首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Light hydrocarbon (C1-C3) concentrations in the water from four Red Sea brine basins (Atlantis II, Suakin, Nereus and Valdivia Deeps) and in sediment pore waters from two of these areas (Atlantis II and Suakin Deeps) are reported. The hydrocarbon gases in the Suakin Deep brine (T = ~ 25°C, Cl? = ~ 85‰, CH4 =~ 711) are apparently of biogenic origin as evidenced by C1(C2 + C3) ratios of ~ 1000. Methane concentrations (6–8 μl/l) in Suakin Deep sediments are nearly equal to those in the brine, suggesting sedimentary interstitial waters may be the source of the brine and associated methane.The Atlantis II Deep has two brine layers with significantly different light hydrocarbon concentrations indicating separate sources. The upper brine (T = ~ 50°C, Cl? = ~ 73‰, CH4 = ~ 155 μl/l) gas seems to be of biogenic origin [C1(C2 + C3) = ~1100], whereas the lower brine (T = ~ 61°C, Cl? = ~ 155‰, CH4 = ~ 120μl/l) gas is apparently of thermogenic origin [C1(C2 + C3) = ~ 50]. The thermogenic gas resulting from thermal cracking of organic matter in the sedimentary column apparently migrates into the basin with the brine, whereas the biogenic gas is produced in situ or at the seawater-brine interface. Methane concentrations in Atlantis II interstitial waters underlying the lower brine are about one half brine concentrations; this difference possibly reflects the known temporal variations of hydrothermal activity in the basin.  相似文献   

2.
Distribution and isotopic composition (δ13C) of low molecular weight hydrocarbon gases were studied in Big Soda Lake (depth = 64 m), an alkaline, meromictic lake with permanently anoxic bottom waters. Methane increased with depth in the anoxic mixolimnion (depth = 20–35 m), reached uniform concentrations (55 μM/l) in the monimolimnion (35–64 m) and again increased with depth in monimolimnion bottom sediments (>400 μM/kg below 1 m sub-bottom depth). The μ13C[CH4] values in bottom sediment below 1 m sub-bottom depth (<?70 per mil) increased with vertical distance up the core (δ13C[CH4] = ?55 per mil at sediment surface). Monimolimnion δ13C[CH4] values (?55 to ?61 per mil) were greater than most δ13C[CH4] values found in the anoxic mixolimnion (92% of samples had δ13C[CH4] values between ?20 and ?48 per mil). No significant concentrations of ethylene or propylene were found in the lake. However ethane, propane, isobutane and n-butane concentrations all increased with water column depth, with respective maximum concentrations of 260, 80, 23 and 22 nM/l encountered between 50–60 m depth. Concentrations of ethane, propane and butanes decreased with depth in the bottom sediments. Ratios of CH4[C2H6 + C3H8] were high (250–620) in the anoxic mixolimnion, decreased to ~161 in the monimolimnion and increased with depth in the sediment to values as high as 1736. We concluded that methane has a biogenic origin in both the sediments and the anoxic water column and that C2-C4 alkanes have biogenic origins in the monimolimnion water and shallow sediments. The changes observed in δ13C[CH4] and CH4(C2H6 + C3H8) with depth in the water column and sediments are probably caused by bacteria] processes. These might include anaerobic methane oxidation and different rates of methanogenesis and C2 to C4 alkane production by microorganisms.  相似文献   

