首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new prediction technique based on logarithmic values is proposed to predict the maximum amplitude (R m) of a solar cycle from the preceding minimum aa geomagnetic index (aa min). The correlation between lnR m and lnaa min (r=0.92) is slightly stronger than that between R m and aa min (r=0.90). From this method, cycle 24 is predicted to have a peak size of R m(24)=81.7(1±13.2%). If the suggested error in aa (3 nT) before 1957 is corrected, the correlation coefficient between R m and aa min (r=0.94) will be slightly higher, and the peak of cycle 24 is predicted much lower, R m(24)=52.5±13.1. Therefore, the prediction of R m based on the relationship between R m and aa min depends greatly on the accurate measurement of aa.  相似文献   

2.
In the previous study (Dabas et al. in Solar Phys. 250, 171, 2008), to predict the maximum sunspot number of the current solar cycle 24 based on the geomagnetic activity of the preceding sunspot minimum, the Ap index was used which is available from the last six to seven solar cycles. Since a longer series of the aa index is available for more than the last 10 – 12 cycles, the present study utilizes aa to validate the earlier prediction. Based on the same methodology, the disturbance index (DI), which is the 12-month moving average of the number of disturbed days (aa≥50), is computed at thirteen selected times (called variate blocks 1,2,…,13; each of them in six-month duration) during the declining portion of the ongoing sunspot cycle. Then its correlation with the maximum sunspot number of the following cycle is evaluated. As in the case of Ap, variate block 9, which occurs exactly 48 months after the current cycle maximum, gives the best correlation (R=0.96) with a minimum standard error of estimation (SEE) of ± 9. As applied to cycle 24, the aa index as precursor yields the maximum sunspot number of about 120±16 (the 90% prediction interval), which is within the 90% prediction interval of the earlier prediction (124±23 using Ap). Furthermore, the same method is applied to an expanded range of cycles 11 – 23, and once again variate block 9 gives the best correlation (R=0.95) with a minimum SEE of ± 13. The relation yields the modified maximum amplitude for cycle 24 of about 131±20, which is also close to our earlier prediction and is likely to occur at about 43±4 months after its minimum (December 2008), probably in July 2012 (± 4 months).  相似文献   

3.
We study the evolution of the longitudinal asymmetry in solar activity through the wave packet technique applied to the period domain of 25 – 31 days (centered at the 27-day solar rotation period) for the sunspot number and geomagnetic aa index. We observe the occurrence of alternating smaller and larger amplitudes of the 11-year cycle, resulting in a 22-year periodicity in the 27-day signal. The evolution of the 22-year cycle shows a change of regime around the year 1912 when the 22-year period disappears from the sunspot number series and appears in the aa index. Other changes, such as a change in the correlation between solar and geomagnetic activity, took place at the same time. Splitting the 27-day frequency domain of aa index shows an 11-year cycle for higher frequencies and a pure22-year cycle for lower frequencies, which we attribute to higher latitude coronal holes. This evidence is particularly clear after 1940, which is another benchmark in the evolution of the aa index. We discuss briefly the mechanisms that could account for the observed features of the 22-year cycle evolution.  相似文献   

4.
A few prediction methods have been developed based on the precursor technique which is found to be successful for forecasting the solar activity. Considering the geomagnetic activity aa indices during the descending phase of the preceding solar cycle as the precursor, we predict the maximum amplitude of annual mean sunspot number in cycle 24 to be 111 ± 21. This suggests that the maximum amplitude of the upcoming cycle 24 will be less than cycles 21–22. Further, we have estimated the annual mean geomagnetic activity aa index for the solar maximum year in cycle 24 to be 20.6 ± 4.7 and the average of the annual mean sunspot number during the descending phase of cycle 24 is estimated to be 48 ± 16.8.  相似文献   

