首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Small particles and winds of sufficient strength to move them have been detected from Venera and Pioneer-Venus data and suggest the existence of aeolian processes on Venus. The Venus wind tunnel (VWT) was fabricated in order to investigate the behavior of windblown particles in a simulated Venusian environment. Preliminary results show that sand-size material is readily entrained at the wind speeds detected on Venus and that saltating grains achieve velocities closely matching those of the wind. Measurements of saltation threshold and particle flux for various particle sizes have been compared with theoretical models which were developed by extrapolation of findings from Martian and terrestial simulations. Results are in general agreement with theory, although certain discrepancies are apparent which may be attributed to experimental and/or theoretical-modeling procedures. Present findings enable a better understanding of Venusian surface processes and suggest that aeolian processes are important in the geological evolution of Venus.  相似文献   

2.
J.E. Ainsworth  J.R. Herman 《Icarus》1977,30(2):314-319
An examination of the effect of assumptions in the interpretation of the Venera wind data is made as a rebuttal to the suggestion by A.T. Young that the 140 m/sec Venera 8 horizontal wind at 45 km may be either spurious or anomalous. The Venera measurements of wind speed along with the Mariner measurements of a lower region of strong turbulence are evidence for a wide band of variable high-speed retrograde horizontal winds which girdle Venus at the equator. In the prevalent interpretation of the Mariner 10 uv photographs, the region of the top of the visible cloud is characterized by variable high-speed retrograde horizontal winds which orbit Venus with an average period of 4 Earth days, and by many features indicating vertical convection. This interpretation, together with the possibility of atmospheric corotation due to frictional coupling, suggests that the Venera-Mariner band of winds at 45 km extends well beyond the top of the visible cloud, and that the upper region of strong turbulence detected by the Mariners may result in part from vertical convection currents carried along by high-speed horizontal winds. In an alternate interpretation of the Mariner 10 uv photographs Young suggests that the predominant motions may be traveling wavelike disturbances with a 4-day period rather than bulk motion of the atmosphere. For this case the upper region of strong turbulence is interpreted as due mostly to vertical wind shear resulting from a rapid decrease in wind speed within a relatively short distance above the Venera-Mariner band of high-speed winds.  相似文献   

3.
Mid-infrared images of almost the entire Venus nightside hemisphere obtained by the Longwave Infrared Camera (LIR) onboard Akatsuki on December 9 and 10, 2010 reveal that the brightness temperature of the cloud-top ranges from 237 K in the cold polar collars to 243 K in the equatorial region, significantly higher than the values obtained by Venera 15. Other characteristic features of the temperature distributions observed are zonal belt structures seen in the middle and low latitudes and patchy temperature structures or quasi-periodic streaks extending in a north–south direction in the northern middle latitudes and southern low latitudes.  相似文献   

4.
Geological exploration of the solar system shows that solid-surfaced planets and satellites are subject to endogenic processes (volcanism and tectonism) and exogenic processes (impact cratering and gradation). The present appearance of planetary suffaces is the result of the complex interplay of these processes and is the linked to the evolution of planets and their environments. Terrestrial planets that have dynamic atmospheres are Earth, Mars, and Venus. Atmospheric interaction with the surfaces of these planets, oraeolian activity, is a form of gradation. The manifestation of aeolian activity is the weathering and erosion of rocks into sediments, transportation of the weathered debris (mostly sand and dust) by the wind, and deposition of windblown material. Wind-eroded features include small-scale ventifacts (wind-sculptured rocks) and large-scale landforms such as yardangs. Wind depositional features include dunes, drifts, and mantles of windblown sediments. These and other aeolian features are observed on Earth, Mars, and Venus.  相似文献   

5.
This paper presents the principal results of wind velocity and turbulence measurements in the Venus atmosphere during the Venera flights.  相似文献   

