首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract— We present the concentrations and isotopic compositions of He, Ne, and Ar for nonmagnetic fractions and bulk samples of 17 H chondrites which were recently investigated for their 36Cl‐36Ar cosmic‐ray exposure ages (Graf et al., 2001). All selected meteorites are observed falls with cosmic‐ray exposure ages close to the 7 Ma peak. The rare gas data are consistent with 10Be and 36C1 production rates in the metal phase. Remarkably, only 1 out of the 17 H chondrites, Bath, shows clear indications for a complex exposure history. Based on rare gas concentrations and 36Cl‐36Ar exposure ages, 21Ne production rates as a function of 22Ne/21 Ne and a mean 38Ar production rate are determined. The results confirm model calculations which predict that the relationship between 21Ne production rates and 22Ne/21Ne is ambiguous for high shielding. Besides the mean 38Ar production rate we also give production rate ratios P(38Ar from Ca)/P(38Ar from Fe). They vary between 10 and 77, showing no significant correlation with 38Ar concentrations or 22Ne/21Ne. By investigating the metal separates, Graf et al. (2001) found significant 3He deficits for 6 out of the 17 meteorites. For the nonmagnetic fractions and bulk samples investigated here, the data points in a 3He/21Ne vs. 22Ne/21Ne diagram plot in the area defined by most of the H chondrites. This means that 3He deficits in the metal phase are much more pronounced than in silicate minerals and we will argue that 3H diffusive losses in meteorites should be the rule rather than the exception. The 21Ne exposure ages, calculated on the basis of modeled 21Ne production rates, confirm the assumption by Graf et al. (2001) that the H5 chondrites with low 3He/38Ar in the metal formed in a separate event than those with normal 3He/38Ar ratios. The data can best be interpreted by assuming that the prominent 7 Ma exposure age peak of the H chondrites is due to at least two events about 7.0 and 7.6 Ma ago.  相似文献   

2.
Abstract— Here we present the first purely physical model for cosmogenic production rates in iron meteorites with radii from 5 cm to 120 cm and for the outermost 1.3 m of an object having a radius of 10 m. The calculations are based on our current best knowledge of the particle spectra and the cross sections for the relevant nuclear reactions. The model usually describes the production rates for cosmogenic radionuclides within their uncertainties; exceptions are 53Mn and 60Fe, possibly due to normalization problems. When an average S content of about 1 ± 0.5% is assumed for Grant and Carbo samples, which is consistent with our earlier study, the model predictions for 3He, 21Ne, and 38Ar are in agreement. For 4He the model has to be adjusted by 24%, possibly a result of our rather crude approximation for the primary galactic α particles. For reasons not yet understood the modeled 36Ar/38Ar ratio is about 30–40% higher than the ratio typically measured in iron meteorites. Currently, the only reasonable explanation for this discrepancy is the lack of experimentally determined neutron induced cross sections and therefore the uncertainties of the model itself. However, the new model predictions, though not yet perfect, enable determining the radius of the meteoroid, the exposure age, the sulphur content of the studied sample as well as the terrestrial residence time. The determination of exposure ages is of special interest because of the still open question whether the GCR was constant over long time scales. Therefore we will discuss in detail the differences between exposure ages determined with different cosmogenic nuclides. With the new model we can calculate exposure ages that are based on the production rates (cm3STP/(gMa)) of noble gases only. These exposure ages, referred to as noble gas exposure ages or simply 3,4He, 21Ne, or 36,38Ar ages, are calculated assuming the current GCR flux. Besides calculating noble gas ages we were also able to improve the 41K‐40K‐and the 36Cl‐36Ar dating methods with the new model. Note that we distinguish between 36Ar ages (calculated via 36Ar production rates only) and 36Cl‐36Ar ages. Exposure ages for Grant and Carbo, calculated with the revised 41K‐40K method, are 628 ± 30 Ma and 841 ± 19 Ma, respectively. For Grant this is equal to the ages obtained using 3He, 21Ne, and 38Ar but higher than the 36Ar‐ and 36Cl‐36Ar ages by ?30%. For Carbo the 41K‐40K age is ?40% lower than the ages obtained using 3He, 21Ne, and 38Ar but equal to the 36Ar age. These differences can either be explained by our still insufficient knowledge of the neutron‐induced cross sections or by a long‐term variation of the GCR.  相似文献   

