首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At low temperatures, in the presence of an aqueous solution, olivine and orthopyroxene are not stable relative to the hydrous phases brucite, serpentine and talc. Alteration of dunite and peridotite to serpentine or steatite bodies must therefore proceed via non-equilibrium processes. The compositions of natural solutions emanating from dunites and peridotites demonstrate that the dissolution of forsterite and/or enstatite is rapid compared with the precipitation of the hydrous phases; consequently, dissolution of anhydrous minerals controls the chemistry of such solutions. In the presence of an aqueous phase, precipitation of hydrous minerals is the rate-controlling step.Brucite-bearing and -deficient serpentinites alter at low temperature by non-equilibrium processes, as evidenced by the composition of natural solutions from these bodies. The solutions approach equilibrium with the least stable hydrous phase and, as a consequence, are supersaturated with other hydrous phases. Dissolution of the least stable phase is rapid compared to precipitation of other phases, so that the dissolving mineral controls the solution chemistry.Non-equilibrium alteration of anhydrous ultramafic bodies continues until at least one anhydrous phase equilibrates with brucite, chrysotile or talc. The lowest temperature (at a given pressure) at which this happens is defined by the reaction:
3H2O + 2Mg2SiO4 ? Mg3Si2O5(OH)4 + Mg(OH)2
(Johannes, 1968, Contrib. Mineral. Petrol. 19, 309–315) so that non-equilibrium alteration may occur well into greenschist facies metamorphic conditions.  相似文献   

2.
3.
Major and rare earth element (REE) data for basalts from Holes 483, 483B, and 485A of DSDP Leg 65, East Pacific Rise, mouth of the Gulf of California, support a simple fractional crystallization model for the genesis of rocks from this suite. The petrography and mineral chemistry (presented in detail elsewhere) provide no evidence for magma mixing, but rather a simple multistage cooling process. Based on its lowest TiO2 content (0.88%), FeO1MgO ratio (0.95 with total Fe as FeO), and Mg# (100 MgMg + Fe″ = 70), sample 483-17-2-(78–83) has been selected as the most primitive primary magma of the samples analyzed. This is supported by the REE data which show this sample has the lowest total REE content, a LaSmcn (chondrite-normalized) = 0.36, and EuSmcn = 1.05. Because other samples analyzed have higher SiO2, lower Mg#, and a negative Eu anomaly (EuSmcn as low as 0.89), they are most likely derivative magmas. Wright-Doherty and trace element modelling support fractional crystallization of 14.1% plagioclase (An88), 6.7% olivine (Fo86), and 4.7% clinopyroxene (Wo41En49Fs10) from 483-17-2-(78–83) to form the least differentiated sample with Mg# = 63. The LaSmcn of this derivative magma is almost identical to the parent magma (0.35 to 0.36), but the other samples have higher LaSmcn (0.45 to 0.51), more total REE, and lower Mg# (60 to 56). Both Wright-Doherty and trace element modelling indicate that the primary magma chosen cannot produce these more evolved samples. For the major elements, the TiO2 and P2O5 are too low in the calculated versus the observed (1.38 to 1.90; 0.11 to 0.17, respectively, for example). Rayleigh fractionation calculates a lower LaSmcn and requires about 60% crystal removal versus 40% for the Wright-Doherty. These more evolved samples must be derived from a parent magma different from the one selected here and, unfortunately, not sampled in this study. A magma formed by a smaller degree of partial melting with slightly more residual clinopyroxene left in the mantle than for sample 483-17-2-(78–83) is required.  相似文献   

4.
Speciation of aqueous magnesium in the system MgO-SiO2-H2O-HCl in supercritical aqueous fluids has been investigated using standard rapid-quench hydrothermal techniques and a modification of the Ag + AgCl buffer method (Frantz and Eugster, 1973. Am. J. Sci.267, 268–286). A concentric double-capsule charge was utilized. The outer gold capsule contained the assemblage talc + quartz + Ag + AgCl + H2O-MgCl2 fluid; the inner platinum capsule, Ag + AgCl + H2O-HCl fluid. During the experiments, ?H2 and thus ?HCl equilibrated between the two capsules. After quenching, measurement of the chloride concentration in the fluid in the inner capsule and total magnesium in the fluid in the outer capsule defines the concentrations of HCl and Mg that coexist with talc + quartz in the outer capsule. Changes in the measured molality of HCl as a function of the total magnesium concentration at constant P and T were used to identify the predominant species of magnesium in the hydrothermal fluid. Experimental results showed that at 2000 bar, MgCl°2 is the predominant species above 550°C and Mg2+, below 400°C. Data at intermediate temperatures when combined with the dissociation constant for HCl were used to obtain the dissociation constant for MgCl°2. The results of these experiments were combined with results from experiments using Ag + AgCl in conjunction with the oxygen buffer, hematite-magnetite, to obtain the equilibrium constant for the reaction 13 Talc + 2HC1° H2O MgCl°2 + 43 Quartz + 43 H2O from which the difference in Gibbs free energy of MgCl°2 and HC1° was obtained as a function of temperature at 1000, 1500 and 2000 bar pressure, Solubility constants for brucite. forsterite, chrysotile, and talc were calculated.  相似文献   

