首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Icarus》1987,70(3):506-516
We present 2.7-mm interferometric observations of Saturn made near opposition in June 1984 and June 1985, when the ring opening angle was 19° and 23°, respectively. By combining the data sets we produce brightness maps of Saturn and its rings with a resolution of 6″. The maps show flux from the ring ansae, and are the first direct evidence of ring flux in the 3-mm wavelength region. Modelfits to the visibility data yield a disk brightness temperature of 156 ± 5°K, a combined A, B, and C ring brightness temperature of 19 ± 3°K, and a combined a ring cusp (region of the rings which block the planet's disk) brightness temperature of 85 ± 5°K. These results imply a normal-to-the-ring optical depth for the combined ABC ringof 0.31 ± 0.04, which is nearly the same value found for wavelenghts from the UV to 6 cm. About 6°K of the ring flux is attributed to scattered planetary emission, leaving an intrinsic thermal component of ∼13°K. These results, together with the ring particle size distributions found by the Voyager radio occultation experiments, are consistent with the idea that the ring particles are composed chiefly of water ice.  相似文献   

2.
F.H. Briggs  B.H. Andrew 《Icarus》1980,41(2):269-277
We present high-resolution interferometry of Uranus at 6 cm wavelength and single-dish observations of the disk-averaged brightness temperature, TB, at 2.8 and 4.8 cm wavelength. The 1978 measurements of TB of 228 ± 2,243 ± 9, and 259 ± 4 K at 2.8, 4.8, and 6 cm, respectively, support the finding of M. J. Klein and J. A. Turegano (1978, Astrophy. J.224, L31–L34) that the brightness temperature of Uranus has been rising. There is no evidence for radio emission from outside the visible disk at 6 cm. Radiation from a synchrotron radiation belt or from the Uranian rings is certainly less than 10% of the total radio flux. The interferometry shows a possible 55 ± 20 K difference in brightness temperature between the equator and the currently exposed pole. The pole appears to be ~275 K while the equator is ~220 K. However, a permanent gradient of this magnitude is insufficient to account for the rise in disk-averaged brightness by simple reorientation of Uranus' globe relative to our line of sight. The changing insolation probably triggers a redistribution of the trace constituent NH3 which is responsible for the radio opacity. The NH3 may be interacting strongly with H2S on Uranus.  相似文献   

3.
We present radio interferometric observations of the Algol-type binary system RZ Cassiopeiae made with the VLA and MERLIN arrays at 6 cm over an incomplete orbital cycle of the system (1.195 d). We detected RZ Cas with both instruments. The images were unresolved in both cases, with angular extents comparable to the synthesized beams. The peak flux density in the VLA image was 1.14 mJy beam−1 and in the MERLIN image it was 0.93 mJy beam−1. The derived brightness temperatures are  4.02 × 108  and  4.35 × 108 K  and the effective electron energies are 0.347 and 0.346 MeV for the MERLIN and VLA data respectively. The radio light curve shows an interesting modulation centred close to the primary eclipse which seems to correlate with ASCA SIS observations of the system. The results can be interpreted as an emitting region on the outer hemisphere of the cool component aligned along the centroid axis of the binary system.  相似文献   

4.
We present the results of our study of Jupiter and its radiation belts with a resolution of 6 arcsec at a frequency of 30 GHz using the RATAN-600 radio telescope and a MARS matrix radiometer with a sensitivity of about 6 mK ?1/2. We monitored the integrated emission from the Jovian disk with a signal-to-noise ratio of more than 1000 for 30 days and showed its radio emission to be highly stable (≈1%). Based on daily data for the one-dimensional radio brightness distribution over the disk, we mapped the longitudinal radio brightness distribution over 100 rotation periods of Jupiter around its axis. Neither hot nor cold spots with a temperature contrast of more than 1 K were detected; their contribution to the total radio flux from the Jovian disk was no more than 0.2%. The one-dimensional latitudinal (longitude-averaged) distribution obtained on VLA with a similar resolution is shown to be an order of magnitude less uniform than the one-dimensional longitudinal (latitude-averaged) distribution obtained on RATAN-600. We have studied the radiation belts at such high frequencies for the first time and estimated their intensities and variability levels under the effect of external factors. The variable component of the radiation belts was shown to have not exceeded 0.5% of the integrated spectrum of Jupiter over the entire period of its observations. We estimated the contribution of the Galilean satellites (“Galilean noise”) in low-resolution observations; the accuracy of allowing for this noise is determined by the accuracy of estimating the temperatures of the satellites at the observing frequency. The uncertainty in the total flux does not exceed 0.1%.  相似文献   

