首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultramafic xenoliths in Eocene minettes of the Bearpaw Mountainsvolcanic field (Montana, USA), derived from the lower lithosphereof the Wyoming craton, can be divided based on textural criteriainto tectonite and cumulate groups. The tectonites consist ofstrongly depleted spinel lherzolites, harzburgites and dunites.Although their mineralogical compositions are generally similarto those of spinel peridotites in off-craton settings, somecontain pyroxenes and spinels that have unusually low Al2O3contents more akin to those found in cratonic spinel peridotites.Furthermore, the tectonite peridotites have whole-rock majorelement compositions that tend to be significantly more depletedthan non-cratonic mantle spinel peridotites (high MgO, low CaO,Al2O3 and TiO2) and resemble those of cratonic mantle. Thesecompositions could have been generated by up to 30% partialmelting of an undepleted mantle source. Petrographic evidencesuggests that the mantle beneath the Wyoming craton was re-enrichedin three ways: (1) by silicate melts that formed mica websteriteand clinopyroxenite veins; (2) by growth of phlogopite fromK-rich hydrous fluids; (3) by interaction with aqueous fluidsto form orthopyroxene porphyroblasts and orthopyroxenite veins.In contrast to their depleted major element compositions, thetectonite peridotites are mostly light rare earth element (LREE)-enrichedand show enrichment in fluid-mobile elements such as Cs, Rb,U and Pb on mantle-normalized diagrams. Lack of enrichment inhigh field strength elements (HFSE; e.g. Nb, Ta, Zr and Hf)suggests that the tectonite peridotites have been metasomatizedby a subduction-related fluid. Clinopyroxenes from the tectoniteperidotites have distinct U-shaped REE patterns with strongLREE enrichment. They have 143Nd/144Nd values that range from0·5121 (close to the host minette values) to 0·5107,similar to those of xenoliths from the nearby Highwood Mountains.Foliated mica websterites also have low 143Nd/144Nd values (0·5113)and extremely high 87Sr/86Sr ratios in their constituent phlogopite,indicating an ancient (probably mid-Proterozoic) enrichment.This enriched mantle lithosphere later contributed to the formationof the high-K Eocene host magmas. The cumulate group rangesfrom clinopyroxene-rich mica peridotites (including abundantmica wehrlites) to mica clinopyroxenites. Most contain >30%phlogopite. Their mineral compositions are similar to thoseof phenocrysts in the host minettes. Their whole-rock compositionsare generally poorer in MgO but richer in incompatible traceelements than those of the tectonite peridotites. Whole-rocktrace element patterns are enriched in large ion lithophileelements (LILE; Rb, Cs, U and Pb) and depleted in HFSE (Nb,Ta Zr and Hf) as in the host minettes, and their Sr–Ndisotopic compositions are also identical to those of the minettes.Their clinopyroxenes are LREE-enriched and formed in equilibriumwith a LREE-enriched melt closely resembling the minettes. Thecumulates therefore represent a much younger magmatic event,related to crystallization at mantle depths of minette magmasin Eocene times, that caused further metasomatic enrichmentof the lithosphere. KEY WORDS: ultramafic xenoliths; Montana; Wyoming craton; metasomatism; cumulates; minette  相似文献   

2.
We present the first data on the petrology of the mantle lithosphereof the Southeastern (SE) Slave craton, Canada. These are basedon petrographic, mineralogical and geochemical studies of mantlexenoliths in Pipe 5034 of the Cambrian Gahcho Kué kimberlitecluster. Major types of mantle xenoliths include altered eclogite,coarse garnet or spinel peridotite, and deformed garnet peridotite.The peridotites belong to the low-temperature suite and formedat T=600–1300°C and P= 25–80 kbar in a thick(at least 220–250 km), cool lithosphere. The SE Slavemantle is cooler than the mantle of other Archaean cratons andthat below other terranes of the Slave craton. The thick lithosphereand the relatively cool thermal regime provide favourable conditionsfor formation and preservation of diamonds beneath the SE Slaveterrane. Similar to average Archaean mantle worldwide, the SESlave peridotite is depleted in magmaphile major elements andcontains olivine with forsterite content of 91–93·5.With respect to olivine composition and mode, all terranes ofthe Slave mantle show broadly similar compositions and are relativelyorthopyroxene-poor compared with those of the Kaapvaal and Siberiancratons. The SE Slave spinel peridotite is poorer in Al, Caand Fe, and richer in Mg than deeper garnet peridotite. Thegreater chemical depletion of the shallow upper mantle is typicalof all terranes of the Slave craton and may be common for thesubcontinental lithospheric peridotitic mantle in general. Peridotiticxenoliths of the SE Slave craton were impregnated by kimberliticfluids that caused late-stage recrystallization of primary clinopyroxene,spinel, olivine and spinel-facies orthopyroxene, and formationof interstitial clinopyroxene. This kimberlite-related recrystallizationdepleted primary pyroxenes and spinel in Al. The kimberliticfluid was oxidizing, Ti-, Fe- and K-rich, and Na-poor, and introducedserpentine, chlorite, phlogopite and spinel into peridotitesat P < 35 kbar. KEY WORDS: kimberlite xenolith; lithosphere; mantle terrane; chemical zoning; thermobarometry; Slave craton  相似文献   