3.
Water samples collected from a slope station and two deep stations in the western basin of the Black Sea were analyzed for stenols and stanols by glass capillary gas chromatography. These results were used in conjuction with hydrographic, particulate organic carbon, and chlorophyll a data to better understand sterol sources and their transport and transformation mechanisms in anoxic basins.The total free sterol concentrations found in the surface waters were 450–500 ng/l dropping rapidly to values well below 100 ng/l at depths below the O2H2S interface. In the upper 200 m of the water column a strong association of sterols with particulate matter is suggested. Structural elucidation by a gas chromatograph-mass spectrometer-computer system revealed the presence of at least sixteen different stenols and stanols in the surface waters of the Black Sea. Cholesterol, 24-methylenecholesterol and 24-methylcholesta-5,22-dien-3β-ol were the major sterols in the surface waters. Cholesterol and 24-ethylcholesterol both exhibited a subsurface maximum at the O2H2S interface. In the anoxic deep waters (200–2000 m) only cholesterol and 24-ethylcholesterol were found. Two stenols were found that have not been reported in seawater: a C26 stenol with a saturated C7H15 side chain (presumably 24-norcholesterol) and 24-ketocholesterol. At least six 5α-stanols could be identified in the surface samples, each of them comprising about 10–20% of the concentration of the corresponding Δ5-stenol. From these comparatively high surface values the stanol concentrations drop rapidly to values near zero at the O2H2S interface. Except for very low concentrations of 5α-cholestanol (< 4ng/l) no other stanols could be detected in the anoxic zone.From this data it appears that no detectable stenol → stanol conversion is occurring at the O2H2S interface or in the deep anoxic waters of the Black Sea.  相似文献   

4.
The geochemical processes operating on metals in anoxic marine waters influence metal mobility and mode of transport to the sediments in a manner different from that observed in oxic regimes. In order to better understand these processes, dissolved and particulate Mn, Fe, Co, Ni, Cu, Zn, and Cd concentrations were determined in the water column of a permanently anoxic basin, Framvaren Fjord, Norway. Class specific behavior determines the degree to which these metals are involved in the processes of redox cycling at the O2H2S interface and metal sulfide precipitation in the sulfidic water. Metal sulfide precipitation influences the magnitude of metal enrichment in the sediments. The transition metals, Mn, Fe, and Co, show active involvement in redox cycling, characterized by dissolved maxima just below the O2H2S interface. Nickel concentrations appear unaffected by processes influencing the profiles of the other metals. The metals, Cu, Zn, and Cd, display a dramatic solubility decrease across the interface, are not involved in redox cycling, and are enriched in the sediments relative to a lithogenic component by factors of 11, 105, and 420, respectively. Ion activity products of the metals and sulfide provide evidence that chemical equilibria with a pure metal sulfide solid phase is not the dominant process controlling dissolved metal concentrations in the sulfide containing waters.  相似文献   

5.
Polyunsaturated fatty acids (C18:2 and C18:3ω3 were analyzed in the upper 20m layer of a 200 m long sediment core taken from Lake Biwa. Concentration maxima occur in layers at depths of 0.2, 1–5, 11–12, and 16m. The vertical changes in the (C18:2C(C18:0 ratio appear to correlate with paleoclimatic condition suggested from palynological evidence. On the basis of C18:2C18:0 ratios, it was suggested that it has been colder at 200, 1000–4000, 15,000 and 20,000 yr BP than at other times.  相似文献   

6.
Measurements of nutrients and trace metals are used to examine the processes controlling their distributions in the interstitial waters of Saanich Inlet. Samples were collected using both in situ and squeezing techniques with excellent agreement. Additional measurements of porosity, organic carbon and sedimentation rate by 210Pb are used in conjunction with the nutrient measurements to test the equation for the diagenesis of organic matter in fine-grained, organic-rich and rapidly-accumulating sediments.Organic carbon and sulfate decrease with depth in the sediment whereas ammonia and alkalinity increase. In the zone of sulfate reduction (0–20 cm) the rate constants for sulfate reduction (ks), ammonia production (kN) and organic carbon decomposition (kc) agree within a factor of two. Our calculations indicate, however, that this is fortuitous since the observed decrease in paniculate organic carbon is insufficient to account for the sulfate consumption. Sulfate must also be consumed by reaction with methane diffusing up from the underlying sediments. The rate constant for sulfate reduction using particulate organic carbon is lower than a modelled rate encompassing all organic species, including methane.The rate constant for ammonia production (kN) decreases by an order of magnitude when sulfate is completely depleted and methane production dominates.Thermodynamic calculations suggest that the interstitial waters are saturated or supersaturated with respect to all forms of iron ‘monosulfides’, apatite and rhodochrosite.  相似文献   