5.
The 325-MHz observations of the quasar OH 471 (z=3.4) in 1985–1996 revealed variability of its radio emission. Over this period, its radio flux density increased by a factor of 1.6. A steep-spectrum radio source was identified $2_.^\prime 5$ north of the quasar. Its radio flux density is 1.46 mJy at 5 GHz and 14.5 mJy at 350 MHz.  相似文献   

6.
《Icarus》1987,71(1):159-177
Observations of Mars at wavelengths of 2 and 6 cm were made using the VLA in its A configuration. The season on Mars was late spring in the Northern Hemisphere (Ls = 60°). The sub-Earth latitude was 25°N, so the geometry for viewing the north polar region was optimal. Whole-disk brightness temperatures were estimated to be 193.2 ± 1.0°K at 2 cm and 191.2 ± 0.6°K at 6 cm (formal errors only). Since measurements of the polarized flux were taken at the same time, whole-disk effective dielectric constants could be estimated and from these estimates of subsurface densities could be made. The results of these calculations yielded a whole-disk effective dielectric constant of 2.34 ± 0.05, which implied a subsurface density of 1.24 ± 0.11 g cm−3 at 2 cm. The same calculations at 6 cm yielded an effective density of 1.45 ± 0.10 g cm−3 and dielectric constant of 2.70 ± 0.10. From the mapped data these parameters were also estimated as a function of latitude between latitudes of 15°S and 60°N. In addition to the effective dielectric constant and subsurface density, the radio absorption length of the subsurface was estimated. The radio absorption length for most of these latitudes was about 15 wavelengths with formal errors on the order of 5 or 10 wavelengths. The estimation of the effective dielectric constant at most latitudes was between 2 and 3.5 with only slight differences between the two different wavelengths. These estimates of the dielectric constant lead to estimation of the subsurface densities as a function of latitude. Most calculations of the subsurface density yielded results between 1 and 2 g cm−3 with errors on the order of 0.5 g cm−3. These results seem to imply that the subsurface is not much different than the surface as observed by the Viking and Mariner missions. In line with this, a comparison of the correlation of the dielectric constant at each wavelength with the thermal inertia determined from infrared measurements of the surface temperature shows that the correlation at 2 cm is slightly stronger than the correlation at 6 cm. Since the 2-cm radiation comes from a region closer to the surface than the 6-cm radiation, this decrease in correlation with depth is consistent with the idea that the physical makeup of the subsurface is varying slowly in the near subsurface region.  相似文献   

7.
《New Astronomy Reviews》1999,43(8-10):629-632
We present preliminary results from a VLBI survey at λ=6 cm of a sample of 35 sources with flux densities of 2–100 mJy. These sources were selected from the VLA FIRST survey at λ=20 cm, in a 3 degree field around the bright calibrator 1156+295, simply by imposing S20>10 mJy and θ<5 arcsec. MERLIN observations at λ6 cm detected 70/127 of these sources with a threshold of 2 mJy at 50 mas resolution and the closest 35 of these to the calibrator were observed with the VLBA+EVN in snapshot mode at λ6 cm. These sources are a mixture of flat and steep-spectrum sources and include: weak flat-spectrum nuclei of large radio galaxies, low power AGN in nearby galaxies and radio quiet quasars. With these short observations, the sensitivity is limited and most appear as either core-jets or simple point sources on the milliarcsec scale. Nonetheless, it is encouraging that with only 10 minutes observation per source, at least 35% of all sources with S20>10 mJy can be detected and imaged with global 6 cm VLBI.  相似文献   