5.
R. P. Kane 《Solar physics》2007,243(2):205-217
For many purposes (e.g., satellite drag, operation of power grids on Earth, and satellite communication systems), predictions of the strength of a solar cycle are needed. Predictions are made by using different methods, depending upon the characteristics of sunspot cycles. However, the method most successful seems to be the precursor method by Ohl and his group, in which the geomagnetic activity in the declining phase of a sunspot cycle is found to be well correlated with the sunspot maximum of the next cycle. In the present communication, the method is illustrated by plotting the 12-month running means aa(min ) of the geomagnetic disturbance index aa near sunspot minimum versus the 12-month running means of the sunspot number Rz near sunspot maximum [aa(min ) versus Rz(max )], using data for sunspot cycles 9 – 18 to predict the Rz(max ) of cycle 19, using data for cycles 9 – 19 to predict Rz(max ) of cycle 20, and so on, and finally using data for cycles 9 – 23 to predict Rz(max ) of cycle 24, which is expected to occur in 2011 – 2012. The correlations were good (∼+0.90) and our preliminary predicted Rz(max ) for cycle 24 is 142±24, though this can be regarded as an upper limit, since there are indications that solar minimum may occur as late as March 2008. (Some workers have reported that the aa values before 1957 would have an error of 3 nT; if true, the revised estimate would be 124±26.) This result of the precursor method is compared with several other predictions of cycle 24, which are in a very wide range (50 – 200), so that whatever may be the final observed value, some method or other will be discredited, as happened in the case of cycle 23.  相似文献   

6.
Precursor techniques, in particular those using geomagnetic indices, often are used in the prediction of the maximum amplitude for a sunspot cycle. Here, the year 2008 is taken as being the sunspot minimum year for cycle 24. Based on the average aa index value for the year of the sunspot minimum and the preceding four years, we estimate the expected annual maximum amplitude for cycle 24 to be about 92.8±19.6 (1-sigma accuracy), indicating a somewhat weaker cycle 24 as compared to cycles 21 – 23. Presuming a smoothed monthly mean sunspot number minimum in August 2008, a smoothed monthly mean sunspot number maximum is expected about October 2012±4 months (1-sigma accuracy).  相似文献   

7.
Duhau  S. 《Solar physics》2003,213(1):203-212
A non-linear coupling function between sunspot maxima and aa minima modulations has been found as a result of a wavelet analysis of geomagnetic index aa and Wolf sunspot number yearly means since 1844. It has been demonstrated that the increase of these modulations for the past 158 years has not been steady, instead, it has occurred in less than 30 years starting around 1923. Otherwise sunspot maxima have oscillated about a constant level of 90 and 141, prior to 1923 and after 1949, respectively. The relevance of these findings regarding the forecasting of solar activity is analyzed here. It is found that if sunspot cycle maxima were still oscillating around the 141 constant value, then the Gnevyshev–Ohl rule would be violated for two consecutive even–odd sunspot pairs (22–23 and 24–25) for the first time in 1700 years. Instead, we present evidence that solar activity is in a declining episode that started about 1993. A value for maximum sunspot number in solar cycle 24 (87.5±23.5) is estimated from our results.  相似文献   

8.
H. Kiliç 《Solar physics》2009,255(1):155-162
The short-term periodicities in sunspot numbers, sunspot areas, and flare index data are investigated in detail using the Date Compensated Discrete Fourier Transform (DCDFT) for the full disk of the Sun separately over the rising, the maximum, and the declining portions of solar cycle 23 (1996 – 2006). While sunspot numbers and areas show several significant periodicities in a wide range between 23.1 and 36.4 days, the flare index data do not exhibit any significant periodicity. The earlier conclusion of Pap, Tobiska, and Bouwer (1990, Solar Phys. 129, 165) and Kane (2003, J. Atmos. Solar-Terr. Phys. 65, 1169), that the 27-day periodicity is more pronounced in the declining portion of a solar cycle than in the rising and maximum ones, seems to be true for sunspot numbers and sunspot area data analyzed here during solar cycle 23.  相似文献   

9.
R. P. Kane 《Solar physics》2007,246(2):471-485
Many methods of predictions of sunspot maximum number use data before or at the preceding sunspot minimum to correlate with the following sunspot maximum of the same cycle, which occurs a few years later. Kane and Trivedi (Solar Phys. 68, 135, 1980) found that correlations of R z(max) (the maximum in the 12-month running means of sunspot number R z) with R z(min) (the minimum in the 12-month running means of sunspot number R z) in the solar latitude belt 20° – 40°, particularly in the southern hemisphere, exceeded 0.6 and was still higher (0.86) for the narrower belt > 30° S. Recently, Javaraiah (Mon. Not. Roy. Astron. Soc. 377, L34, 2007) studied the relationship of sunspot areas at different solar latitudes and reported correlations 0.95 – 0.97 between minima and maxima of sunspot areas at low latitudes and sunspot maxima of the next cycle, and predictions could be made with an antecedence of more than 11 years. For the present study, we selected another parameter, namely, SGN, the sunspot group number (irrespective of their areas) and found that SGN(min) during a sunspot minimum year at latitudes > 30° S had a correlation +0.78±0.11 with the sunspot number R z(max) of the same cycle. Also, the SGN during a sunspot minimum year in the latitude belt (10° – 30° N) had a correlation +0.87±0.07 with the sunspot number R z(max) of the next cycle. We obtain an appropriate regression equation, from which our prediction for the coming cycle 24 is R z(max )=129.7±16.3.  相似文献   