7.
The 13C12C fractionation factors (CO2CH4) for the reduction of CO2 to CH4 by pure cultures of methane-producing bacteria are, for Methanosarcina barkeri at 40°C, 1.045 ± 0.002; for Methanobacterium strain M.o.H. at 40°C, 1.061 ± 0.002; and, for Methanobacterium thermoautotrophicum at 65°C, 1.025 ± 0.002. These observations suggest that the acetic acid used by acetate dissimilating bacteria, if they play an important role in natural methane production, must have an intramolecular isotopic fractionation (CO2HCH3) approximating the observed CO2CH4 fractionation.  相似文献   

8.
Variations in the chemical composition of sedimentary rocks and the nature of kerogen through geologic time were investigated in order to obtain information on biological and environmental evolution during the pre-Phanerozoic eon. Rock samples differing in lithology, depositional environment, and age were pulverized, pre-extracted with organic solvents, and analyzed for total nitrogen (N), phosphorus (P) and organic carbon (org. C or CT). Variations in the molecular structure of kerogen were measured by determining the ratio of org. C content after pyrolysis (CR) to org. C content before pyrolysis (CT), the CRCT ratio being considered an index of the degree of condensed-aromatic (as opposed to aliphatic) character. The rocks included mudstones (Early Archean (> 3 · 109 years old) to Miocene), carbonate rocks (mid-Proterozoic (1.3 · 109 years old) to Eocene), cherts (Early Archean (> 3 · 109 years old) to Late Proterozoic (0.8 · 109 years old)), and coal (Archean (> 2.7 · 109 years old) to Early Proterozoic (~1.8 · 109 years old)).The mudstones and carbonates showed progressive increase in org. C content with decreasing age, as reported by other investigators, but the cherts unexpectedly showed a decrease in org. C content with decreasing age. In all samples, a simple inverse correlation between CRCT ratio and org. C was observed, each rock type forming its own trend separate from but parallel to those of the other rock types. Thus, the older cherts tend to be richer in org. C and have lower CRCT ratios, but the older carbonates and mudstones are poorer in org. C and have higher CRCT ratios. For a given org. C concentration, chert has the highest CRCT ratio and carbonate rock the lowest, mudstone being intermediate; this may mean that chert is relatively ineffective as a catalyst for the thermal cracking of kerogen or that it inhibits cracking. N appears to be correlated with org. C. The relationship between CRCT ratio and org. C or N suggests that the concentrations of org. C and N in sedimentary rocks are largely determined by selective elimination of labile aliphatic and nitrogenous groups of kerogen during post-depositional maturation, although the nature, abundance and depositional environment of the organic source material must be taken into consideration as well. The observed secular variations of org. C, N and CRCT ratio may be ascribed to several possible causes, including age-dependent post-depositional alteration of kerogen, secular decrease in the CO2O2 ratio of the atmosphere and hydrosphere during pre-Phanerozoic time, secular increase in rates of accumulation of organic matter in sediments and evolutionary changes in the composition of the biological source material. The secular variations of the carbonates and mudstones could be accounted for by age-dependent cumulative effects of post-depositional alteration alone, whereas the secular variations of the cherts probably reflect changes in the nature of the biological source material and the composition of the atmosphere and hydrosphere. The available evidence suggests that primary characteristics of kerogen are better preserved in chert than in the other types of sediment.The CRCT ratios of the carbonates and cherts correlate negatively with the A465mμA665mμ absorbance ratios of “humic matter” extracted from the same rock samples with benzene—methanol. Thus, the greater the degree of condensed-aromatic character of the kerogen, the greater the degree of condensed-aromatic character of the solvent-extractable bituminous “humic matter” with which it is associated. In addition, the ratio of aliphatic to carbonyl-type groups (CH2C=O) in the extractable “humic matter” of carbonates and cherts correlates with the non-extractable org. C content of the rocks, suggesting that the org. C data are related to the degree of aliphatic character of the kerogen. The chemical similarity between extractable “humic matter” and its associated kerogen is evidence that the “humic matter” is as old as its rock matrix and can be accepted as a valid chemical fossil. It also suggests that information obtainable from kerogen may be gotten more easily, rapidly and cheaply from solvent-extractable organic matter. The mudstones showed little or no relationship between A465mμA665mμ ratio and CRCT ratio, or between CH2C=O ratio and org. C content. The data are consistent with the hypothesis that the kerogen in the carbonates and cherts is autochthonous, whereas the kerogen in the mudstones is partly allochthonous, implying the existence of soil humus and soil organisms in pre-Phanerozoic times. Moreover, the existence of coal in Archean sediments is consistent with the existence of very shallow-water and possibly terrestrial microfloras possessing adaptations for protection against ultraviolet solar radiation.The P content of the sediments showed a complicated zig-zag pattern of variation through geologic time. All the different suites of samples gave similar results, indicating that the variations represent phenomena whose effects were worldwide and independent of local environment. P levels are low in the early pre-Phanerozoic but rise with decreasing age until ~ 1 · 109 years B.P., then fall to a minimum at (~0.7–0.8) · 109 years B.P., and rise again to a lower Paleozoic (Ediacarian?) maximum, decline to a later Paleozoic minimum, and then rise again. The low P content of early pre-Phanerozoic sediments could be due to several factors, including high CO2 content of seawater, anaerobic conditions in the sea, absence of stable-shelf environments, and low rates of primary production. The minimum in the Late Proterozoic is tentatively attributed to the Late Proterozoic glaciations. The data are consistent with the theory that the glacial episode was of worldwide extent.  相似文献   