8.
The eclipse of May 20, 1966 was observed at the wavelengths of 3.2 and 9.1 cm by three Arcetri expeditions. The curves obtained by deriving the occultation curves have been filtered by digital techniques to cut off high frequency noise; by them, many characteristics of three sources of the S-component present on the disk have been studied: temperature, dimensions, emitted flux and brightness distribution. Isophotes of the latter are compared with isophotes of the corresponding H plages for two sources: a close similarity results for one of them. Moreover it is shown that: (a) the height above the photosphere of the sources at = 9.1 cm is greater than that of the sources at = 3.2 cm; (b) the maximum of the radio emission is not always placed exactly above a sunspot or above the sunspot group barycentre.Fitting the observed brightness temperatures, as frequency functions, by a power law and using a temperature model of an active region, the electron density distribution can be deduced. The obtained electron density distributions are compared with various models of active regions.  相似文献   

9.
The radio counterparts to the 15-μm sources in the European Large Area ISO Survey southern fields are identified in 1.4-GHz maps down to ∼80 μJy. The radio–mid-infrared correlation is investigated and derived for the first time at these flux densities for a sample of this size. Our results show that radio and mid-infrared (MIR) luminosities correlate almost as well as radio and far-infrared (FIR), at least up to   z ≃ 0.6  . Using the derived relation and its spread together with the observed 15-μm counts, we have estimated the expected contribution of the 15-μm extragalactic populations to the radio source counts and the role of MIR starburst galaxies in the well-known 1.4-GHz source excess observed at sub-mJy levels. Our analysis demonstrates that IR emitting starburst galaxies do not contribute significantly to the 1.4-GHz counts for strong sources, but start to become a significant fraction of the radio source population at flux densities ≲0.5–0.8 mJy. They are expected to be responsible for more than 60 per cent of the observed radio counts at ≲0.05 mJy. These results are in agreement with the existing results on optical identifications of faint radio sources.  相似文献   

10.
A.D. Kuzmin  B.Y.A Losovsky 《Icarus》1973,18(2):222-223
A model of an icy surface and interior for Callisto gives a predicted thermal radio emission in good agreement with experimental radio astronomical data. The radio brightness temperature of an icy surface will not depend on wavelength. This may be a method to test icy surface hypotheses. The brightness temperatures of other satellites with icy surfaces will be equal to 200–220°K and will not depend on wavelength.  相似文献   

11.
Very Large Array (VLA) radio observations of precisely-located GRB error boxes have been performed to search for fading and quiescent emission associated with -ray bursts. These observations were made as quickly as 23 hours and as late as 13 years after the time of the burst. Our measurements presented here have found GRB error boxes to be empty of sources to the 80 µJy level ( = 3.6 cm) at 9 months, to 1 mJy (20 cm) at 9 days, and probably to 5 mJy (20 cm) at 23 hours after the bursts.  相似文献   

12.
We report the extragalactic radio-continuum detection of 15 planetary nebulae (PNe) in the Magellanic Clouds (MCs) from recent Australia Telescope Compact Array+Parkes mosaic surveys. These detections were supplemented by new and high-resolution radio, optical and infrared observations which helped to resolve the true nature of the objects. Four of the PNe are located in the Small Magellanic Cloud (SMC) and 11 are located in the Large Magellanic Cloud (LMC). Based on Galactic PNe the expected radio flux densities at the distance of the LMC/SMC are up to ∼2.5 and ∼2.0 mJy at 1.4 GHz, respectively. We find that one of our new radio PNe in the SMC has a flux density of 5.1 mJy at 1.4 GHz, several times higher than expected. We suggest that the most luminous radio PN in the SMC (N S68) may represent the upper limit to radio-peak luminosity because it is approximately three times more luminous than NGC 7027, the most luminous known Galactic PN. We note that the optical diameters of these 15 Magellanic Clouds (MCs) PNe vary from very small (∼0.08 pc or 0.32 arcsec; SMP L47) to very large (∼1 pc or 4 arcsec; SMP L83). Their flux densities peak at different frequencies, suggesting that they may be in different stages of evolution. We briefly discuss mechanisms that may explain their unusually high radio-continuum flux densities. We argue that these detections may help solve the 'missing mass problem' in PNe whose central stars were originally  1–8 M  . We explore the possible link between ionized haloes ejected by the central stars in their late evolution and extended radio emission. Because of their higher than expected flux densities, we tentatively call this PNe (sub)sample –'Super PNe'.  相似文献   