6.
The Venera 8 descent module measured pressure, temperature, winds and illumination as a function of altitude in its landing on July 22, 1972, just beyond the terminator in the illuminated hemisphere of Venus. The surface temperature and pressure is 741 ± 7°K and 93 ± 1.5kgcm?2, consistent with early Venera observations and showing either no diurnal variation or insignificant diurnal variation in temperature and pressure in the vicinity of the morning terminator. The atmosphere is adiabatic down to the surface. The horizontal wind speed is low near the surface, about 35m/sec between 20 and 40km altitude, and increasing rapidly above 48km altitude to 100–140m/sec, consistent with the 4-day retrograde rotation of the ultraviolet clouds. The illumination at the center of the day hemisphere of Venus is calculated to be about 1% of the solar flux at the top of the atmosphere, consistent with greenhouse models and high enough to permit photography of the Venus surface by future missions. The attenuation below 35km altitude is explained by Rayleigh scattering with no atmospheric aerosols; above 35km there must be substantial extinction of incident light.  相似文献   

7.
Some features of the wind-velocity determination based on the results of Doppler shift measurements from the Venera probes during their descent in the Venus atmosphere are discussed. The validity of assumptions used in the reduction and analysis of these data are treated in connection with the preceding paper by Ainsworth and Herman. We conclude that the Venera velocity profiles are a valid representation of Venus atmospheric conditions.  相似文献   

8.
In this pre-Magellan review of aeolian processes on Venus we show that the average rate of resurfacing is less than 2 to 4 km/Ga, based on the impact crater size frequency distribution derived from Venera observations, reasonable values of the impact flux, and the assumption of steady state conditions between crater production and obliteration. Viscous relaxation of crater topography, burial by volcanic deposits, tectonic disruption, chemical and mechanical weathering and erosion, and accumulation of windblown sediments probably all contribute to resurfacing. Based on the rate of disappearance of radar-bright haloes around impact craters, the rate of removal of blocky surfaces has been estimated to be about 10–2 km/Ga. Pioneer-Venus altimetry data show that the average relative permittivity (at 17 cm radar wavelength) of the surface is too high for exposure of soils 10 cm deep, except for ~5% of the planet located primarily in tessarae terrains. The tectonically disrupted tessarae terrains may be sites of soil generation caused by tectonic disruption of bedrock and the presence of relatively steep slopes, or they may be terrains that serve as traps for windblown material. The overall impression is that Venus is a geologically active planet, but one dominated by volcanism and tectonism. On the other hand, theoretical considerations and experimental data on weathering and transport of surface materials suggest rather different conditions. Thermochemical arguments have been advanced that show: (1) CO2 and SO2 incorporate into weathering products at high elevation, (2) transport of weathered material by the wind to lower-elevation plains, and (3) re-equilibration of weathered material, releasing both CO2 and SO2. In addition, kinetic data suggest a rate of anhydrite formation of 1 km/Ga, a value comparable to the soil erosion rate on Mars, a planet with an active aeolian environment. Experiments and theoretical studies of aeolian processes show that measured surface winds are capable of moving sand and silt on Venus. Assuming that there is a ready sand supply, the flux could be as high as 2.5 × 10–5 g/cm/s, a value comparable to desert terrains on Earth. In an active aeolian abrasion environment, sand grains could have lifetimes <103 years. In addition, comminuted debris may be cold-welded to surfaces at the same time as abrasion is occurring. Magellan altimetry and SAR observations should allow assessment of which model for venusian surface modification (active vs. inactive surficial processes) is correct, given the global coverage, high spatial resolution, the calibrated nature of the data, and the potential during extended missions of acquiring multiple SAR views of the surface.Geology and Tectonics of Venus, special issue edited by Alexander T. Basilevsky (USSR Acad. of Sci. Moscow), James W. Head (Brown University, Providence), Gordon H. Pettengill (MIT, Cambridge, Massachusetts) and R. S. Saunders (J.P.L., Pasadena).  相似文献   