3.
Abstract– Bunburra Rockhole is the first meteorite fall photographed and recovered by the Desert Fireball Network in Australia. It is classified as an ungrouped achondrite similar in mineralogical and chemical composition to eucrites, but it has a distinct oxygen isotope composition. The question is if achondrites like Bunburra Rockhole originate from the same parent body as the howardite‐eucrite‐diogenite (HED) meteorites or from several separate, differentiated parent bodies. To address this question, we measured cosmogenic radionuclides and noble gases in the Bunburra Rockhole achondrite. The short‐lived radionuclides 22Na and 54Mn confirm that Bunburra Rockhole is a recent fall. The concentrations of 10Be, 26Al and 36Cl as well as the 22Ne/21Ne ratio indicate that Bunburra Rockhole was a relatively small object (R approximately 15 cm) in space, consistent with the photographic fireball observations. The cosmogenic 38Ar concentration yields a cosmic‐ray exposure (CRE) age of 22 ± 3 Myr, whereas 21Ne and 3He yield approximately 30% and approximately 60% lower ages, respectively, due to loss of cosmogenic He and Ne, mainly from plagioclase. With a CRE age of 22 Myr, Bunburra Rockhole is the first anomalous eucrite that overlaps with the main CRE peak of the HED meteorites. The radiogenic K‐Ar age of 4.1 Gyr is consistent with the U‐Pb age, while the young U,Th‐He age of approximately 1.4 Gyr indicates that Bunburra Rockhole lost radiogenic 4He more recently.  相似文献   

4.
We measured the He, Ne, and Ar isotopic concentrations and the 10Be, 26Al, 36Cl, and 41Ca concentrations in 56 iron meteorites of groups IIIAB, IIAB, IVA, IC, IIA, IIB, and one ungrouped. From 41Ca and 36Cl data, we calculated terrestrial ages indistinguishable from zero for six samples, indicating recent falls, up to 562 ± 86 ka. Three of the studied meteorites are falls. The data for the other 47 irons confirm that terrestrial ages for iron meteorites can be as long as a few hundred thousand years even in relatively humid conditions. The 36Cl‐36Ar cosmic ray exposure (CRE) ages range from 4.3 ± 0.4 Ma to 652 ± 99 Ma. By including literature data, we established a consistent and reliable CRE age database for 67 iron meteorites. The high quality of the CRE ages enables us to study structures in the CRE age histogram more reliably. At first sight, the CRE age histogram shows peaks at about 400 and 630 Ma. After correction for pairing, the updated CRE age histogram comprises 41 individual samples and shows no indications of temporal periodicity, especially not if one considers each iron meteorite group separately. Our study contradicts the hypothesis of periodic GCR intensity variations (Shaviv 2002, 2003), confirming other studies indicating that there are no periodic structures in the CRE age histogram (e.g., Rahmstorf et al. 2004; Jahnke 2005). The data contradict the hypothesis that periodic GCR intensity variations might have triggered periodic Earth climate changes. The 36Cl‐36Ar CRE ages are on average 40% lower than the 41K‐K CRE ages (e.g., Voshage 1967). This offset can either be due to an offset in the 41K‐K dating system or due to a significantly lower GCR intensity in the time interval 195–656 Ma compared to the recent past. A 40% lower GCR intensity, however, would have increased the Earth temperature by up to 2 °C, which seems unrealistic and leaves an ill‐defined 41K‐K CRE age system the most likely explanation. Finally, we present new 26Al/21Ne and 10Be/21Ne production rate ratios of 0.32 ± 0.01 and 0.44 ± 0.03, respectively.  相似文献   