13.
The results are presented of an extensive programme of optical and infrared imaging of radio sources in a complete subsample of the Leiden–Berkeley Deep Survey. The LBDS Hercules sample consists of 72 sources observed at 1.4 GHz, with flux densities S 1.41.0 mJy, in a 1.2 deg2 region of Hercules. This sample is almost completely identified in the g , r , i and K bands, with some additional data available at J and H . The magnitude distributions peak at r ≃22 mag, K ≃16 mag and extend down to r ≃26 mag, K ≃21 mag. The K -band magnitude distributions for the radio galaxies and quasars are compared with those of other radio surveys. At S 1.4 GHz≲1 Jy, the K -band distribution does not change significantly with radio flux density. The sources span a broad range of colours, with several being extremely red ( r − K ≳6). Though small, this is the most optically complete sample of mJy radio sources available at 1.4 GHz, and is ideally suited for studying the evolution of the radio luminosity function out to high redshifts.  相似文献   

14.
We present a catalog of radio sources extending the RCR (RATAN Cold Refined) catalog to the right-ascension interval 2h ≤ RA < 7h. The list of objects was obtained in the process of a reprocessing of the observations of the “Cold” experiment conducted in 1980–1981 on RATAN-600 radio telescope at the declination of SS433, and the reduction of the 1987–1999 surveys of the same experiment.We report the right ascensions and integrated flux densities for 237 sources found at 7.6 cm (3.94 GHz) and their spectral exponents at 3.94 and 0.5 GHz. Twenty-nine sources of the list, which are mostly weaker than 30 mJy at 3.94 GHz, have available data only at two frequencies—1.4 and 3.94 Hz.We approximated the spectra of the sources using all catalogs available in the CATS and VizieR databases that meet the survey strip, and, in some cases, using the flux densities estimates from VLSSr,GLEAM, TGSS, and GB6 survey maps.We constructed the histograms of the spectral indices of the sources and verified the reliability of the identifications of sources found in the scans by comparing the coordinates and integrated flux densities with the corresponding parameters listed in the NVSS catalog. In the right ascension interval considered we found no objects at the 10–15 mJy level lacking in decimeter-wave catalogs.  相似文献   

15.
Observations of the solar eclipse on March 29, 2006, at the Laboratory of Radio Astronomy of the CrAO showed that the radio radius of the Sun at a wavelength of 1 m in the direction of the first contact was R d = 1.12 R during solar activity minimum between cycles 23 and 24. The brightness temperature of the undisturbed Sun was T d = (0.6 ± 0.06) × 106 K. There was a noise storm source above the sunspot group NOAA 0865 whose bright nucleus had a size of 1′.3 and a brightness temperature T b = 16 × 106 K. The noise storm bursts were emitted from the region of the bright nucleus above the group NOAA 0865 and were absent during its covering by the disk of the Moon. Thermal radiation from a coronal condensation with a brightness temperature of (1?2) × 106 K extending out from the visible solar disk to 2′.7 was observed during the eclipse above the eastern limb sunspot group NOAA 0866. The bright nucleus in this limb source appeared 42 min after eclipse termination and persisted in the ensuing days. This may be indicative of the time of its emergence from behind the radio horizon formed by regular refraction of radio waves in the corona. The refractive displacement was measured by comparison with the eclipse observations at a shorter wavelength of 12 cm. Its value of 0′.96 is close to the calculated value of 0′.8.  相似文献   