10.
Correlated with the maximum amplitude (R max) of the sunspot cycle are the sum (R sum) and the mean (R mean) of sunspot number over the duration of the cycle, having a correlation coefficient r equal to 0.925 and 0.960, respectively. Runs tests of R max, R sum, and R mean for cycles 0–21 have probabilities of randomness P equal to 6.3, 1.2, and 9.2%, respectively, indicating a tendency for these solar-cycle related parameters to be nonrandomly distributed. The past record of these parameters can be described using a simple two-parameter secular fit, one parameter being an 8-cycle modulation (the so-called Gleissberg cycle or long period) and the other being a long-term general (linear) increase lasting tens of cycles. For each of the solar-cycle related parameters, the secular fit has an r equal to about 0.7–0.8, implying that about 50–60% of the variation in R max, R sum, and R mean can be accounted for by the variation in the secular fit.Extrapolation of the two-parameter secular fit of R max to cycle 22 suggests that the present cycle will have an R max = 74.5 ± 49.0, where the error bar equals ± 2 standard errors; hence, the maximum amplitude for cycle 22 should be lower than about 125 when sunspot number is expressed as an annual average or it should be lower than about 130 when sunspot number is expressed as a smoothed (13-month running mean) average. The long-term general increase in sunspot number appears to have begun about the time of the Maunder minimum, implying that the 314-yr periodicity found in ancient varve data may not be a dominant feature of present sunspot cycles.  相似文献   

11.
We use a precursor technique based on the geomagneticaa index during the decline (last 30%) of solar cycle 22 to predict a peak sunspot number of 158 (± 18) for cycle 23, under the assumption that solar minimum occurred in May 1996. This method appears to be as reliable as those that require a year of data surrounding the geomagnetic minimum, which typically follows the smoothed sunspot minimum by about six months.  相似文献   

12.
Results are presented from a study of various sunspot contrast parameters in broadband red (672.3 nm) Cartesian full-disk digital images taken at the San Fernando Observatory (SFO) over eight years, 1997 – 2004, of the twenty-third sunspot cycle. A subset of over 2700 red sunspots was analyzed and values of average and maximum sunspot contrast as well as maximum umbral contrast were compared to various sunspot parameters. Average and maximum sunspot contrasts were found to be significantly correlated with sunspot area (r s=− 0.623 and r s=− 0.714, respectively). Maximum umbral contrast was found to be significantly correlated with umbral area (r s=− 0.535). These results are in agreement with the works of numerous other authors. No significant dependence was detected between average contrast, maximum contrast, or maximum umbral contrast during the rising phase of the solar cycle (r s=0.024, r s=0.033, and r s=0.064, respectively). During the decay phase, no significant correlation was found between average contrast or maximum contrast and time (r s=− 0.057 and r s=0.009, respectively), with a weak dependence seen between maximum umbral contrast and cycle (r s=0.102).  相似文献   

13.
Because of the bimodal distribution of sunspot cycle periods, the Hale cycle (or double sunspot cycle) should show evidence of modulation between 20 and 24 yr, with the Hale cycle having an average length of about 22 yr. Indeed, such a modulation is observed. Comparison of consecutive pairs of cycles strongly suggests that even-numbered cycles are preferentially paired with odd-numbered following cycles. Systematic variations are hinted in both the Hale cycle period and R sum (the sum of monthly mean sunspot numbers over consecutively paired sunspot cycles). The preferred even-odd cycle pairing suggests that cycles 22 and 23 form a new Hale cycle pair (Hale cycle 12), that cycle 23 will be larger than cycle 22 (in terms of R M, the maximum smoothed sunspot number, and of the individual cycle value of R sum), and that the length of Hale cycle 12 will be longer than 22 yr. Because of the strong correlation (r = 0.95) between individual sunspot cycle values of R sum and R M, having a good estimate of R Mfor the present sunspot cycle (22) allows one to predict its R sum, which further allows an estimation of both R Mand R sum for cycle 23 and an estimation of R sum for Hale cycle 12. Based on Wilson's bivariate fit (r = 0.98), sunspot cycle 22 should have an R Mequal to 144.4 ± 27.3 (at the 3- level), implying that its R sum should be about 8600 ± 2200; such values imply that sunspot cycle 23 should have an R sum of about 10500 ± 2000 and an R Mof about 175 ± 40, and that Hale cycle 12 should have an R sum of about 19100 ± 3000.  相似文献   