9.
Pioneer Venus radar data has provided images (resolution 20- to 40-km) of approximately 50% of the total surface of Venus in a band between 45 ° N to 15 ° S. These data are used to map the broad radar characteristics of the equatorial region on the basis of radar brightness and texture. Seven radar units are defined and are used to assess the geologic character of the equatorial region. These units fall into two distinct classes, those that are radar-bright (35% of the equatorial region) which correspond to highlands and zones of intense tectonic deformation, and radar-dark units, corresponding primarily to plains (65% of the equatorial region). The correspondence between features in the 15 ° region of overlap between the Pioneer Venus and Venera 15/16 images is examined and used to extend units mapped in the northern high latitudes into the equatorial region. On the basis of the distribution of the radar units, properties of RMS slope, reflectivity, the scattering behavior of the surface, and topographic signature, seven physiographic units are mapped in the equatorial region and are identified by increasing complexity as plains (undivided), dark halo plains, upland rises, upland plateaus, interhighland tectonic zones, tectonically segmented linear highlands, and tectonic junctions. The physiographic units are distributed in a nearly continuous interconnecting zone of volcanic rises and tectonic features that extends for nearly 360 ° around the equator of the planet. The distribution of large circular structures interpreted as coronae is also examined and it is concluded that the abundances of the largest structures, diameters greater than 500 km, is less than in the northern high latitudes with a notable absence of smaller coronae. The absence of small coronae may be due to the resolution limit of the Pioneer Venus data since analyses of higher resolution Arecibo and Goldstone imagery suggests that a number of corona-like features not identified in the PV data are present.'Geology and Tectonics of Venus', special issue edited by Alexander T. Basilevsky (USSR Acad. of Sci. Moscow), James W. Head (Brown University, Providence), Gordon H. Pettengill (MIT, Cambridge, Massachusetts) and R. S. Saunders (J.P.L., Pasadena).  相似文献   

10.
B.R. White 《Icarus》1981,46(2):226-232
Estimates of the trajectories of saltating particles on Venus show the level of saltation on Ve low when compared to either Earth or Mars. Particles in saltation on Venus obtain maximum heights of only 1 cm over a wide range in particle size and surface wind speeds. Their path lenghts are only a few centimeters at the wind speed of 1 and 2 m/sec. The entire saltation process and particle trajectories are insensitive to changes in surface pressure over the range from 70 to 100 bars and to changes in surface temperature over the range from 600 to 900°K. Secondly, the net rate of surface material transport due to saltation on Venus is small when compared to Earth or Mars. This result is due to the dense Venusian atmosphere. It is estimated that approximately 10 times more surface materials is transported by saltation on Earth than on Venus for dynamically similar conditions. And approximately 250 times more material is moved by the saltation process on Mars than on Venus, again for dynamically similar conditions. Both these estimates apply over a wide range of particle diameter, from 0.01 to 7 mm. Thirdly, the ripple wavelenghts may be small, such that thay may not be detected by the high-resolution radar images of the surface of Venus.  相似文献   

11.
Recent probes of the planet Venus reveal a probable surface temperature exceeding 700K and a pressure exceeding 100 atm. A very dusty lower atmosphere may exist which is composed of micron-sized particles kept airborne by mild turbulence and a gentle circulation of deep adiabatic currents. A study of surface conditions responsible for generation and persistence of surface dust clouds is of fundamental importance in the radiative and dynamic properties of the atmosphere. Also spurious radar echoes may be caused by suspended particulate matter, thus explaining the high relief reported by radar altimeters.Equations describing transportation and deposition of dust and sand have been solved for the surface conditions of Venus. It is concluded that the minimum wind velocity for initiating grain movement is about one order of magnitude smaller than on Earth. In addition, this minimum wind velocity occurs for smaller particles on Venus than on Earth. Once the particles are raised, they can be maintained aloft for longer periods of time and over a larger size range on Venus.Surface structures such as ripples evolved from aeolian deposition are likely to be of smaller vertical dimensions but larger horizontally when compared with equivalent structures on Earth.  相似文献   

12.
The radar images of Maxwell Montes and Thessera Fortuna obtained by Venera 15 and 16 were analyzed. It was concluded that the structures are not aeolian but are tectonic deformations. Because of the lack of large-scale erosion, these deformations must have been formed near the surface and, therefore, one of the principal stress axes must have been vertical. The orientations of the stress ellipsoid in several localities are presented. Differences between localities in the types of deformation can be explained by changes in the orientation of the intermediate stress axis, while the major stress axis remains constant. The latter is generally horizontal and oriented EW. Other differences may be caused by a shift from a compressional to an extensional regime. Inhomogeneities in the stress field have caused shear zones. Block diagrams are developed to explain the postulated structures.The described features are not unique to the studied areas; thus the method used and the conclusions reached have planetary implications.  相似文献   