9.
We have calculated the total individual ion activity coefficients of carbonate and calcium, γTCO32? and γTCa2+, in seawater. Using the ratios of stoichiometric and thermodynamic constants of carbonic acid dissociation and total mean activity coefficient data measured in seawater, we have obtained values which differ significantly from those widely accepted in the literature. In seawater at 25°C and 35%. salinity the (molal) values of γTCO23? and γTCa2+ are 0.038 ± 0.002 and 0.173 ± 0.010, respectively. These values of γTCO32? and γTCa2+ are independent of liquid junction errors and internally consistent with the value γTCl? = 0.651. By defining γTCa2+ and γTCO32? on a common scale (γTCl?), the product γTCa2+γTCO32? is independent of the assigned value of γCl? and may be determined directly from thermodynamic measurements in seawater. Using the value γTCa2+γTCO32? = 0.0067 and new thermodynamic equilibrium constants for calcite and aragonite, we show that the apparent constants of calcite and aragonite are consistent with the thermodynamic equilibrium constants at 25°C and 35%. salinity. The demonstrated consistency between thermodynamic and apparent constants of calcite and aragonite does not support a hypothesis of stable Mg-calcite coatings on calcite or aragonite surfaces in seawater, and suggests that the calcite critical carbonate ion curve of Broecker and Takahashi (1978, Deep-Sea Research25, 65–95) defines the calcite equilibrium boundary in the oceans, within the uncertainty of the data.  相似文献   