14.
Observations of interplanetary magnetic field polarity, solar wind speed, and geomagnetic disturbance index (C9) during the years 1962–1975 are compared in a 27-day pictorial format that emphasizes their associated variations during the sunspot cycle. This display accentuates graphically several recently reported features of solar wind streams including the fact that the streams were faster, wider, and longer-lived during 1962–1964 and 1973–1975 in the declining phase of the sunspot cycle than during intervening years (Bame et al., 1976; Gosling et al., 1976). The display reveals strikingly that these high-speed streams were associated with the major, recurrent patterns of geomagnetic activity that are characteristic of the declining phase of the sunspot cycle. Finally, the display shows that during 1962–1975 the association between long-lived solar wind streams and recurrent geomagnetic disturbances was modulated by the annual variation (Burch, 1973) of the response of the geomagnetic field to solar wind conditions. The phase of this annual variation depends on the polarity of the interplanetary magnetic field in the sense that negative sectors of the interplanetary field have their greatest geomagnetic effect in northern hemisphere spring, and positive sectors have their greatest effect in the fall. During 1965–1972 when the solar wind streams were relatively slow (500 km s-1), the annual variation strongly influenced the visibility of the corresponding geomagnetic disturbance patterns.Visiting Scientist, Kitt Peak National Observatory, Tucson, Arizona.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

15.
Wavelet Analysis of solar,solar wind and geomagnetic parameters   总被引:3,自引:0,他引:3  
Prabhakaran Nayar  S.R.  Radhika  V.N.  Revathy  K.  Ramadas  V. 《Solar physics》2002,208(2):359-373
The sunspot number, solar wind plasma, interplanetary magnetic field, and geomagnetic activity index A p have been analyzed using a wavelet technique to look for the presence of periods and the temporal evolution of these periods. The global wavelet spectra of these parameters, which provide information about the temporal average strength of quasi periods, exhibit the presence of a variety of prominent quasi periods around 16 years, 10.6 years, 9.6 years, 5.5 years, 1.3 years, 180 days, 154 days, 27 days, and 14 days. The wavelet spectra of sunspot number during 1873–2000, geomagnetic activity index A p during 1932–2000, and solar wind velocity and interplanetary magnetic field during 1964–2000 indicate that their spectral power evolves with time. In general, the power of the oscillations with a period of less than one year evolves rapidly with the phase of the solar cycle with their peak values changing from one cycle to the next. The temporal evolution of wavelet power in R z, v sw, n, B y, B z, |B|, and A p for each of the prominent quasi periods is studied in detail.  相似文献   

16.
Periodicities in the occurrence rate of solar proton events   总被引:1,自引:0,他引:1  
Power spectral analyses of the time series of solar proton events during the past three solar cycles reveal a periodicity around 154 days. This feature is prominent in all of the cycles combined, cycles 19 and 21 individually but is only weak in cycle 20. These results are consistent with the presence of similar periodicities between 152 and 155 days in the occurrence rate of major solar flares, the sunspot blocking function (P s ), the 10.7 cm radio flux (F 10.7) and the sunspot number (R z ). This suggests that the circa 154-days periodicity may be a fundamental characteristic of the Sun. Periods around 50–52 days are also found in the combined data set and in the three individual cycles in general agreement with the detection of this periodicity in major flares in cycle 19 and inP s ,F 10.7, andR z in cycle 21. The cause of the 155 day period remains unknown. The spectra contain lines (or show power at frequencies) consistent with a model in which the periodicity is caused by differential rotation of active zones and a model in which it is related to beat frequencies between solar oscillations, as proposed by Wolff.  相似文献   