16.
Interferometric observations of Saturn and its rings made at the Owens Valley Radio Observatory at a wavelength of 3.71 cm ar fit to models of the Saturn brightness structure. The models have allowed us to estimate the brightness temperatures and optical thicknesses of the A, B, and C rings as well as the brightness temperature of the planetary disk. The most accurate results are the ratios of the ring temperatures to the planet temperature of 0.030 ± 0.012, 0.050 ± 0.010, and 0.040 ± 0.014 for the A, B, and C rings, respectively. The best estimates of the ring optical thicknesses are τA = 0.2 ± 0.1, τB = 0.9 ± 0.2, and τC = 0.1 ± 0.1. The actual brightness temperatures, which are affected by the absolute calibration errors, are Tplanet = 178 ± 8, TA = 5.2 ± 2.0, TB = 9.1 ± 1.8, and TC = 7.1 ± 2.6°K. The particle single-scattering albedo that would be most consistent with the observations is slightly less than one, but probably greater than 0.95. The observations are consistent with particles which conservatively scatter the thermal emission from Saturn to the Earth and emit no thermal emission of their own. The 3.71-cm optical depths which we have estimated are very close to the visible wavelength optical depths. This similarity indicates that the ring particles must be at least a few centimeters in size, although we feel that the particles may well be much larger than this in view of the closeness of the visible and microwave optical depths. Particles which are nearly conservative scatterers at our wavelength and at least a few centimeters in size must be composed of a material which is either a very good reflector of microwaves or a very poor absorber of them. At this time, water ice seems to be the most likely candidate since it is a very poor absorber of microwaves and has been detected in the rings spectroscopically.  相似文献   

17.
We have observed the slowly varying component of solar radio emission at a frequency of 34.5 MHz with half power beam widths of 26/40 in the east-west and north-south directions, respectively. It is found that the observed brightness temperatures vary within the limits of 0.3×106K to 1.5×106K, and the average half power widths of the brightness distribution on the Sun is about 3R . Thermal emission from coronal regions of various electron densities and temperatures with and without the magnetic field has been computed and compared with the observed results.  相似文献   

18.
We present spectra for a sample of radio sources from the FIRST survey, and use them to define the form of the redshift distribution of radio sources at mJy levels. We targeted 365 sources and obtained 46 redshifts (13 per cent of the sample). We find that our sample is complete in redshift measurement to R ∼18.6, corresponding to z ∼0.2. Galaxies were assigned spectral types based on emission-line strengths. Early-type galaxies represent the largest subset (45 per cent) of the sample and have redshifts 0.15≲ z ≲0.5; late-type galaxies make up 15 per cent of the sample and have redshifts 0.05≲ z ≲0.2; starbursting galaxies are a small fraction (∼6 per cent), and are very nearby ( z ≲0.05). Some 9 per cent of the population have Seyfert 1/quasar-type spectra, all at z ≳0.8, and 4 per cent are Seyfert 2 type galaxies at intermediate redshifts ( z ∼0.2).
Using our measurements and data from the Phoenix survey (Hopkins et al.), we obtain an estimate for N ( z ) at S 1.4 GHz≥1 mJy and compare this with model predictions. At variance with previous conclusions, we find that the population of starbursting objects makes up ≲5 per cent of the radio population at S ∼1 mJy.  相似文献   

19.
We have observed a number of minor radio flares in Cyg X-3 using the MERLIN array. Photometric observations show the system to be highly active with multiple flares on hourly time-scales over the one month observing programme. Analysis of the power spectrum of the source show no persistent periodicities in these data, and no evidence of the 4.8-h orbital period. An upper limit of 15 mJy can be placed on the amplitude of any sinusoidal variation of source flux at the orbital period. The brightness temperature of a flare is typically T b≥109–1010 K , with a number of small flares of 5-min duration having brightness temperatures of T b≥ few×1011 K . For such a change in flux to occur within a typical 10-min time-scale, the radiation must originate from plasmons with a size ≤1.22 au. This emission is unlikely to originate close to the centre of the system as both the jets and compact object are buried deep within an optically thick stellar wind. Assuming a spherically symmetric wind, plasmons would become visible at distances ∼13 au from the core.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号