10.
Natural malachite is a well defined solid demonstrating reproducible solubility behavior over a wide range of pH. The following equilibrium constants associated with the malachite dissolution equilibrium at 25°C, 1 atm were determined:
Ksp = a2cu2+aCO32?K2wa2H+ = 3.5 ± 0.6 × 10?34
(infinite dilution)
K1sp = [Cu2+]2[CO2?3]K2wa2H+ = 10. ± 0.2 × 10?32
(0.72 ionic strength)
K′sp = m2Cu2+mCOsu2?3K2wa2H+ = 1.3 ± 0.1 × 10?28
(36.9‰ salinity seawater). The temperature dependence of a “mixed” equilibrium constant, Ksp+, of the form:
K2sp = [Cu2+]2mCO2?3K2wa2H+
has been measured at I = 0.72, yielding the relationship:
log K2sp = (? 9.8 ± 0.03) × 104(1T°K) + (1.52 ± 0.09)
within a 5–25°C temperature range. The effect of pressure on the solubility of malachite in water and seawater was estimated from partial molar volume and compressibility data. For 25 °C at infinite dilution K'sp (1000 bar)K'sp(0) = 240 and in seawater K′sp(1000)K'sp(0) = 44.Comparison of stoichiometric and apparent malachite equilibrium constants has been used to estimate the extent of copper(II) ion interaction at the ionic strength of seawater. In dilute carbonate medium (total alkalinity, TA = 2.4 meq/kg H2O, pH 8.3), 2.9% of total dissolved copper exists as the free copper(II) ion and in seawater (S = 36.9%., TA = 2.3 meq/kg H2O, pH = 8.1), [Cu2+]T(Cu) is 3.1%.Total dissolved copper levels of approximately 450–750 nMol/Kg are necessary to attain malachite saturation conditions in the open ocean. Observations of malachite particles suspended in seawater must be explained by precipitation or solid phase substitution reactions from localized environments rather than by direct precipitation from bulk seawater.  相似文献   

11.
The partial molal volume (V?) of silicic acid in 0.725 m NaCl at 20°C has been calculated from (1) direct volume changes due to the dissolution of anhydrous sodium silicate and (2) some literature values for the partial molal volumes of NaOH and water. V?Si(OH)4, unconnected for electrostriction effects, was found to be 53 ± 2 ml mole?1. V?si(Oh)4, corrected for volume changes due to solvent electrostriction by charged Si species, was estimated to be in the range 58–62 ml mole?1; this range is 7–11 ml mole?1 greater than the V?Si(OH)4 calculated from Willey's (Mar. Chem. 2, 239–250, 1974) solubility data obtained from the dissolution, in seawater, of amorphous silica subjected to hydrostatic pressure. Our V?Si(OH)4 does, however, agree within experimental error with the V?Si(OH)4 calculated from Jones and Pytkowicz's (Bull. Soc. Roy. Sci. Liege 42, 118–120, 1973) data for the solubility of amorphous silica in seawater at high pressure and is nearly in agreement with Willey's (Ph.D. thesis, Dalhousie University, 1975) solubility data for amorphous silica in 0.6 m NaCl.  相似文献   

12.
239 + 240Pu activities of 100–450dpm/kg are found down to 15–18 cm in anoxic Saanich Inlet sediments, with a subsurface maximum in undisturbed deposits. Integrated 239 + 240Pu inventories which overlap delivery estimates are present both in two cores of anoxic sediments from Saanich Inlet and in one core of oxic sediments 65 km away in Dabob Bay, Washington. 241Am239 + 240Pu ratios in Saanich Inlet sediments overlap ratios in unfractionated midnorthern latitude fallout, in oxic sediments from the Washington continental shelf, and in anoxic sediments from two basins off southern California and Mexico. The 239 + 240Pu137Cs ratios in three intervals of Saanich Inlet sediments are also in agreement with ratios previously reported for oxic coastal marine sediments. The Pu inventories, the AmPu and PuCs ratios, and the Saanich Inlet Dabob Bay comparison all argue that Pu is not rapidly remobilized in anoxic sediments.The subsurface 239 + 240Pu activity maximum is not in agreement with the historical record of peak Pu fallout in 1963–1964 unless our 210Pb-derived sedimentation rates are incorrectly high. However, they are in good agreement with previous 210Pb and varve chronologies in Saanich Inlet, and also give reasonable dates for times when 239 + 240Pu and SNAP-9A supplied 238Pu first appear in the sediments. We conclude they properly date the maximum in sedimentary 239 + 240Pu activity at 1970–1973, and seek explanations for the 7–10yr time lag after peak fallout.239 + 240Pu inventories in one core from the eastern basin of the Cariaco Trench and in two cores from Golfo Dulce. an anoxic basin off the Pacific coast of Costa Rica, are also in reasonable agreement with fallout delivery to these latitudes when excess 210Pb inventories and fluxes are used to verify recovery of at least a major fraction of the most recently deposited sediments.  相似文献   