3.
Geodynamic Information in Peridotite Petrology   总被引:12,自引:1,他引:12  
HERZBERG  CLAUDE 《Journal of Petrology》2004,45(12):2507-2530
Systematic differences are observed in the petrology and majorelement geochemistry of natural peridotite samples from thesea floor near oceanic ridges and subduction zones, the mantlesection of ophiolites, massif peridotites, and xenoliths ofcratonic mantle in kimberlite. Some of these differences reflectvariable temperature and pressure conditions of melt extraction,and these have been calibrated by a parameterization of experimentaldata on fertile mantle peridotite. Abyssal peridotites are examplesof cold residues produced at oceanic ridges. High-MgO peridotitesfrom the Ronda massif are examples of hot residues producedin a plume. Most peridotites from subduction zones and ophiolitesare too enriched in SiO2 and too depleted in Al2O3 to be residues,and were produced by melt–rock reaction of a precursorprotolith. Peridotite xenoliths from the Japan, Cascades andChile–Patagonian back-arcs are possible examples of arcprecursors, and they have the characteristics of hot residues.Opx-rich cratonic mantle is similar to subduction zone peridotites,but there are important differences in FeOT. Opx-poor xenolithsof cratonic mantle were hot residues of primary magmas with16–20% MgO, and they may have formed in either ancientplumes or hot ridges. Cratonic mantle was not produced as aresidue of Archean komatiites. KEY WORDS: peridotite; residues; fractional melting; abyssal; cratonic mantle; subduction zone; ophiolite; potential temperature; plumes; hot ridges  相似文献   

4.
Peridotites that sample Archean mantle roots are frequentlyincompatible trace element enriched despite their refractorymajor element compositions. To constrain the trace element budgetof the lithosphere beneath the Canadian craton, trace elementand rare earth element (REE) abundances were determined fora suite of garnet peridotites and garnet pyroxenites from theNikos kimberlite pipe on Somerset Island, Canadian Arctic, theirconstituent garnet and clinopyroxene, and the host kimberlite.These refractory mantle xenoliths are depleted in fusible majorelements, but enriched in incompatible trace elements, suchas large ion lithophile elements (LILE), Th, U and light rareearth elements (LREE). Mass balance calculations based on modalabundances of clinopyroxene and garnet and their respectiveREE contents yield discrepancies between calculated and analyzedREE contents for the Nikos bulk rocks that amount to LREE deficienciesof 70–99%, suggesting the presence of small amounts ofinterstitial kimberlite liquid (0·4–2 wt %) toaccount for the excess LREE abundances. These results indicatethat the peridotites had in fact depleted or flat LREE patternsbefore contamination by their host kimberlite. LREE and Sr enrichmentin clinopyroxene and low Zr and Sr abundances in garnet in low-temperatureperidotites (800–1100°C) compared with high-temperatureperidotites (1200–1400°C) suggest that the shallowlithosphere is geochemically distinct from the deep lithospherebeneath the northern margin of the Canadian craton. The Somersetmantle root appears to be characterized by a depth zonationthat may date from the time of its stabilization in the Archean. KEY WORDS: Canada; mantle; metasomatism; peridotite; trace elements  相似文献   