5.
We calibrated the 81Kr‐Kr dating system for ordinary chondrites of different sizes using independent shielding‐corrected 36Cl‐36Ar ages. Krypton concentrations and isotopic compositions were measured in bulk samples from 14 ordinary chondrites of high petrologic type and the cosmogenic Kr component was obtained by subtracting trapped Kr from phase Q. The thus‐determined average cosmogenic 78Kr/83Kr, 80Kr/83Kr, 82Kr/83Kr, and 84Kr/83Kr ratiC(Lavielle and Marti 1988; Wieler 2002). The cosmogenic 78Kr/83Kr ratio is correlated with the cosmogenic 22Ne/21Ne ratio, confirming that 78Kr/83Kr is a reliable shielding indicator. Previously, 81Kr‐Kr ages have been determined by assuming the cosmogenic production rate of 81Kr, P(81Kr)c, to be 0.95 times the average of the cosmogenic production rates of 80Kr and 82Kr; the factor = 0.95 therefore accounts for the unequal production of the various Kr isotopes (Marti 1967a). However, Y should be regarded as an empirical adjustment. For samples whose 80Kr and 82Kr concentrations may be affected by neutron‐capture reactions, the shielding‐dependent cosmogenic (78Kr/83Kr)c ratio has been used instead to calculate P(81Kr)/P(83Kr), as for some lunar samples, this ratio has been shown to linearly increase with (78Kr/83Kr)c (Marti and Lugmair 1971). However, the 81Kr‐Kr ages of our samples calculated with these methods are on average ~30% higher than their 36Cl‐36Ar ages, indicating that most if not all the 81Kr‐Kr ages determined so far are significantly too high. We therefore re‐evaluated both methods to determine P(81Kr)c/P(83Kr)c. Our new Y value of 0.70 ± 0.04 is more than 25% lower than the value of 0.95 used so far. Furthermore, together with literature data, our data indicate that for chondrites, P(81Kr)c/P(83Kr)c is rather constant at 0.43 ± 0.02, at least for the shielding range covered by our samples ([78Kr/83Kr]c = 0.119–0.185; [22Ne/21Ne]c = 1.083–1.144), in contrast to the observations on lunar samples. As expected considering the method used, 81Kr‐Kr ages calculated either directly with this new P(81Kr)c/P(83Kr)c value or with our new Y value both agree with the corresponding 36Cl‐36Ar ages. However, the average deviation of 2% indicates the accuracy of both new 81Kr‐Kr dating methods and the precision of the new dating systems of ~10% is demonstrated by the low scatter in the data. Consequently, this study indicates that the 81Kr‐Kr ages published so far are up to 30% too high.  相似文献   

6.
Abstract— We present concentration and isotopic composition of He, Ne, and Ar in ten chondrites from the Nullarbor region in Western Australia as well as the concentrations of 84Ke, 129Xe, and 132Xe. From the measured cosmogenic 14C concentrations (Jull et al. 1995), shielding‐corrected production rates of 14C are deduced using cosmogenic 22Ne/21Ne ratios. For shielding conditions characterized by 22Ne/21Ne >1.10, this correction becomes significant and results in shorter terrestrial ages. The exposure ages of the ten Nullarbor chondrites are in the range of values usually observed in ordinary chondrites. Some of the meteorites have lost radiogenic gases as well as cosmogenic 3He. Most of the analyzed specimens show additional trapped Ar, Kr, and Xe of terrestrial origin. The incorporation of these gases into weathering products is common in chondrites from hot deserts.  相似文献   

7.
Abstract— We present a purely physical model for the calculation of depth‐ and size‐dependent production rates of cosmogenic nuclides by galactic cosmic‐ray (GCR) particles. besides the spectra of primary and secondary particles and the excitation functions of the underlying nuclear reactions, the model is based on only one free parameter—the integral number of gcr particles in the meteoroid orbits. We derived this value from analysis of radionuclide data in Knyahinya. We also show that the mean GCR proton spectrum in the meteoroid orbits has been constant over about the last 10 Ma. For the major target elements in stony meteoroids, we present depth‐ and size‐dependent production rates for 10Be, 14C, 26Al, 36Cl, and 53Mn as well as for the rare gas isotopes 3He, 20Ne, 21Ne, 22Ne, 36Ar, and 38Ar. The new data differ from semi‐empirical estimates by up to a factor of 4 but agree within ~20% with results obtained by earlier parametric or physical approaches. The depth and size dependence of the shielding parameter 22Ne/21Ne and the correlations 26Al vs. 10Be, 26Al vs. 53Mn, 10Be/21Ne vs. 22Ne/21Ne, and 36Ar vs. 36Cl for deciphering preatmospheric sizes, shielding depths, terrestrial residence times, and exposure histories are also discussed.  相似文献   