13.
Recent high resolution, high incidence angle Arecibo radar images of southern Ishtar Terra and flanking plains of Guinevere and Sedna on Venus reveal details of topographic features resolved by Pioneer Venus. The high incidence angles of Arecibo images favor the detection of surface roughness-related features, and complement recently obtained low incidence angle Venera 15/16 images in which changes in surface topographic slope are well portrayed. Four provinces have been defined on the basis of radar characteristics in Arecibo images and topography. Volcanism and tectonism are the dominant processes in the mapped area, which has an average age of about 0.5–1.0 billion years (Ivanov et al., 1986). These processes vary in relative significance in the mapped provinces and it is likely that geologic activity has occurred simultaneously in all four provinces. On the basis of stratigraphic evidence, however, a general sequence is proposed which represents the major activity in each area. The low predominantly volcanic plains of Guinevere and Sedna Planitiae are the relatively oldest terrain. A major region of complex tectonic deformation, the Southern Ishtar Transition Zone, postdates much of the low plains and delineates the steep-sloped flanks of Ishtar Terra. Lakshmi Planum is characterized by a distinctive volcanic style (large low edifices, calderas, flanking plains) and at least in part postdates the Southern Ishtar Transition Zone. Relatively recent plains-style volcanism occurs locally in Sedna Planitia and embays the Southern Ishtar Transition Zone. Compressional deformation appears to dominate the mountains of the Ishtar plateau, but the nature of the tectonic deformation in the Southern Ishtar Transition Zone is very complex and likely represents a combination of extension, compression and strikeslip deformation. Arecibo data reveal additional coronae in the lowlands, suggesting that corona formation is an even more widespread process than indicated by the Venera data.  相似文献   

14.
Characteristics of rock populations on the surfaces of Mars and Venus can be derived from analyses of rock morphology and morphometry data. We present measurements of rock sizes and sphericities made from Viking lander images using an interactive digital image display system. The rocks considered are in the gravel size range (16–256 mm in diameter). Mean sphericities, form ratios, and roundness factors are found to be very similar for both Viking lander sites. Size distributions, however, demonstrate differences between the sites; there are significantly more cobble size fragments at VL-2 than at VL-1. A model calling for aphanitic basalts emplaced as ejecta or lava flows at the Viking sites is supported by the rock shape, size, and roundness data.Morphologic features pertaining to the modification history of a rock are considered for Mars and Venus. A multi-parameter clustering algorithm is utilized to objectively categorize martian and venusian rocks in terms of various criteria. Erosional markings such as flutes are demonstrated to be most important in separating VL-1 rock morphologic groups, while rock form (i.e., shape) represents the primary separator of subpopulations at VL-2 and the Venera landing sites. Fillets are common around VL-1 and Venera 10 fragments. Obstacle scours occur frequently only at VL-1. Cavities in rocks are ubiquitous at all lander sites except Venera 9. Eolian processes, possibly assisted by local solution weathering, are a strong candidate for the origin of cavities and flutes in martian rocks.  相似文献   

15.
We present an analysis of VIRTIS-M-IR observations of 1.74 μm emission from the nightside of Venus. The 1.74 μm window in the near infrared spectrum of Venus is an ideal proxy for investigating the evolution of middle and lower cloud deck opacity of Venus because it exhibits good signal to noise due to its brightness, good contrast between bright and dark regions, and few additional sources of extinction beside the clouds themselves. We have analyzed the data from the first 407 orbits (equivalent to 407 Earth days) of the Venus Express mission to determine the magnitude of variability in the 1.74 μm radiance. We have also performed an analysis of the evolution of individual features over a span of roughly 5–6 h on two successive orbits of Venus Express. We find that the overall 1.74 μm brightness of Venus has been increasing through the first 407 days of the mission, indicating a gradual diminishing of the cloud coverage and/or thickness, and that the lower latitudes exhibited more variability and more brightening than higher latitudes. We find that individual features evolve with a time scale of about 30 h, consistent with our previous analysis. Analysis of the evolution and motion of the clouds can be used to estimate the mesoscale dynamics within the clouds of Venus. We find that advection alone cannot explain the observed evolution of the features. The measured vorticity and divergence in the vicinity of the features are consistent with evolution under the influence of significant vertical motions likely driven by a radiative dynamical feedback. We measure a zonal wind speed of around 65 m/s, and a meridional wind speed around 2.5 m/s by tracking the motion of the central region of the features. But we also find that the measured wind speeds depend strongly on the points chosen for the wind speed analysis.  相似文献   