5.
The diamondiferous Letlhakane kimberlites are intruded into the Proterozoic Magondi Belt of Botswana. Given the general correlation of diamondiferous kimberlites with Archaean cratons, the apparent tectonic setting of these kimberlites is somewhat anomalous. Xenoliths in kimberlite diatremes provide a window into the underlying crust and upper mantle and, with the aid of detailed petrological and geochemical study, can help unravel problems of tectonic setting. To provide relevant data on the deep mantle under eastern Botswana we have studied peridotite xenoliths from the Letlhakane kimberlites. The mantle-derived xenolith suite at Letlhakane includes peridotites, pyroxenites, eclogites, megacrysts, MARID and glimmerite xenoliths. Peridotite xenoliths are represented by garnet-bearing harzburgites and lherzolites as well as spinel-bearing lherzolite xenoliths. Most peridotites are coarse, but some are intensely deformed. Both garnet harzburgites and garnet lherzolites are in many cases variably metasomatised and show the introduction of metasomatic phlogopite, clinopyroxene and ilmenite. The petrography and mineral chemistry of these xenoliths are comparable to that of peridotite xenoliths from the Kaapvaal craton. Calculated temperature-depth relations show a well-developed correlation between the textures of xenoliths and P-T conditions, with the highest temperatures and pressures calculated for the deformed xenoliths. This is comparable to xenoliths from the Kaapvaal craton. However, the P-T gap evident between low-T coarse peridotites and high-T deformed peridotites from the Kaapvaal craton is not seen in the Letlhakane xenoliths. The P-T data indicate the presence of lithospheric mantle beneath Letlhakane, which is at least 150 km thick and which had a 40mW/m2 continental geotherm at the time of pipe emplacement. The peridotite xenoliths were in internal Nd isotopic equilibrium at the time of pipe emplacement but a lherzolite xenolith with a relatively low calculated temperature of equilibration shows evidence for remnant isotopic disequilibrium. Both harzburgite and lherzolite xenoliths bear trace element and isotopic signatures of variously enriched mantle (low Sm/Nd, high Rb/Sr), stabilised in subcontinental lithosphere since the Archaean. It is therefore apparent that the Letlhakane kimberlites are underlain by old, cold and very thick lithosphere, probably related to the Zimbabwe craton. The eastern extremity of the Proterozoic Magondi Belt into which the kimberlites intrude is interpreted as a superficial feature not rooted in the mantle. Received: 19 March 1996 / Accepted: 16 October 1996  相似文献   

6.
华北东部橄榄岩岩石化学特征及其岩石圈地幔演化意义   总被引:10,自引:3,他引:7  
华北东部古生代以来火山岩中捕虏体橄榄岩和苏鲁早中生代构造侵位橄榄岩的岩石化学结果表明: 古生代金伯利岩侵位时仍然存在的难熔、漂浮克拉通地幔在中、新生代时其大部被新生饱满的岩石圈地幔物质取代置换.在100 Ma前(但不早于178 Ma), 新生软流圈物质就已开始沿古老岩石圈内的地幔薄弱带和岩石圈深断裂带对克拉通地幔进行侵蚀、交代和混合作用, 引起岩石圈大幅减薄.这一减薄存在时间、空间的不均匀性, 但在老第三纪达最大.新第三纪以来, 上涌的软流圈物质由于温度下降回落(岩石圈小幅增厚)并转化为新生岩石圈地幔, 实现地幔置换过程.分析的苏鲁造山带橄榄岩是早中生代构造侵位改造过的古老岩石圈地幔物质.   相似文献   

7.
A petrochemical analysis was undertaken of peridotitic xenoliths in volcanic rocks that erupted from the Paleozoic to the Cenozoic within the eastern part of the North China craton, and the peridotites as tectonic intrusion in the Early Mesozoic from the Sulu orogen. The results show that the cratonic mantle, which was refractory and existed when the kimberlites intruded in the Paleozoic, had almost been replaced by the newly accreted fertile lithospheric mantle during the Mesozoic-Cenozoic. The erosion, metasomatism, and intermingling caused by the accreted asthenospheric material acting on the craton mantle along the weak zone and deep fault (such as the Tanlu fault) in the existing lithosphere resulted in the lithospheric thinning at a larger scale 100 Ma ago (but later than 178 Ma). The largest thinning would be in the Eogene. The upwelling asthenospheric material transformed into accreted lithospheric mantle due to the asthenospheric temperature falling in the Neogene (leading to relatively slight lithospheric incrassation), and finally accomplished mantle replacement. The peridotitic body in the Sulu orogen represents the products spreading from the modified cratonic lithospheric mantle. Translated from Earth Science—Journal of China University of Geosciences, 2006, 31(1): 49–56 [译自: 地球科学—中国地质大学学报]  相似文献   