13.
The following equation has been previously developed for the drag coefficient of a sphere.
CD = C0 [1 + (σ0/Re12)]2
In this work the authors propose a power series expansion for C0 in terms of the Reynolds number:
C0 = 0 284153 Σα=0n BαReα
A fifth-order polynomial permits obtaining the drag coefficient and the settling velocity of a sphere, up to a Reynolds number of 3 × 105, with an average relative error of about 2%.  相似文献   

14.
The coprecipitation of Na and K was experimentally investigated in aragonite. The distribution functions were determined at pH 6.8 and 8.8 over aqueous Na and K concentrations of between 5 × 10?4and 2.0 M and temperatures of between 25 and 75°C.The mole fractions of Na and K in aragonite are related to the aqueous ratios of Na and Ca by a function of the form
log XNa2CO3,K2CO3 = C0 + C1loga2Na ? ,K?aCa2+
where C0 and C1 are constants at a given temperature. This equation was derived by a statistical model assuming a heterogeneous energy distribution for the sites of incorporation. The independence of the coprecipitation process from aqueous anion activities suggests that carbonate is the only anionic species in the solid solution.  相似文献   

15.
Diffusion of ions in sea water and in deep-sea sediments   总被引:3,自引:0,他引:3  
The tracer-diffusion coefficient of ions in water, Dj0, and in sea water, Dj1, differ by no more than zero to 8 per cent. When sea water diffuses into a dilute solution of water, in order to maintain the electro-neutrality, the average diffusion coefficients of major cations become greater but of major anions smaller than their respective Dj1 or Dj0 values. The tracer diffusion coefficients of ions in deep-sea sediments, Dj,sed., can be related to Dj1 by Dj,sed. = Dj1 · αθ2, where θ is the tortuosity of the bulk sediment and a a constant close to one.  相似文献   

16.
The effect of presure on the solubility of minerals in water and seawater can be estimated from In
(KPspK0sp) + (?ΔVP + 0.5ΔKP2)RT
where the volume (ΔV) and compressibility (ΔK) changes at atmospheric pressure (P = 0) are given by
ΔV = V?(M+, X?) ? V?[MX(s)]ΔK = K?(M+, X?) ? K?[MX(s)]
Values of the partial molal volume (V?) and compressibilty (K?) in water and seawater have been tabulated for some ions from 0 to 50°C. The compressibility change is quite large (~10 × 10?3 cm3 bar?1 mol?1) for the solubility of most minerals. This large compressibility change accounts for the large differences observed between values of ΔV obtained from linear plots of In Ksp versus P and molal volume data (Macdonald and North, 1974; North, 1974). Calculated values of KPspKosp for the solubility of CaCO3, SrSO4 and CaF2 in water were found to be in good agreement with direct measurements (Macdonald and North, 1974). Similar calculations for the solubility of minerals in seawater are also in good agreement with direct measurements (Ingle, 1975) providing that the surface of the solid phase is not appreciably altered.  相似文献   

17.
Equations are developed for calculating the density of aluminosilicate liquids as a function of composition and temperature. The mean molar volume at reference temperature Tr, is given by Vr = ∑XiV?oi + XAV?oA, where the summation is taken over all oxide components except A12O3, X stands for mole fraction, V?oi terms are constants derived independently from an analysis of volume-composition relations in alumina-free silicate liquids, and V?oA is the composition-dependent apparent partial molar volume of Al2O3. The thermal expansion coefficient of aluminosilicate liquids is given by α = ∑Xi\?gaio + XA\?gaAo, where \?gaio terms are constants independent of temperature and composition, and \?gaoA is a composition-dependent term representing the effect of Al2O3 on the thermal expansion. Parameters necessary to calculate the volume of silicate liquids at any temperature T according to V(T) = Vrexp[α(T-Tr)], where Tr = 1400°C have been evaluated by least-square analysis of selected density measurements in aluminosilicate melts. Mean molar volumes of aluminosilicate liquids calculated according to the model equation conform to experimentally measured volumes with a root mean square difference of 0.28 ccmole and an average absolute difference of 0.90% for 248 experimental observations. The compositional dependence of V?oA is discussed in terms of several possible interpretations of the structural role of Al3+ in aluminosilicate melts.  相似文献   