8.
Abstract— We performed a comprehensive study of the He, Ne, and Ar isotopic abundances and of the chemical composition of bulk material and components of the H chondrites Dhajala, Bath, Cullison, Grove Mountains 98004, Nadiabondi, Ogi, and Zag, of the L chondrites Grassland, Northwest Africa 055, Pavlograd, and Ladder Creek, of the E chondrite Indarch, and of the C chondrites Hammadah al Hamra 288, Acfer 059, and Allende. We discuss a procedure and necessary assumptions for the partitioning of measured data into cosmogenic, radiogenic, implanted, and indigenous noble gas components. For stone meteorites, we derive a cosmogenic ratio 20Ne/22Ne of 0.80 ± 0.03 and a trapped solar 4He/3He ratio of 3310 ± 130 using our own and literature data. Chondrules and matrix from nine meteorites were analyzed. Data from Dhajala chondrules suggest that some of these may have experienced precompaction irradiation by cosmic rays. The other chondrules and matrix samples yield consistent cosmic‐ray exposure (CRE) ages within experimental errors. Some CRE ages of some of the investigated meteorites fall into clusters typically observed for the respective meteorite groups. Only Bath's CRE age falls on the 7 Ma double‐peak of H chondrites, while Ogi's fits the 22 Ma peak. The studied chondrules contain trapped 20Ne and 36Ar concentrations in the range of 10?6–10?9 cm3 STP/g. In most chondrules, trapped Ar is of type Q (ordinary chondritic Ar), which suggests that this component is indigenous to the chondrule precursor material. The history of the Cullison chondrite is special in several respects: large fractions of both CR‐produced 3He and of radiogenic 4He were lost during or after parent body breakup, in the latter case possibly by solar heating at small perihelion distances. Furthermore, one of the matrix samples contains constituents with a regolith history on the parent body before compaction. It also contains trapped Ne with a 20Ne/22Ne ratio of 15.5 ± 0.5, apparently fractionated solar Ne.  相似文献   

9.
Abstract— We report measurements of 26AI, 10Be, 41Ca, and 36Cl in the silicate and metal phases of 11 mesosiderites, including several specimens each of Budulan and Estherville, of the brecciated meteorite Bencubbin, and of the iron meteorite Udei Station. Average production rate ratios (atom/atom) for metal phase samples from Estherville and Budulan are 26Al/10Be = 0.77 ± 0.02; 36Cl/10Be = 5.3 ± 0.2. For a larger set of meteorites that includes iron meteorites and other mesosiderites, we find 26Al/10Be = 0.72 ± 0.01 and 36Cl/10Be = 4.5 ± 0.2. The average 41Ca/36Cl production rate ratio is 1.10 ± 0.04 for metal separates from Estherville and four small iron falls. The 41Ca activities in dpm/(kg Ca) of various silicate separates from Budulan and Estherville span nearly a factor of 4, from <400 to >1600, indicating preatmospheric radii of >30 cm. After allowance for composition, the activities of 26Al and 10Be (dpm/kg silicate) are similar to values measured in most ordinary chondrites and appear to depend only weakly on bulk Fe content. Unless shielding effects are larger than suggested by the 36Cl and 41Ca activities of the metal phases, matrix effects are unimportant for 10Be and minor for 26Al. Noble gas concentrations and isotopic abundances are reported for samples of Barea, Emery, Mincy, Morristown, and Marjalahti. New estimates of 36Cl/36Ar exposure ages for the metal phases agree well with published values. Neon‐21 production rates for mesosiderite silicates calculated from these ages and from measured 21Ne contents are consistently higher than predicted for L chondrites despite the fact that the mesosiderite silicates have lower Mg contents than L chondrites. We suggest that the elevation of the 21Ne production rate in mesosiderite silicates reflects a “matrix effect,” that is, the influence of the higher Fe content of mesosiderites, which acts to enhance the flux of low‐energy secondary particles and hence the 21Ne production from Mg. As 10Be production is relatively insensitive to this matrix effect, 10Be/21Ne ages give erroneously low production rates and high exposure ages. By coincidence, standard 22Ne/21Ne based “shielding” corrections give fairly reliable 21Ne production rates in the mesosiderite silicates.  相似文献   

