首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Forty-three lightcurves of 21 asteroids obtained in Arizona between 1968 and 1978 are presented with a brief discussion of each. Included are four asteroids not previously observed: 34 Circe, 138 Tolosa, 162 Laurentia, and 1058 Grubba. Rotation periods are at least 12 hr for Circe, either 6.42 or 12.98 hrs for Laurentia, and more than 18 hr for Grubba. Magnitudes and colors for 12 of the asteroids are given. It appears that 10 Hygiea has lightcurves which sometimes have two maxima per rotation cycle and sometimes three. A strong relation between amplitude and solar phase angle is seen for 39 Laetitia. The first direct evidence of an opposition effect for 89 Julia is given. 511 Davida is discussed in an effort to understand the pole orientation using photometric astrometry.  相似文献   

2.
B lightcurves are presented for seven asteroids (4, 20, 29, 31, 39, 115, and 349) together with visual and infrared color curves (BV, BK, VJ, and JK). A V broadband lightcurve for 40 Harmonia is also included. Color variations are observed for three asteroids (4, 31, and 115). The variation in the colors of 4 Vesta is discussed in terms of differences in surface composition. Pole positions and shapes are estimated for 20 Massalia, 29 Amphitrite, 31 Euphrosyne, and 39 Laetitia. Various UBVRIJHK colors are listed for these asteroids as well as for 5, 19, 44, 52, 83, 145, 386, and 471.  相似文献   

3.
As the number of observatories located on the surface of Earth is increasing largely in decades more and more photometric data of asteroids is observed to make the research about their various physical and chemical characteristics. Compared with hundreds of thousands of asteroids found up to now, rare hundreds of three-dimensional shape models of asteroids have been built from the tremendous photometric data with incessant observations, i.e. lightcurves. For some specific asteroid already with many observed lightcurves, the unceasing observation is not too much valuable, nevertheless an additional lightcurve observed in a request viewing aspect can refine the shape model and other related parameters. This article taking the asteroid (6) HEBE for example, attempts to introduce a method to make the observation plan by combining the request of the shape model and the orbital limitation of asteroids. Through analyzing the distribution of lightcurves of (6) HEBE, small cabins without any lightcurve data are found, which can be filled by new observations at some specified dates when the positions of Asteroid, Sun, Earth are limited as the request geometry.  相似文献   

4.
Thermal observations of large asteroids at millimeter wavelengths have revealed high amplitude rotational lightcurves. Such lightcurves are important constraints on thermophysical models of asteroids, and provide unique insight into the nature of their surface and subsurface composition. A better understanding of asteroid surfaces provides insight into the composition, physical structures, and processing history of these surviving remnants from the formation of our solar system. In addition, detailed observations of the larger asteroids, accompanied by thermophysical models with appropriate temporal and spatial resolution, promise to decrease uncertainties in their flux predictions. Of particular interest are the near-Earth objects, which can be observed at large phase angles, permitting better assessment of the thermal response of their unilluminated surfaces. The high sensitivity of ALMA will enable us to detect many small bodies in all the major groups, to obtain lightcurves for a large sample of main-belt and near-Earth objects, to resolve the surfaces of some large objects, and to separate the emission from primary and secondary objects in binary pairs. In addition to the science goals of asteroid studies, these bodies may also prove useful operationally because those with known shapes and well-characterized lightcurves could be employed for flux calibration by ALMA and other high frequency instruments.  相似文献   

5.
The results of photometric observations of (87) Sylvia, 2006 VV2, (90) Antiopa, and (39) Laetitia asteroids in 2006–2008 are presented. The specific features of light curves are considered for each object. In particular, for asteroid (87) Sylvia, possible mutual phenomena in this triple system are identified. Asteroid 2006 VV2 manifests a strong dependence of the light curve on the filter color, which testifies to the presence of inhomogeneities on its surface. The previously unknown brightness variation period with a duration of about three days was obtained for this asteroid. For binary asteroid (90) Antiopa, the strong dependence of its brightness on the phase angle was noticed; this may testify to the very flattened shape of its components. Considerable time variations of the shape of the light curve for asteroid (39) Laetitia may testify either to its complex shape or to its binary character.  相似文献   

