atop impact melt sheets, or beyond crater rims. Dynamic mixing between impact melt and basal clastic material at Manicouagan is attributed to the initial high‐speed centrifugal outflow of superheated, low viscosity impact melt over underlying fractured and fragmented footwall, and its centripetal return during the earlier stages of the crater modification process. The interaction of two fluids (melt with a mobilized granular medium) possessing contrasting densities, and moving at different velocities, can facilitate shear instabilities and turbulent mixing that may be characteristic of Kelvin–Helmholtz behavior.  相似文献   

18.
Abstract— The distribution and petrography of surficial suevite breccias of the Ries impact crater in Southern Germany are reviewed, and the morphology, petrography and chemical composition of impact glasses in suevite breccias and their postdepositional devitrification is synthesized. Origin and thermal history of suevite breccia and suevite glasses are inferred from these data and from recent results of cooling and crystallization experiments with suevite glass melts under controlled conditions. In a montmorillonitic groundmass, the suevite breccia contains pieces of glass, up to some decimeters in size, and crystalline rock clasts of all stages of shock metamorphism. The glass particles originated in impact melt of basement gneisses and cooled by adiabatic pressure release from ~80 GPa to atmospheric pressure during ejection from the crater. They were deposited on the ground together with the other suevite components at a temperature of ~750 °C. Fractured glass pieces in the breccia show that during deposition of the suevite the temperature was below the temperature at which undercooled melt transforms to rigid glass. The suevite cooled after deposition mainly by convection of heat by emanating gases and vapors. In chilled layers at the base and at the top of suevite deposits, the glasses are preserved in vitreous state. Between these zones, the glasses were devitrified, yet crystallization of pyroxene, plagioclase and magnetite took place below the glass-transformation temperature. Annealing experiments show that this unusual devitrification below the transformation temperature can be explained by the impact origin of suevite glasses. Due to rapid adiabatic cooling on decompression, the glasses were oversaturated with water and internally strained. Under these conditions, devitrification, especially the formation of plagioclase, was possible at temperatures below the transformation range. The origin from adiabatically cooled impact melt of deep-seated rocks distinguishes water-bearing suevite glasses from the Ries-derived, water-free moldavite tektites, which are interpreted as condensates of vaporized, surficial sediments (Engelhardt et al., 1987).  相似文献   

19.
We reanalyzed and compared unique data sets, which we obtained in the frame of combined petrophysical and geothermal investigations within scientific drilling projects on four impact structures: the Puchezh–Katunki impact structure (Vorotilovo borehole, Russia), the Ries impact structure (Noerdlingen‐73 borehole, Germany), the Chicxulub impact structure (ICDP Yaxcopoil‐1 borehole, Mexico), and the Chesapeake impact structure (ICDP‐USGS‐Eyreville borehole, USA). For a joined interpretation, we used the following previously published data: thermal properties, using the optical scanning technique, and porosities, both measured on densely sampled halfcores of the boreholes. For the two ICDP boreholes, we also used our previously published P‐wave velocities measured on a subset of cores. We show that thermal conductivity, thermal anisotropy, porosity, and velocity can be correlated with shock metamorphism (target rocks of the Puchezh–Katunki and Ries impact structures), and confirm the absence of shock metamorphism in the samples taken from megablocks (Chicxulub and Chesapeake impact structure). The physical properties of the lithic impact breccias and suevites are influenced mainly by their impact‐related porosity. Physical properties of lower porosity lithic impact breccias and suevites are also influenced by their chemical composition. These data allow for a distinction between different types of breccias due to differences concerning the texture and chemistry and the different amounts of melt and rock clasts.  相似文献   

20.
Abstract— Field studies and a shallow drilling program carried out in 1999 provided information about the thickness and distribution of suevite to the north of the Bosumtwi crater rim. Suevite occurrence there is known from an ?1.5 km2 area; its thickness is ≤15 m. The present suevite distribution is likely the result of differential erosion and does not reflect the initial areal extent of continuous Bosumtwi ejecta deposits. Here we discuss the petrographic characteristics of drill core samples of melt‐rich suevite. Macroscopic constituents of the suevites are melt bodies and crystalline and metasedimentary rock (granite, graywacke, phyllite, shale, schist, and possibly slate) clasts up to about 40 cm in size. Shock metamorphic effects in the clasts include multiple sets of planar deformation features (PDFs), diaplectic quartz and feldspar glasses, lechatelierite, and ballen quartz, besides biotite with kink bands. Basement rock clasts in the suevite represent all stages of shock metamorphism, ranging from samples without shock effects to completely shock‐melted material that is indicative of shock pressures up to ?60 GPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号