10.
Abstract— Cosmogenic He, Ne, and Ar were measured in the iron meteorites Grant (IIIAB) and Carbo (IID) to re‐determine their preatmospheric geometries and exposure histories. We also investigated the influence of sulphur‐ and/or phosphorus‐rich inclusions on the production rates of cosmogenic Ne. Depth profiles measured in Grant indicate a preatmospheric center location 117 mm left from the reference line and 9 mm below bar B, which is clearly different (?10 cm) from earlier results (?165 mm left from the reference line on bar F). For Carbo the preatmospheric center location was found to be 120 mm right of the reference line and 15 mm above bar J, which is in agreement with literature data. The new measurements indicate a spherical preatmospheric shape for both meteorites and, based on literature 36C1 data, the radii were estimated to be about 32 cm and 70 cm for Grant and Carbo, respectively. We demonstrate that minor elements like S and P have a significant influence on the production rates of cosmogenic Ne. In our samples, containing on average 0.5% S and/or P, about 20% of 21Ne was produced from these minor elements. Using measured 21Ne concentrations and endmember 22Ne/21Ne ratios for Fe + Ni and S + P, respectively, we show that it is possible to correct for 21Ne produced from S and/or P. The thus corrected data are then used to calculate new 41K‐40K exposure ages—using published K data—which results in 564 ± 78 Ma for Grant and 725 ± 100 Ma for Carbo. The correction always lowers the 21Ne concentrations and consequently decreases the 41K‐40K exposure ages. The discrepancies between 36Cl‐36Ar and 41K‐40K ages are accordingly reduced. The existence of a significant long‐term variation of the GCR, which is based on a former 30–50% difference between 41K‐40K and 36Cl‐36Ar ages, may warrant re‐investigation.  相似文献   

11.
Abstract— We measured the concentrations of noble gases in 32 ordinary chondrites from the Dar al Gani (DaG) region, Libya, as well as concentrations of the cosmogenic radionuclides 14C, 10Be, 26Al, 36Cl, and 41Ca in 18 of these samples. Although the trapped noble gases in five DaG samples show ratios typical of solar or planetary gases, in all other DaG samples, they are dominated by atmospheric contamination, which increases with the degree of weathering. Cosmic ray exposure (CRE) ages of DaG chondrites range from ?1 Myr to 53 Myr. The CRE age distribution of 10 DaG L chondrites shows a cluster around 40 Myr due to four members of a large L6 chondrite shower. The CRE age distribution of 19 DaG H chondrites shows only three ages coinciding with the main H chondrite peak at ?7 Myr, while seven ages are <5 Myr. Two of these H chondrites with short CRE ages (DaG 904 and 908) show evidence of a complex exposure history. Five of the H chondrites show evidence of high shielding conditions, including low 22Ne/21Ne ratios and large contributions of neutron‐capture 36Cl and 41Ca. These samples represent fragments of two or more large pre‐atmospheric objects, which supports the hypothesis that the high H/L chondrite ratio at DaG is due to one or more large unrecognized showers. The 14C concentrations correspond to terrestrial ages <35 kyr, similar to terrestrial ages of chondrites from other regions in the Sahara but younger than two DaG achondrites. Despite the loss of cosmogenic 36Cl and 41Ca during oxidation of metal and troilite, concentrations of 36Cl and 41Ca in the silicates are also consistent with 14C ages <35 kyr. The only exception is DaG 343 (H4), which has a 41Ca terrestrial age of 150 ± 40 kyr. This old age shows that not only iron meteorites and achondrites but also chondrites can survive the hot desert environment for more than 50 kyr. A possible explanation is that older meteorites were covered by soils during wetter periods and were recently exhumed by removal of these soils due to deflation during more arid periods, such as the current one, which started ?3000 years ago. Finally, based on the 26Al/21Ne and 10Be/21Ne systematics in 16 DaG meteorites, we derived more reliable estimates of the 10Be/21Ne production rate ratio, which seems more sensitive to shielding than was predicted by the semi‐empirical model of Graf et al. (1990) but less sensitive than was predicted by the purely physical model of Leya et al. (2000).  相似文献   