8.
Graphite-bearing peridotites, pyroxenites and eclogite xenoliths from the Kaapvaal craton of southern Africa and the Siberian craton, Russia, have been studied with the aim of: 1) better characterising the abundance and distribution of elemental carbon in the shallow continental lithospheric mantle; (2) determining the isotopic composition of the graphite; (3) testing for significant metastability of graphite in mantle rocks using mineral thermobarometry. Graphite crystals in peridotie, pyroxenite and eclogite xenoliths have X-ray diffraction patterns and Raman spectra characteristic of highly crystalline graphite of high-temperature origin and are interpreted to have crystallised within the mantle. Thermobarometry on the graphite-peridotite assemblages using a variety of element partitions and formulations yield estimated equilibration conditions that plot at lower temperatures and pressures than diamondiferous assemblages. Moreover, estimated pressures and temperatures for the graphite-peridotites fall almost exclusively within the experimentally determined graphite stability field and thus we find no evidence for substantial graphite metastability. The carbon isotopic composition of graphite in peridotites from this and other studies varies from δ13 CPDB = ? 12.3 to ? ?3.8%o with a mean of-6.7‰, σ=2.1 (n=22) and a mode between-7 and-6‰. This mean is within one standard deviation of the-4‰ mean displayed by diamonds from peridotite xenoliths, and is identical to that of diamonds containing peridotite-suite inclusions. The carbon isotope range of graphite and diamonds in peridotites is more restricted than that observed for either phase in eclogites or pyroxenites. The isotopic range displayed by peridotite-suite graphite and diamond encompasses the carbon isotope range observed in mid-ocean-ridge-basalt (MORB) glasses and ocean-island basalts (OIB). Similarity between the isotopic compositions of carbon associated with cratonic peridotites and the carbon (as CO2) in oceanic magmas (MORB/OIB) indicates that the source of the fluids that deposited carbon, as graphite or diamond, in catonic peridotites lies within the convecting mantle, below the lithosphere. Textural observations provide evidence that some of graphite in cratonic peridotites is of sub-solidus metasomatic origin, probably deposited from a cooling C-H-O fluid phase permeating the lithosphere along fractures. Macrocrystalline graphite of primary appearance has not been found in mantle xenoliths from kimberlitic or basaltic rocks erupted away from cratonic areas. Hence, graphite in mantle-derived xenoliths appears to be restricted to Archaean cratons and occurs exclusively in low-temperature, coarse peridotites thought to be characteristic of the lithospheric mantle. The tectonic association of graphite within the mantle is very similar to that of diamond. It is unlikely that this restricted occurrence is due solely to unique conditions of oxygen fugacity in the cratonic lithospheric mantle because some peridotite xenoliths from off-craton localities are as reduced as those from within cratons. Radiogenic isotope systematics of peridotite-suite diamond inclusions suggest that diamond crystallisation was not directly related to the melting events that formed lithospheric peridotites. However, some diamond (and graphite?) crystallisation in southern Africa occurred within the time span associated with the stabilisation of the lithospheric mantle (Pearson et al. 1993). The nature of the process causing localisation of carbon in cratonic mantle roots is not yet clearly understood.  相似文献   

9.
蛇绿岩型金刚石和铬铁矿深部成因   总被引:5,自引:0,他引:5  
地球上的原生金刚石主要有3种产出类型,分别来自大陆克拉通下的深部地幔金伯利岩型金刚石、板块边界深俯冲变质岩中超高压变质型金刚石,和陨石坑中的陨石撞击型金刚石。在全球5个造山带的10处蛇绿岩的地幔橄榄岩或铬铁矿中均发现金刚石和其他超高压矿物的基础上,我们提出地球上一种新的天然金刚石产出类型,命名为蛇绿岩型金刚石。认为蛇绿岩型金刚石普遍存在于大洋岩石圈的地幔橄榄岩中,并提出蛇绿岩型金刚石和铬铁矿的深部成因模式。认为早期俯冲的地壳物质到达地幔过渡带(410~660 km深度)后被肢解,加入到周围的强还原流体和熔体中,当熔融物质向上运移到地幔过渡带顶部,铬铁矿和周围的地幔岩石以及流体中的金刚石等深部矿物一并结晶,之后,携带金刚石的铬铁矿和地幔岩石被上涌的地幔柱带至浅部,经历了洋盆的拉张和俯冲阶段,最终在板块边缘就位。  相似文献   

10.
Several spinel peridotite xenoliths from Spitsbergen have Sr–Ndisotopic compositions that plot to the right of the ‘mantlearray’ defined by oceanic basalts and the DM end-member(depleted mantle, with low 87Sr/86Sr and high 143Nd/144Nd).These xenoliths also show strong fractionation of elements withsimilar compatibility (e.g. high La/Ce), which cannot be producedby simple mixing of light rare earth element-depleted peridotiteswith ocean island basalt-type or other enriched mantle melts.Numerical simulations of porous melt flow in spinel peridotitesapplied to Sr–Nd isotope compositions indicate that thesefeatures of the Spitsbergen peridotites can be explained bychemical fractionation during metasomatism in the mantle. ‘Chromatographic’effects of melt percolation create a transient zone where thehost depleted peridotites have experienced enrichment in Sr(with a radiogenic isotope composition) but not in Nd, thusproducing Sr–Nd decoupling mainly controlled by partitioncoefficients and abundances of Sr and Nd in the melt and theperidotite. Therefore, Sr–Nd isotope decoupling, earlierreported for some other mantle peridotites worldwide, may bea signature of metasomatic processes rather than a source-relatedcharacteristic, contrary to models that invoke mixing with hypotheticalSr-rich fluids derived from subducted oceanic lithosphere. Pbisotope compositions of the Spitsbergen xenoliths do not appearto be consistently affected by the metasomatism. KEY WORDS: Spitsbergen; lithospheric mantle; metasomatism; radiogenic isotopes; theoretical modelling  相似文献   