18.
Solubilities of methane in multisalt solutions at 550 psia and 25°C can be predicted from single-salt salting coefficients. The ionic strength contribution of the ith salt, Ii, is multiplied by its molal salting coefficient, kmi, in the following summation over all salts:
logMoMs = ∑i kmiIi
where mo and ms are molal methane solubilities in distilled water and the salt solution, respectively, at the T, P and methane fugacity of interest.This equation predicts methane solubility in multisalt brines containing Na+, K+, Mg+2, Ca+2, Cl?, SO4?2 and CO3?2 ions. kmi values reported by Stoessell and Byrne (1982b) can be used in solubility predictions in brines at earth surface conditions. Prediction in reservoir brines would require determination of kmi, for the different salts at reservoir temperatures and pressures.  相似文献   

19.
The vertical flux and composition of wax esters, steryl esters, triacylglycerols, and alkyldiacylglycerols in particulate matter was determined in the equatorial Atlantic Ocean by deploying sediment traps at 389, 988, 3,755 and 5,068 m. Detailed compositional analyses of these lipids were carried out by high temperature glass capillary gas chromatography and gas chromatography/mass spectrometry.The distributions of these lipids are discussed in terms of potential biological sources. Zooplankton fecal matter and intact zooplankters may represent the most important input of these compounds to the shallower two traps, while the material in the deeper two traps appears to have been biogeochemically altered. The finding of these biochemically important compounds, often unsaturated, indicates that particle transit through the water column must be relatively fast.Wax esters were most abundant in the 389 m sediment trap and decreased with increasing trap depth. Compounds ranging from C28–C44 were present at all depths. The major homologs were C32, C34 and C36, most often monounsaturated. The dominant alcohol/acid combinations in the 389 m trap were C18:1C14:0 and C18:1C16:0, but in the 988 m sample, C16:0C18:1 was the major wax ester. A flux maximum was observed for steryl esters at 988 m. Cholesteryl esters of C14:0, C16:1 and C16:0, and C18:1C18:0 fatty acids were the dominant steryl esters. For triacylglycerols, fluxes in the 389 and 988 m traps were similar, while the deeper pair of traps contained much less triacylglycerol. C46, C48, C50 and C52 compounds were the major triacylglycerols. Constituent fatty acids in the 389 m and 988 m samples were mainly C14:0, C16:1, C16:0, C18:1 and C18:0. In the 988 m material, C20:5 and C22:6 were also dominant. A homologous series of alkyldiacylglycerols was abundant in the 389 m trap material. The alkyldiacylglycerols consisted of C46–C56 compounds composed of C16:0 alkyl moieties and C14:0, C16:0, C18:1, and C18:0 fatty acids.  相似文献   

20.
Archaebacterially produced diphytanyl glycerol ether (DPGE) was examined in core sediments from the Orca Basin, an anoxic hypersaline basin in the northwestern Gulf of Mexico, to observe its spatial variability and potential origin. A differential extraction protocol was employed to quantify the isopranyl glycerol ethers associated with unbound, intermediate-bound, and kerogen-bound lipid fractions. Archaebacterial lipids were evident at all depths for the unbound and intermediate-bound fractions. Concentrations of DPGE ranged from 0.51 to 2.91 micrograms/g dry sediment at the surface and showed secondary maxima deeper in basin sediments. Intermediate-bound DPGE concentrations exhibited an inverse relationship to unbound DPGE concentrations. Kerogen-bound DPGE concentrations were normally below detection limits. Earlier studies describing the general homogeneity of lipid components within the overlying brine and at the brine/seawater interface suggest that the large-scale sedimentary DPGE variations observed in this study result from spatial and temporal variations in in situ production by methanogenic or extremely halophilic archaebacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号