12.
Abstract– We measured cosmogenic radionuclides and noble gases in the L3–6 chondrite breccia Northwest Africa (NWA) 869, one of the largest meteorite finds from the Sahara. Concentrations of 10Be, 26Al, and 36Cl in stone and metal fractions of six fragments of NWA 869 indicate a preatmospheric radius of 2.0–2.5 m. The 14C and 10Be concentrations in three fragments yield a terrestrial age of 4.4 ± 0.7 kyr, whereas two fragments show evidence for a recent change in shielding, most likely due to a recent impact on the NWA meteoroid, approximately 105 yr ago, that excavated material up to approximately 80 cm deep and exposed previously shielded material to higher cosmic‐ray fluxes. This scenario is supported by the low cosmogenic 3He/21Ne ratios in these two samples, indicating recent loss of cosmogenic 3He. Most NWA samples, except for clasts of petrologic type 4–6, contain significant amounts of solar Ne and Ar, but are virtually free of solar helium, judging from the trapped 4He/20Ne ratio of approximately 7. Trapped planetary‐type Kr and Xe are most clearly present in the bulk and matrix samples, where abundances of 129Xe from decay of now extinct 129I are highest. Cosmogenic 21Ne varies between 0.55 and 1.92 × 10?8 cm3 STP g?1, with no apparent relationship between cosmogenic and solar Ne contents. Low cosmogenic (22Ne/21Ne)c ratios in solar gas free specimens are consistent with irradiation in a large body. Combined 10Be and 21Ne concentrations indicate that NWA 869 had a 4π cosmic‐ray exposure (CRE) age of 5 ± 1 Myr, whereas elevated 21Ne concentrations in several clasts and bulk samples indicate a previous CRE of 10–30 Myr on the parent body, most probably as individual components in a regolith. Unlike many other large chondrites, NWA 869 does not show clear evidence of CRE as a large boulder near the surface of its parent body. Radiogenic 4He concentrations in most NWA 869 samples indicate a major outgassing event approximately 2.8 Gyr ago that may have also resulted in loss of solar helium.  相似文献   

13.
We analyzed cosmogenic nuclides in metal and/or silicate (primarily olivine) separated from the main‐group pallasites Admire, Ahumada, Albin, Brahin, Brenham, Esquel, Finmarken, Glorieta Mountain, Huckitta, Imilac, Krasnojarsk, Marjalahti, Molong, Seymchan, South Bend, Springwater, and Thiel Mountains and from Eagle Station. The metal separates contained an olivine fraction which although small, <1 wt% in most cases, nonetheless contributes significantly to the budgets of some nuclides (e.g., up to 35% for 21Ne and 26Al). A correction for olivine is therefore essential and was made using model calculations and/or empirical relations for the production rates of cosmogenic nuclides in iron meteoroids and/or measured elemental concentrations. Cosmic‐ray exposure (CRE) ages for the metal phases of the main‐group pallasites range from 7 to 180 Ma, but many of the ages cluster around a central peak near 100 Ma. These CRE ages suggest that the parent body of the main‐group pallasites underwent a major break‐up that produced most of the meteorites analyzed. The CRE age distribution for the pallasites overlaps only a small fraction of the distribution for the IIIAB iron meteorites. Most pallasites and IIIAB irons originated in different collisions, probably on different parent bodies; a few IIIABs and pallasites may have come out of the same collision but a firm conclusion requires further study. CRE ages calculated from noble gas and radionuclide data of the metal fraction are higher on average than the 21Ne exposure ages obtained for the olivine samples. As the metal and olivine fractions were taken in most cases from different specimens, the depth‐dependency of the production rate ratio 10Be/21Ne in metal, not accounted for in our calculations, may explain the difference.  相似文献   

14.
Abstract– We present 40Ar‐39Ar dating results of handpicked mineral separates and whole‐rock samples of Nakhla, Lafayette, and Chassigny. Our data on Nakhla and Lafayette and recently reported ages for some nakhlites and Chassigny ( Misawa et al. 2006 ; Park et al. 2009 ) point to formation ages of approximately 1.4 Ga rather than 1.3 Ga that is consistent with previous suggestions of close‐in‐time formation of nakhlites and Chassigny. In Lafayette mesostasis, we detected a secondary degassing event at approximately 1.1 Ga, which is not related to iddingsite formation. It may have been caused by a medium‐grade thermal event resetting the mesostasis age but not influencing the K‐Ar system of magmatic inclusions and the original igneous texture of this rock. Cosmic‐ray exposure ages for these meteorites and for Governador Valadares were calculated from bulk rock concentrations of cosmogenic nuclides 3He, 21Ne, and 38Ar. Individual results are similar to literature data. The considerable scatter of T3, T21, and T38 ages is due to systematic uncertainties related to bulk rock and target element chemistry, production rates, and shielding effects. This hampers efforts to better constrain the hypothesis of a single ejection event for all nakhlites and Chassigny from a confined Martian surface terrain ( Eugster 2003 ; Garrison and Bogard 2005 ). Cosmic‐ray exposure ages from stepwise release age spectra using 38Ar and neutron induced 37Ar from Ca in irradiated samples can eliminate errors induced by bulk chemistry on production rates, although not from shielding conditions.  相似文献   