11.
Major- and trace-element data on the constituent minerals ofgarnet peridotite xenoliths hosted in early Paleozoic (457–500Ma) kimberlites and Neogene (16–18 Ma) volcanic rockswithin the North China Craton are compared with those from thepre-pilot hole of the Chinese Continental Scientific DrillingProject (CCSD-PP1) in the tectonically exhumed Triassic (220Ma) Sulu ultrahigh-pressure (UHP) terrane along its southernmargin. P–T estimates for the Paleozoic and Neogene peridotitexenoliths reflect different model geotherms corresponding tosurface heat flows of 40 mW/m2 (Paleozoic) and 80 mW/m2 (Neogene).Garnet peridotite xenoliths or xenocrysts from the Paleozoickimberlites are strongly depleted, similar to peridotites fromother areas of cratonic mantle, with magnesium olivine (meanFo92.7), Cr-rich garnet and clinopyroxene with high La/Yb. Garnet(and spinel) peridotite xenoliths hosted in Neogene basaltsare derived from fertile mantle; they have high Al2O3 and TiO2contents, low-Mg-number olivine (mean Fo89.5), low-Cr garnetand diopside with flat rare earth element (REE) patterns. Thedifferences between the Paleozoic and Neogene xenoliths suggestthat a buoyant refractory lithospheric keel present beneaththe eastern North China Craton in Paleozoic times was at leastpartly replaced by younger, hotter and more fertile lithosphericmantle during Mesozoic–Cenozoic times. Garnet peridotitesfrom the Sulu UHP terrane have less magnesian olivine (Fo91.5),and lower-Cr garnet than the Paleozoic xenoliths. The diopsideshave low heavy REE (HREE) contents and sinusoidal to light REE(LREE)-enriched REE patterns. These features, and their highMg/Si and low CaO and Al2O3 contents, indicate that the CCSD-PP1peridotites represent a moderately refractory mantle protolith.Details of mineral chemistry indicate that this protolith experiencedcomplex metasomatism by asthenosphere-derived melts or fluidsin Mesoproterozoic, and subsolidus re-equilibration involvingfluids/melts derived from the subducted Yangtze continentalcrust during UHP metamorphism in the early Mesozoic. Tectonicextension of the subcontinental lithospheric mantle of the NorthChina Craton and exhumation of the Sulu UHP rocks in the earlyMesozoic induced upwelling of the asthenosphere. Peridotitessampled by the Neogene basalts represent newly formed lithospherederived by cooling of the upwelling asthenospheric mantle inJurassic–Cretaceous and Paleogene time. KEY WORDS: garnet peridotite xenoliths; North China Craton; lithospheric thinning; Sulu UHP terrane; UHP lithosphere evolution; mantle replacement  相似文献   

12.
Flow in upper-mantle rocks: Some geophysical and geodynamic consequences   总被引:1,自引:0,他引:1  
Flow mechanisms effective in the upper mantle and some of the parameters of the creep equation are determined from the study of peridotites from basalt and kimberlite xenoliths and alpine-type massifs. Creep controlled by dislocation climb, as inferred by Weertman, is the dominant mechanism. Evidence for superplastic flow is found in the deepest kimberlite xenoliths. Flow in the alpine-type massifs is ascribed either to intrusion in the crust when continental plates collide (lherzolite massifs) or to sea-floor spreading (harzburgite massifs included in ophiolites). The consideration of textures, crystal substructures and preferred orientations connected with P,T equilibrium conditions derived from pyroxenes, helps in deciphering the large-scale structure and flow of peridotites in the crust and in the mantle down to 200 km. For the first 150 km, the representative structures are those of the basalt xenoliths and the kimberlite xenoliths with a coarsegrained texture. They have many features in common and probably represent a static lithosphere with, in basalt xenoliths, possible evidence for the transition to the shear flowing asthenosphere. The porphyroclastic and mosaic-textured xenoliths, in kimberlites equilibrated at depth between 150 and 200 km and a few more superficial basalt xenoliths, reflect a much larger strain rate and applied stress and might be connected to vertical instabilities also responsible for magma genesis.  相似文献   