17.
R. P. Kane 《Solar physics》1992,140(1):171-180
Solar cycle No. 22 which started in 1986 seems to have already passed through a maximum. The maximum annual mean sunspot number was 157 for 1989. The maximum twelve-month running average was 159, centered on July 1989. For cycle 21, the similar value was 165 centered at December 1979. Thus, cycle 22 is slightly weaker than cycle 21. Schatten and Sofia (1987) had predicted a stronger cycle 22 (170 ± 25) as compared to cycle 21 (140 ± 20). Predictions based on single variable analysis, viz., R z (max) versus aa(min) were 165 and came true. Predictions based on a bivariate analysis, viz., R z (max) versus aa(min) and R z (min) were 130 and proved to be underestimates. Other techniques gave over- or underestimates.  相似文献   

18.
To study the quantitative relationship between the brightness of the coronal green line 530.5 nm Fe xiv and the strength of the magnetic field in the corona, we have calculated the cross-correlation of the corresponding synoptic maps for the period 1977 – 2001. The maps of distribution of the green-line brightness I were plotted using every-day monitoring data. The maps of the magnetic field strength B and the tangential B t and radial B r field components at the distance 1.1 R were calculated under potential approximation from the Wilcox Solar Observatory (WSO) photospheric data. It is shown that the correlation I with the field and its components calculated separately for the sunspot formation zone ±30° and the zone 40 – 70° has a cyclic character, the corresponding correlation coefficients in these zones changing in anti-phase. In the sunspot formation zone, all three coefficients are positive and have the greatest values near the cycle minimum decreasing significantly by the maximum. Above 40°, the coefficients are alternating in sign and reach the greatest positive values at the maximum and the greatest negative values, at the minimum of the cycle. It is inferred that the green-line emission in the zone ±30° is mainly controlled by B t, probably due to the existence of low arch systems. In the high-latitude zone, particularly at the minimum of the cycle, an essential influence is exerted by B r, which may be a manifestation of the dominant role of large-scale magnetic fields. Near the activity minimum, when the magnetic field organization is relatively simple, the relation between I and B for the two latitudinal zones under consideration can be represented as a power-law function of the type IB q. In the sunspot formation zone, the power index q is positive and varies from 0.75 to 1.00. In the zone 40 – 70°, it is negative and varies from −0.6 to −0.8. It is found that there is a short time interval approximately at the middle of the ascending branch of the cycle, when the relationship between I and B vanishes. The results obtained are considered in relation to various mechanisms of the corona heating.  相似文献   

19.
R. P. Kane 《Solar physics》2009,255(1):163-168
The number of coronal mass ejections (CMEs) erupting from the Sun follows a trend similar to that of sunspot numbers during the rising and maximum phase of the solar cycle. In the declining phase, the CME number has large fluctuations, dissimilar to those of sunspot numbers. In several studies of solar – interplanetary and solar – terrestrial relationships, the sunspot numbers and the 2800-MHz flux (F10) are used as representative of solar activity. In the rising phase, this may be adequate, but in the declining phase, solar parameters such as CMEs may have a different behaviour. Cosmic-ray Forbush decreases may occur even when sunspot activity is low. Therefore, when studying the solar influence on the Earth, one has to consider that although geomagnetic conditions at solar maximum will be disturbed, conditions at solar minimum may not be necessarily quiet.  相似文献   

20.
Zhanle Du 《Solar physics》2011,273(1):231-253
The shape of each sunspot cycle is found to be well described by a modified Gaussian function with four parameters: peak size A, peak timing t m, width B, and asymmetry α. The four-parameter function can be further reduced to a two-parameter function by assuming that B and α are quadratic functions of t m, computed from the starting time (T 0). It is found that the shape can be better fitted by the four-parameter function, while the remaining behavior of the cycle can be better predicted by the two-parameter function when using the data from a few (about two) months after the starting time defined by the smoothed monthly mean sunspot numbers. As a new solar cycle is ongoing, its remaining behavior can be constructed by the above four- or two-parameter function. A running test shows that the maximum amplitude of the cycle can be predicted to within 15% at about 25 months into the cycle based on the two-parameter function. A preliminary modeling to the first 24 months of data available for the current cycle indicates that the peak of cycle 24 may probably occur around June 2013±7 months with a size of 72±11. The above results are compared to those by quasi-Planck functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号