15.
Abstract— We measured the concentrations of the cosmogenic radionuclides 10Be, 26Al, 36Cl, and 41Ca in the stone and metal fractions of 15 fragments of the Gold Basin L4 chondrite shower, as well as noble gases in 18 Gold Basin fragments. A comparison of 10Be, 26Al, and 41Ca concentrations with calculated production rates from two different models indicates that the Gold Basin samples came from depths of about 10 cm to more than 150 cm in an object with a radius of 3–5 m. As was predicted by recent model calculations, the noble gases show a reversal of the 22Ne/21Ne ratio at very high shielding. The 21Ne/10Be and 21Ne/26Al ratios in most samples are constant and correspond to a 4π exposure age of 18 ± 2 Myr. However, three Gold Basin samples show a 30–120% excess of 21Ne implying that they were previously exposed close to the surface of the parent body, whereas the other samples were buried several meters deeper. Concentrations of neutron‐capture 36Ar in most samples are consistent with measured concentrations of neutron‐capture 36Cl and an exposure age of 18 Myr. Large excesses of neutron‐capture 36Ar were found in those samples with an excess of 21Ne, providing additional evidence of a first‐stage exposure on the parent body. The excess of spallation‐produced 21Ne and neutron‐capture‐produced 36Ar in these samples indicate a first‐stage exposure of 35–150 Myr on the parent body. The radiogenic 4He and 40Ar concentrations indicate a major impact on the parent body between 300 and 400 Myr ago, which must have preceded the impacts that brought the Gold Basin meteoroid to the surface of the parent body and then expelled it from the parent body 18 Myr ago.  相似文献   

16.
Abstract— We measured cosmogenic radionuclides (10Be, 26Al, and 36Cl) and noble gases (He, Ne, and Ar) in 10 specimens of the Mocs L6 chondrite to determine the exposure history and preatmospheric relationship among fragments from known locations in the strewn field. Cosmogenic noble gas contents alone are consistent with a simple irradiation exposure of 15.2 Ma. However, Mocs has very low 22Ne/21Ne ratios indicative of deep burial in a large meteoroid, but radionuclide levels at saturation values typical for much smaller meteoroids: this paradox suggests a possible complex exposure. For the latter case, we propose a two‐stage exposure history in which Mocs initially was deeply buried in a large object for 110 Ma, followed by exposure in a 65 cm object for 10.5 Ma. Relative shielding was inferred from the measured 22Ne/21Ne ratios assuming constant 22Ne/21Ne production for all samples during the first stage. These shielding levels, which are supported by estimates based on 36Cl production by neutron capture, indicate a possible relationship between depth of samples in the Mocs meteoroid and fall location in the strewn field.  相似文献   

17.
Abstract— Calcium‐aluminum‐rich inclusions (CAIs) were among the first solids in the solar system and were, similar to chondrules, created at very high temperatures. While in chondrules, trapped noble gases have recently been detected, the presence of trapped gases in CAIs is unclear but could have important implications for CAI formation and for early solar system evolution in general. To reassess this question, He, Ne, and Ar isotopes were measured in small, carefully separated and, thus, uncontaminated samples of CAIs from the CV3 chondrites Allende, Axtell, and Efremovka. The 20Ne/22Ne ratios of all CAIs studied here are <0.9, indicating the absence of trapped Ne as, e.g., Ne‐HL, Ne‐Q, or solar wind Ne. The 21Ne/22Ne ratios range from 0.86 to 0.72, with fine‐grained, more altered CAIs usually showing lower values than coarse‐grained, less altered CAIs. This is attributed to variable amounts of cosmogenic Ne produced from Na‐rich alteration phases rather than to the presence of Ne‐G or Ne‐R (essentially pure 22Ne) in the samples. Our interpretation is supported by model calculations of the isotopic composition of cosmogenic Ne in minerals common in CAIs. The 36Ar/38Ar ratios are between 0.7 and 4.8, with fine‐grained CAIs within one meteorite showing higher ratios than the coarse‐grained ones. This agrees with higher concentrations of cosmogenic 36Ar produced by neutron capture on 35Cl with subsequent β?‐decay in finer‐grained, more altered, and thus, more Cl‐rich CAIs than in coarser‐grained, less altered ones. Although our data do not strictly contradict the presence of small amounts of Ne‐G, Ne‐R, or trapped Ar in the CAIs, our noble gas signatures are most simply explained by cosmogenic production, mainly from Na‐, Ca‐, and Cl‐rich minerals.  相似文献   