6.
In deriving the physical properties of asteroids from their photometric data, the scattering law plays an important role, although the shape variations of asteroids result in the main variations in lightcurves. By following the physical behaviors of light reflections, Hapke et al. deduced complex functions to represent the scattering process, however, it is very hard to accurately simulate the surface scattering law in reality. For simplicity, other numerical scattering models are presented for efficiently calculating the physical properties of asteroids, such as the Lommel-Seeliger(LS) model. In this article,these two models are compared numerically. It is found that in some numerical applications the LS model in simple form with four parameters can be exploited to replace the Hapke model in complex form with five parameters. Furthermore, the generated synthetic lightcurves by the Cellinoid shape model also show that the LS model can perform as well as the Hapke model in the inversion process. Finally, by applying the Principal Component Analysis(PCA) technique to the parameters of the LS model, we present an efficient method to classify C and S type asteroids, instead of the conventional method using the parameters of the Hapke model.  相似文献   

7.
We have analyzed photometric lightcurves of 30 asteroids, and present here the obtained shapes, rotational periods and pole directions. We also present new photometric observations of five asteroids. The shape models indicate the existence of many features of varying degrees of irregularity. Even large main-belt asteroids display such features, so the resulting poles and periods are more consistent than those obtained by simple ellipsoid-like models. In some cases the new rotational parameters are rather different from those obtained previously, and in a few cases there were no proper previous estimates at all.  相似文献   

8.
《Icarus》1987,70(3):546-565
A number of large asteroids show irregular lightcurves of relatively small amplitude and/or ambiguous rotational periods. These observations and the fact that their strong gravitational binding probably results in quasi-equilibrium shapes lead to model these bodies as axisymmetric, biaxial ellipsoids covered by albedo markings. We developed a general numerical algorithm for obtaining simulated lightcurves of “spotted” asteroids and varied the most critical geometrical and physical parameters (albedo contrast, size, and position of the spots; polar coordinates, and shape of the asteroid). We then analyzed the case of 4 Vesta by assuming an axisymmetric ellipsoidal shape with a large brighter region on one hemisphere, in agreement with the results of photometric and polarimetric observations. Fitting the numerical simulations to the available data, we obtained the flattening of the ellipsoid (0.79 ± 0.03), the albedo contrast and geometry of the brighter region, and the orientation of the polar axis. If the derived flattenning corresponds to the equilibrium shape of a nearly homogeneous body, a density of 2.4 ± 0.3 g cm−3 can be inferred. These results show satisfactory agreement with values by different techniques. We plan to apply the same method both to other large asteroids and to smaller, irregularly shaped ones; in the latter case, this will allow us to test the uncertainties in current pole determination methods.  相似文献   

9.
A survey to obtain photoelectric lightcurves of small main-belt asteroids was conducted from November 1981 to April 1982 using the 0.91- and 2.1-m telescopes at the University of Texas McDonald Observatory. A total of 18 main-belt asteroids having estimated diameters under 30 km were observed with over half of these being smaller than 15 km. Rotational periods were determined or estimated from multiple nights of observation for nearly all of these yielding a sample of 17 small main-belt asteroids which is believed to be free of observational selection effects. All but two of these objects were investigated for very short periods in the range of 1 min to 2 hr using power spectrum analysis of a continuous set of integrations. No evidence for such short periods was seen in this sample. Rotationally averaged B(1,0) magnitudes were determined for most of the surveyed asteroids, allowing diameter estimates to be made. Imposing the suspected selection effects of photographic photometry on the results of this survey gives excellent agreement with the results from that technique. This shows that the inability of photographic photometry to obtain results for many asteroids is indeed due to the rotational parameters of those asteroids.  相似文献   