13.
Based on the simultaneous inversion of unique ultralong-range seismic profiles Craton, Kimberlite, Meteorite, and Rift, sourced by peaceful nuclear and chemical explosions, and petrological and geochemical data on the composition of xenoliths of garnet peridotite and fertile primitive mantle material, the first reconstruction was obtained for the thermal state and density of the lithospheric mantle of the Siberian craton at depths of 100–300 km accounting for the effects of phase transformation, anharmonicity, and anelasticity. The upper mantle beneath Siberia is characterized by significant variations in seismic velocities, relief of seismic boundaries, degree of layering, and distribution of temperature and density. The mapping of the present-day lateral and vertical variations in the thermal state of the mantle showed that temperatures in the central part of the craton at depths of 100–200 km are somewhat lower than those at the periphery and 300–400°C lower than the mean temperature of tectonically younger mantle surrounding the craton. The temperature profiles derived from the seismic models lie between the 32.5 and 35 mW/m2 conductive geotherms, and the mantle heat flow was estimated as 11–17 mW/m2. The depth of the base of the cratonic thermal lithosphere (thermal boundary layer) is close to the 1450 ± 100°C isotherm at 300 ± 30 km, which is consistent with published heat flow, thermobarometry, and seismic tomography data. It was shown that the density distribution in the Siberian cratonic mantle cannot be described by a single homogeneous composition, either depleted or enriched. In addition to thermal anomalies, the mantle density heterogeneities must be related to variations in chemical composition with depth. This implies significant fertilization at depths greater than 180–200 km and is compatible with the existence of chemical stratification in the lithospheric mantle of the craton. In the asthenosphere-lithosphere transition zone, the craton root material is not very different in chemical composition, thermal regime, and density from the underlying asthenosphere. It was shown that minor variations in the chemical composition of the cratonic mantle and position of chemical (petrological) boundaries and the lithosphere-asthenosphere boundary cannot be reliably determined from the interpretation of seismic velocity models only.  相似文献   

14.
Kimberlite pipes or dykes tend to occur in clusters (a few kilometresin diameter) within fields 30–50 km in diameter. Theyare generally considered to originate from low degrees of partialmelting of carbonated peridotite within zones of ascending mantle.Numerical modelling shows that at the depth of formation ofkimberlite melts (>>200 km), mantle compaction processescan result in the formation of melt pockets a few tens of kilometresacross, with melt concentrations up to 7%. The initiation ofswarms of kimberlite dykes at the top of these melt pocketsis inevitable because of the large excess pressure between themelt and the surrounding solid, which exceeds the hydraulicfracturing limit of the overlying rocks. After their initiationat mantle depth the swarm of dykes may reach the surface ofthe Earth when the entire cratonic lithosphere column is inextension. We propose that kimberlite fields represent the surfaceenvelope of dyke swarms generated inside a melt pocket and thatkimberlite clusters represent the discharge of melt via dykesoriginating from sub-regions of the pocket. This model reproducesthe worldwide average diameter of kimberlite fields and is consistentwith the observation that some of the main kimberlite fieldsdisplay age ranges of c. 10 Myr. It is deduced that, at thescale of the Kaapvaal craton, different fields such as Kimberley,N. Lesotho and Orapa, dated at 80–90 Ma, probably resultfrom synchronous melt pockets forming inside an ascending mantleflow. The same model could apply to the fields of the Rietfontein,Central Cape and Gibeon districts dated at 60–70 Ma. Itis suggested that the same mantle flow that produced the Kimberley,N. Lesotho and Orapa fields migrated over 20–30 Myr afew hundred kilometres westward to form the Rietfontein, CentralCape and Gibeon fields. KEY WORDS: kimberlites; mantle; compaction; convection; volcanism  相似文献   

15.
The ∼500,000 km2 Saharan Metacraton in northern Africa (metacraton refers to a craton that has been mobilized during an orogenic event but that is still recognisable through its rheological, geochronological and isotopic characteristics) is an Archean–Paleoproterozoic cratonic lithosphere that has been destabilized during the Neoproterozoic. It extends from the Arabian–Nubian Shield in the east to the Trans-Saharan Belt in the west, and from the Oubanguides Orogenic Belt in the south to the Phanerozoic cover of North Africa. Here, we show that there are high S-wave velocity anomalies in the upper 100 km of the mantle beneath the metacraton typical of cratonic lithosphere, but that the S-wave velocity anomalies in the 175–250 km depth are much lower than those typical of other cratons. Cratons have possitive S-wave velocity anomalies throughout the uppermost 250 km reflecting the presence of well-developed cratonic root. The anomalous upper mantle structure of the Saharan Metacraton might be due to partial loss of its cratonic root. Possible causes of such modification include mantle delamination or convective removal of the cratonic root during the Neoproterozoic due to collision-related deformation. Partial loss of the cratonic root resulted in regional destabilization, most notably in the form of emplacement of high-K calc-alkaline granitoids. We hope that this work will stimulate future multi-national research to better understand this part of the African Precambrian. Specifically, we call for efforts to conduct systematic geochronological, geochemical, and isotopic sampling, deploy a reasonably-dense seismic broadband seismic network, and conduct systematic mantle xenoliths studies.  相似文献   