18.
Abstract– We measured the concentrations and isotopic ratios of the cosmogenic noble gases He, Ne, and Ar in the very large iron meteorite Xinjiang (IIIE). The 3He and 4He data indicate that a significant portion of the cosmogenic produced helium has been lost via diffusion or in a recent impact event. High 22Ne/21Ne ratios indicate that contributions to the cosmogenic 21Ne from sulfur and/or phosphorous are significant. By combining the measured nuclide concentrations with model calculations for iron meteorites we were able to determine the preatmospheric diameter of Xinjiang to 260–320 cm, which corresponds to a total mass of about 70–135 tons. The cosmic‐ray exposure age of Xinjiang is 62 ± 16 Ma, i.e., relatively short compared to most of the other iron meteorites. With the current database we cannot firmly determine whether Xinjiang experienced a complex irradiation history. The finding of 3He and 4He losses might argue for a recent impact event and therefore for a complex exposure.  相似文献   

19.
Abstract— Cosmic‐ray‐produced (cosmogenic) nuclides were studied in fragments of the Brenham pallasite, a large stony iron meteorite. The contents of light noble gases (He, Ne, and Ar) and long‐lived radionuclides (10Be, 26Al, 36Cl, and 53Mn), produced by nuclear reactions with cosmic rays, were measured in the separated metal and olivine phases from numerous samples representing a wide range of shielding conditions in the meteoroid. The distribution of cosmogenic nuclide concentrations in the metal follows patterns similar to that observed in large iron meteorites. Shielding effects were estimated from the relative proportions of low‐ and high‐energy reaction products. The production rates varied, from surface to interior, by a factor of more than several hundred. The 36Cl‐36Ar cosmic‐ray exposure age of Brenham is 156 ± 8 Myr. This determination is based on a multiple nuclide approach that utilizes cosmogenic nuclide pairs. This approach not only yields a “shielding independent” exposure age but also demonstrates that the production of cosmogenic nuclides occurred in a single stage. The depth profiles of 10Be in the stone phase and 53Mn in the metal phase are shown superimposed on corresponding profiles from the Apollo 15 long drill core. Surprisingly low abundances of lithophile elements, such as K, U, and Th, provided a unique opportunity to examine the production systematics of those nuclides whose inventories typically have significant contributions from non‐cosmogenic sources, particularly radiogenic contributions. The U and Th contents of the olivine samples are extremely low, allowing detection of cosmogenic 4He production from oxygen, magnesium, silicon, and iron.  相似文献   

20.
Abstract— We have measured the concentrations of the cosmogenic radionuclides 10Be, 26Al and 36Cl (half-lives 1.51 Ma, 716 ka, and 300 ka, respectively) in two different laboratories by accelerator mass spectrometry (AMS) techniques, as well as concentrations and isotopic compositions of stable He, Ne and Ar in the Antarctic H-chondrite Allan Hills (ALH) 88019. In addition, nuclear track densities were measured. From these results, it is concluded that the meteoroid ALH 88019 had a preatmospheric radius of (20 ± 5) cm and a shielding depth for the analyzed samples of between 4 and 8 cm. Using calculated and experimentally determined production rates of cosmogenic nuclides, an exposure age of ~40 Ma is obtained from cosmogenic 21Ne and 38Ar. The extremely low concentrations of radionuclides are explained by a very long terrestrial age for this meteorite of 2 ± 0.4 Ma. A similarly long terrestrial age was found so far only for the Antarctic L-chondrite Lewis Cliff (LEW) 86360. Such long ages establish one boundary condition for the history of meteorites in Antarctica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号