10.
The population of binary asteroids numbers over 160 systems, and they can be found amongst near-Earth asteroids (NEAs), Main-Belt asteroids (MBAs), Jupiter Trojans, Centaurs and trans-Neptunian objects (TNOs). The discoveries have been made with space missions, radar observations, photometric lightcurves, and high resolution imaging from the ground and space. The properties of each population are widely different due to varying formation mechanisms and discovery techniques for each group. Future large-aperture telescopes will be capable of imaging both components for nearly all known systems and will drastically improve prospects for discovery of smaller and more tightly bound systems throughout the Solar System. The study of binary asteroids has provided valuable estimates on asteroid density and structure, a better understanding of the radiative YORP-effect, insights on catastrophic collisions, and may prove to be a key diagnostic for understanding the formation and evolution of the Kuiper Belt population.  相似文献   

11.
We have simulated asteroid lightcurves for simple shape models using a realistic surface scattering law. The scattering law includes a shadowing function computed with numerical ray‐tracing. We computed lightcurves in a variety of illumination geometries for both the traditional Lommel–Seeliger law and our seminumerical law. We observe a shift in the rotational phase of the lightcurves, which depends on the parameters of the scattering law as well as the illumination geometry and the direction of the spin axis of the asteroid. This phase shift is always zero at opposition, and can be as large as 10° for illumination geometries typical for Main Belt asteroids. The phase shift has implications on the accuracy of other results which are based on asteroid lightcurve analysis, such as spin‐state or shape determination.  相似文献   

12.
This paper reports results of the incorporation of ellipsoidal geometry into the standard radiometric model for asteroids. For small departures from spherical shape the standard model using spherical geometry predicts fluxes in good agreement with ellipsoidal models. Large departures from spherical shape, however, can produce substantial differences in the calculated flux depending on the subsolar temperature and the wavelength of interest. The results derived here suggest that radiometric measurements of highly nonspherical, low-obliquity asteroids interpreted with spherical models result in systematically smaller diameter and higher albedos. In addition, non-spherical shape can also result in a systematic difference in the diameter of a particular asteroid derived from separate 10- and 20-μm flux measurements interpreted with spherical models. Thermal-infrared diurnal lightcurves calculated for ellipsoids have amplitudes that depend on wavelength as well as projected area, and phase curves calculated for ellipsoids are indistinguishable from those calculated for spheres.  相似文献   

13.
Earth, Moon, and Planets - One meter class telescopes could bring important contributions in the acquisition of lightcurves of near earth asteroids (NEAs), based on which rotations and other...  相似文献   

14.
Results of observations of 14 asteroids are reported; all of them, except 181 Eucharis, have been previously observed at least once. V photoelectric lightcurves were obtained from September 1982 to June 1983 at the Astronomical Observatory of Torino and at the Astrophysical Observatory of Catania. Part of this program aims to obtain complete lightcurves and, when possible, phasecurve information and to determine amplitudes and V magnitudes at different longitudes for a selected group of asteriods, in order to enlarge the set of known rotational axis directions.  相似文献   

15.
Photoelectric lightcurves of 21 asteroids are presented. The observations were carried out from 1978 to 1982 at the Astronomical Observatory of Torino (at the Astrophysical Observatory of Catania for 137 Meliboea). For 10 objects a reliable rotation period has been obtained, while for two others a rough estimate is given. In several cases the analysis of the observed amplitudes versus the ecliptic longitudes indicates the most favorable future oppositions for period and/or pole determination. For some asteroids transformations to UBV Standard System were performed.  相似文献   