16.
In situ measurements of the Venus atmosphere, made by the entry probes Venera 4, 5, 6, and 7, and data from the Mariner 5 flyby, have provided essentially new and reliable information and have powerfully contributed to our understanding of the nearest planet. The abundances of the principal atmospheric constituents and the temperature and pressure profiles down to the Venus surface were obtained for the first time. It was shown that the atmosphere is composed primarily of CO2 and that N2 (if any) and H2O are relatively minor admixtures. In the region of the Venera 7 landing, the temperature and pressure at the Venus surface were established as equal to 747 ± 20°K and 90 ± 15 kgcm−2. Space vehicles have also provided limited but quite important information on the physical properties of the Venus upper atmosphere and ionosphere, and on the interaction of the planet with the interplanetary environment. The main characteristics of the Venus atmosphere are discussed here with emphasis on the Venera results, including instrumentation, data processing, and altitude profiles.  相似文献   

17.
We present simulated images of energetic neutral atoms (ENAs) produced in charge exchange collisions between solar wind protons and neutral atoms in the exosphere of Venus, and make a comparison with earlier results for Mars. The images are found to be dominated by two local maxima. One produced by charge exchange collisions in the solar wind, upstream of the bow shock, and the other close to the dayside ionopause. The simulated ENA fluxes at Venus are lower than those obtained in similar simulations of ENA images at Mars at solar minimum conditions, and close to the fluxes at Mars at solar maximum. Our numerical study shows that the ENA flux decreases with an increasing ionopause altitude. The influence of the Venus nighttime hydrogen bulge on the ENA emission is small.  相似文献   

18.
Radio emissions attributed to lightning on Venus have been recorded by Venera 11 and 12 and by the Pioneer Venus Orbiter. The Venera descent records are compared to patterns of radio propagation within the Venusian atmosphere and an explanation is found for some timing trends that, if correct, indicates the lightning was below 33 km in altitude.  相似文献   

19.
A hypothesis is considered in which the 36Ar found on Venus is of solar origin. This possibility is quantitatively discussed within the framework of present theories of planetary accumulation by sweep up of planetesimals under gas-free conditions. Solar wind implantation of 36Ar would take place by irradiation of accumulating material during the first ≈105 years of planetary growth, provided that the flux of solar wind was enhanced by a factor of ≈100 at that time. Enrichment of Venus in implanted gas would be a consequence of the irradiated material being initially confined to the innermost edge of the radially opaque circusolar planetesimal disk predicted by these theories. The observed atmospheric data require a Ne/Ar fractionation by a factor of ≈100 during the planetesimal stage. It is also necessary that there be very little mixing of irradiated planetesimals from the inner edge of disk to the distance (≈1 AU) at which the Earth formed. The hypothesis can be tested by measurement of the abundance of Kr and Xe in the Venus atmosphere. Venera data indicate a terrestrial 36Ar/Kr ratio, in disagreement with the solar wind hypothesis. In contrast, the Pioneer experiments find a lower limit to this ratio, well above the terrestrial value, that is compatible with the hypothesis. These experiments also show that Venus' 36Ar/Xe ratio does not correspond to the so-called “planetary” trapped inert gas composition. The inert of Venus could be related to result of admixture of gas with solar composition. The inert gas on Venus could be related to that found in enstatite chondrites.  相似文献   

20.
《Planetary and Space Science》2007,55(12):1712-1728
The structure of the Venus atmosphere is discussed. The data obtained in the 1980s by the last Soviet missions to Venus: orbiters Venera 15, 16 and the entry probes and balloons of Vega 1 and 2 are compared with the Venus International Reference Atmosphere (VIRA) model. VIRA is based on the data of the extensive space investigations of Venus in the 1960s and 1970s. The results of the IR Fourier Spectrometry experiment on Venera 15 are reviewed in detail. This instrument is considered as a precursor of the long wavelength channel of the Planetary Fourier Spectrometer on Venus Express.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号