16.
Dante Canil   《Lithos》2004,77(1-4):375-393
The abundances of the mildly incompatible elements Al, Cr, V, Sc and Yb in more than 1700 mantle peridotite bulk rock analyses are interpreted in the light of a fractional melting model based on experimentally measured partition coefficients (D) and melting reaction stoichiometries. All peridotites examined, irrespective of sample type (abyssal peridotites, orogenic massifs, ophiolites, on/off craton xenoliths), tectonic environment (divergent/convergent/passive margin, intraplate) or the pressure (P) they last equilibrated at in the mantle (plagioclase-, spinel- , or garnet facies), originated as residues at less than 3 GPa, mainly within the spinel-facies. Mantle rocks currently in the garnet facies likely were originally spinel-facies lithosphere underthrust or subducted to greater depths in convergent margins. This view is inescapable even within the widest range of D values employed in the calculations, and is furthermore strengthened when metasomatic effects on the abundances of the mildly incompatible elements in residues are considered. A pressure of origin of below 3 GPa for most mantle lithosphere creates difficulties for any model ascribing a significant volume of deep, cratonic mantle roots to plume sub-cretion or any other vertical tectonic mechanism.  相似文献   

17.
U-Pb isotopic thermochronometry of rutile, apatite and titanite from kimberlite-borne lower crustal granulite xenoliths has been used to constrain the thermal evolution of Archean cratonic and Proterozoic off-craton continental lithosphere beneath southern Africa. The relatively low closure temperature of the U-Pb rutile thermochronometer (~400-450 °C) allows its use as a particularly sensitive recorder of the establishment of "cratonic" lithospheric geotherms, as well as subsequent thermal perturbations to the lithosphere. Contrasting lower crustal thermal histories are revealed between intracratonic and craton margin regions. Discordant Proterozoic (1.8 to 1.0 Ga) rutile ages in Archean (2.9 to 2.7 Ga) granulites from within the craton are indicative of isotopic resetting by marginal orogenic thermal perturbations influencing the deep crust of the cratonic nucleus. In Proterozoic (1.1 to 1.0 Ga) granulite xenoliths from the craton-bounding orogenic belts, rutiles define discordia arrays with Neoproterozoic (0.8 to 0.6 Ga) upper intercepts and lower intercepts equivalent to Mesozoic exhumation upon kimberlite entrainment. In combination with coexisting titanite and apatite dates, these results are interpreted as a record of postorogenic cooling at an integrated rate of approximately 1 °C/Ma, and subsequent variable Pb loss in the apatite and rutile systems during a Mesozoic thermal perturbation to the deep lithosphere. Closure of the rutile thermochronometer signals temperatures of 𙠂 °C in the lower crust during attainment of cratonic lithospheric conductive geotherms, and such closure in the examined portions of the "off-craton" Proterozoic domains of southern Africa indicates that their lithospheric thermal profiles were essentially cratonic from the Neoproterozoic through to the Late Jurassic. These results suggest similar lithospheric thickness and potential for diamond stability beneath both Proterozoic and Archean domains of southern Africa. Subsequent partial resetting of U-Pb rutile and apatite systematics in the cratonic margin lower crust records a transient Mesozoic thermal modification of the lithosphere, and modeling of the diffusive Pb loss from lower crustal rutile constrains the temperature and duration of Mesozoic heating to 𙡦 °C for ₞ ka. This result indicates that the thermal perturbation is not simply a kimberlite-related magmatic phenomenon, but is rather a more protracted manifestation of lithospheric heating, likely related to mantle upwelling and rifting of Gondwana during the Late Jurassic to Cretaceous. The manifestation of this thermal pulse in the lower crust is spatially and temporally correlated with anomalously elevated and/or kinked Cretaceous mantle paleogeotherms, and evidence for metasomatic modification in cratonic mantle peridotite suites. It is argued that most of the geographic differences in lithospheric thermal structure inferred from mantle xenolith thermobarometry are likewise due to the heterogeneous propagation of this broad upper mantle thermal anomaly. The differential manifestation of heating between cratonic margin and cratonic interior indicates the importance of advective heat transport along pre-existing lithosphere-scale discontinuities. Within this model, kimberlite magmatism was a similarly complex, space- and time-dependent response to Late Mesozoic lithospheric thermal perturbation.  相似文献   