16.
D. Polishook  N. Brosch 《Icarus》2009,199(2):319-332
Photometry results of 32 asteroids are reported from only seven observing nights on only seven fields, consisting of 34.11 cumulative hours of observations. The data were obtained with a wide-field CCD (40.5×27.3) mounted on a small, 46-cm telescope at the Wise Observatory. The fields are located within ±1.5° from the ecliptic plane and include a region within the main asteroid belt. The observed fields show a projected density of ∼23.7 asteroids per square degree to the limit of our observations. 13 of the lightcurves were successfully analyzed to derive the asteroids' spin periods. These range from 2.37 up to 20.2 h with a median value of 3.7 h. 11 of these objects have diameters in order of two kilometers and less, a size range that until recently has not been photometrically studied. The results obtained during this short observing run emphasize the efficiency of wide-field CCD photometry of asteroids, which is necessary to improve spin statistics and understand spin evolution processes. We added our derived spin periods to data from the literature and compared the spin rate distributions of small main belt asteroids (5>D>0.15 km) with that of bigger asteroids and of similar-sized NEAs. We found that the small MBAs do not show the clear Maxwellian-shaped distribution as large asteroids do; rather they have a spin rate distribution similar to that of NEAs. This implies that non-Maxwellian spin rate distribution is controlled by the asteroids' sizes rather than their locations.  相似文献   

17.
We present lightcurves and analysis for four new monolithic fast-rotating asteroids: 2000 AG6, 2000 DO8, 2000 EB14, and 2000 HB24. Their rotation periods of 4.60, 1.30, 107.47, and 13.05 min place them well below the critical threshold for the rotation rate of strengthless prolate ellipsoids, as we demonstrate. These four objects join the five previously identified fast-rotating asteroids. The sharp segregation in spin rates between these nine objects and asteroids with more typical spin rates is somewhat puzzling. No observed objects larger than about 200 m spin with rates faster than the critical rate for strengthless prolate ellipsoids, while no objects smaller than 200 m have shown spin rates slower than this critical limit. We hypothesize that these small, fast-rotating objects are representative of the building blocks of the “rubble pile” asteroids and are in fact derived from impacts into already existing “rubble piles.”  相似文献   

18.
The SuperWASP project is an ultra-wide angle search for extra solar planetary transits. However, it can also serendipitously detect solar system objects, such as asteroids and comets. Each SuperWASP instrument consists of up to eight cameras, combined with high-quality peltier-cooled CCDs, which photometrically survey large numbers of stars in the magnitude range 7–15. Each camera covers a 7.8 × 7.8 degree field of view. Located on La Palma, the SuperWASP-I instrument has been observing the Northern Hemisphere with five cameras since its inauguration in April 2004.The ultra-wide angle field of view gives SuperWASP the possibility of discovering new fast moving (near to Earth) asteroids that could have been missed by other instruments. However, it provides an excellent opportunity to produce a magnitude-limited lightcurve survey of known main belt asteroids. As slow moving asteroids stay within a single SuperWASP field for several weeks, and may be seen in many fields, a survey of all objects brighter than magnitude 15 is possible. This will provide a significant increase in the total number of lightcurves available for statistical studies without the inherent bias against longer periods present in the current data sets.We present the methodology used in the automated collection of asteroid data from SuperWASP and some of the first examples of lightcurves from numbered asteroids.  相似文献   

19.
M. Di Martino 《Icarus》1984,60(3):541-546
V band photoelectric lightcurves and rotational periods are presented for six asteroids: 150 Nuwa, 203 Pompeja, 336 Lacaderia, 545 Messalina, 984 Gretia, and 1240 Fantasia. Except for 984 Gretia, none of these asteroids has been previously observed. The observations were obtained during September 1983 at the Astrophysical Observatory of Catania and are part of a program devoted to increase the present data set of asteroids' rotational properties. For 336 Lacaderia and 984 Gretia the magnitude-phase relations, in terms ofQv and βv, were also obtained.  相似文献   

20.
《Icarus》1987,70(2):191-245
We present 5 years of lightcurve data on a sample of large, rapidly rotating asteroids selected for a program of “photometric geodysy.” A total of 257 complete or partial lightcurves were obtained for 26 asteroids, numbers 9, 15, 16, 22, 22, 29, 39, 41, 43, 45, 55, 65, 87, 88, 107, 125, 129, 130, 201, 216, 337, 349, 354, 511, 584, and 694. The observing protocol was designed to obtain precise absolute photometry at a wide variety of orbital longitudes and phase angles. The purpose of this data set is to allow determination (in future publications) of pole positions and shapes, and to constrain densities, strength, and other geophysical traits of these bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号