18.
Xenoliths hosted by Quaternary basanites and alkali basaltsfrom Marsabit (northern Kenya) represent fragments of Proterozoiclithospheric mantle thinned and chemically modified during riftingin the Mesozoic (Anza Graben) and in the Tertiary–Quaternary(Kenya rift). Four types of peridotite xenoliths were investigatedto constrain the thermal and chemical evolution of the lithosphericmantle. Group I, III and IV peridotites provide evidence ofa cold, highly deformed and heterogeneous upper mantle. Textures,thermobarometry and trace element characteristics of mineralsindicate that low temperatures in the spinel stability field(750–800°C at <1·5 GPa) were attained bydecompression and cooling from initially high pressures andtemperatures in the garnet stability field (970–1080°Cat 2·3–2·9 GPa). Cooling, decompressionand penetrative deformation are consistent with lithosphericthinning, probably related to the development of the Mesozoicto Paleogene Anza Graben. Re-equilibrated and recrystallizedperidotite xenoliths (Group II) record heating (from 800°Cto 1100°C). Mineral trace element signatures indicate enrichmentby mafic silicate melts, parental to the Quaternary host basanitesand alkali basalts. Relationships between mineral textures,P–T conditions of equilibration, and geochemistry canbe explained by metasomatism and heating of the lithosphererelated to the formation of the Kenya rift, above a zone ofhot upwelling mantle. KEY WORDS: East African Rift System; Anza Graben; in situ LA-ICPMS; peridotite xenoliths; thermobarometry  相似文献   

19.
The Pb isotope compositions of amphiboles and clinopyroxenesin spinel peridotite and pyroxenite mantle xenoliths from theintra-plate Quaternary volcanic fields of the Eifel province(Germany) are strongly correlated with their Sr–Nd isotopeand trace element compositions. High-temperature anhydrous xenolithsfrom a depth of around 60 km have trace element and Sr–Nd–Pbisotope compositions similar to the depleted source of mid-oceanridge basalts (Depleted MORB Mantle, DMM). Amphibole-bearingxenoliths from shallower depths (<45 km) provide evidencefor three temporally distinct episodes of mantle metasomatismin the subcontinental lithosphere: (1) aqueous fluids from anisotopically enriched (EM-like) mantle reservoir caused amphiboleformation during deformation in the shallow continental lithosphericmantle and may be subduction related, probably associated withthe last major tectonic event that influenced the area (Hercynianorogeny). (2) During a second phase of mantle metasomatism theEM-like lithospheric mantle was affected by melts from an ancient,HIMU-like (high time-integrated µ = 238U/204Pb) mantlesource. The HIMU-like component introduced by these fluids hada much more radiogenic Pb isotope composition than the asthenosphericsource of the widespread Cenozoic magmatism in Europe and maybe linked to reactivation of ancient subducted crustal domainsduring the Hercynian orogeny or to early Cretaceous deep-sourcedmantle plumes. (3) During a brief final stage the heterogeneouslyenriched EM–HIMU subcontinental lithosphere was locallymodified by basaltic melts migrating along fractures and veinsthrough the upper mantle as a consequence of the Cenozoic Eifelvolcanism. Although a DMM component is completely lacking inthe metasomatic fluids of the metasomatic episodes 1 and 2,the vein melts of episode 3 and the Cenozoic Eifel lavas requiremantle sources containing three end-member components (DMM–HIMU–EM).Thus, mobilization of the more depleted mantle material occurredat the earliest in the Tertiary, contemporaneously with thedevelopment of the extensive rift system and main melt generationin Europe. Alternatively, the variety of Sr–Nd–Pbisotope signatures of the metasomatic agents may have been producedby melting of isotopically distinct mantle domains in a heterogeneousuprising mantle plume. KEY WORDS: Eifel; Europe; mantle xenoliths; metasomatism; Pb isotopes  相似文献   

20.
We present the results of a structural and petrological studyof mantle rocks from the strongly dismembered Othris Ophiolite.Part of the mantle section was impregnated with melt, crystallizingplagioclase and clinopyroxene as cumulate phases and refertilizingpreviously depleted peridotites. Melt impregnation occurredlate in the deformation history of the host peridotites. Thedeformation took place at stresses of 13–26 MPa and attemperatures around 1000–1200°C, at the base of thethermal lithosphere. The melt therefore impregnated relativelycold mantle rocks, implying that the thermal lithosphere reachedinto the mantle during magmatic activity. We conclude that theOthris Ophiolite represents a spreading environment with a relativelythick lithosphere, such as that near an axial discontinuityor transform fault of a slow-spreading ridge. The proposed magmaticand deformation history of the peridotites is in agreement withepisodic magmatism at slow-spreading ridges. We thus concludethat the heterogeneous character of the mantle section of theOthris Ophiolite results from melt impregnation processes. Wesuggest that the presence of lherzolitic ophiolite types amongharzburgitic ophiolite types in the Hellenic–Dinaric chainreflects variable degrees of melt impregnation and refertilizationrather than partial melting and melt extraction. KEY WORDS: lithospheric mantle deformation; melt impregnation; microstructures; Othris Ophiolite; plagioclase peridotites  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号