5.
Near the village of Engeln, Laacher See area, garnet-bearing pyriclasite and pyribolite ejecta were recognized as constituents of alkaline basaltic tuffs; they are interpreted as fragments of the lowermost crust. During the first main stage of granulite facies metamorphism, assemblages with garnet (Alm47Pyr34Spess2Gross + Andr17), clinopyroxene (Wo37En35Fs15Ts8.5Jd4.5), orthopyroxene I (En34Fs38Ts4Jd2), and plagioclase I (An40-An60) were formed in a temperature range of 730–850°C and rock pressures somewhere between 6.5 and 12 kb, Ptot >PH2O > 0. The rare sulfate-rich meionite, and at least a part of the ubiquitous brown hornblende were presumably also formed during this stage. A retrograde metamorphic event under slightly lower pressures and temperatures led to the breakdown of the assemblage garnet + clinopyroxene thereby forming coronas of plagioclase II (An75) + orthopyroxene II + Ti-magnetite ± brown hornblende.  相似文献   

6.
One petrogenetic grid for plagioclase-, spinel- and garnet-lherzolite analogues in the system CaO-MgO-Al2O3-SiO2 is presented from 1 bar to 30 kbar and 400 to 1500°C. Another grid for olivine-gabbro, spinel-gabbro and garnet-pyroxenite analogues in the same system is presented from 1 bar to 25 kbar and 500 to 1500°C. Both grids show the distribution of the mineral assemblages and the variations in the composition of clinopyroxene with temperature and pressure. They were developed by applying simple thermodynamic mixing models of clinopyroxene to experimentally determined clino-pyroxene compositions.Calcium tschermak's pyroxene (CaAl2SiO6) in complex CaMgSi2O6-CaAl2SiO6-Mg2Si2O6 clinopyroxenes is best represented by a local charge balance mixing model where aCaAl2SiO6? (XCaM2)(XAlM1) Enthalpy and entropy changes of subsolidus reactions involving variations in the CaAl2SiO6 and Mg2Si2O6 content of clinopyroxene are interdependent due to nonideal mixing of these two end-members. CaAl2SiO6 can strongly reduce the mutual solubility of clinopyroxene and orthopyroxene at moderate pressures and high temperatures. Failure to take this into account can result in temperature underestimates (up to 150°C) of spinel-lherzolites, garnet-pyroxenites, low pressure garnet-lherzolites, spinel-gabbros, and high pressure plagioclase-lherzolites and olivine-gabbros. However, at temperatures and pressures where the Al2O3 content of clinopyroxene is low (e.g. garnet-lherzolite nodules in kimberlite), the mutual solubility is adequantely represented by experimental results in the system CaO-MgO-SiO2.  相似文献   

7.
8.
The carbonato and hydrogencarbonato complexes of Mg2+ were investigated at 25 and 50° in solutions of the constant ClO4? molality (3 M) consisting preponderantly of NaClO4. The experimental data could be explained assuming the following equilibria: Mg2+ + CO2B + H2O ag MgHCO+3 + H+, log 1β1 = ?7.644 ± 0.017 (25°), ?7.462 ± 0.01 1 (50°), Mg2+ + 2 CO2g + 2 H2Oag Mg(HCO3)02 ± 2 H+, log 1β2 = ?15.00 ± 0.14 (25°), ?15.37 ± 0.39 (50°), Mg2+ + CO2g + H2Oag MgCO03 + 2 H+, log 1k1 = ?15.64 ± 0.06 (25°),?15.23 ± 0.02 (50°), with the assumption γMgCO30 = γMg(HCO3)02, ΔG0(I = 0) for the reaction MgCO03 + CO2g + H2O = Mg(HCO3)02 was estimated to be ?3.91 ± 0.86 and 0.6 ± 2.4 kJ/mol at 25 and 50°C, respectively. The abundance of carbonate linked Mg(II) species in fresh water systems is discussed.  相似文献   

9.
Major-element, trace-element and isotopic compositions of approximately 1200 basalts (< 53 wt. % SiO2) from intra-oceanic island arcs have been compiled to assess the nature and possible sources of primitive island-arc basalts (IAB). The chemical characteristics of IAB are examined with reference to those of mid-ocean ridge basalts (MORB) and intraplate oceanic basalts (IPB). Major-element compositions of primitive [Mg(Mg +Fe2+) > 65] IAB and MORB are similar, but differ significantly from IPB. In general, IAB do not have higher Al2O3, lower TiO2 or a lack of Fe enrichment compared to primitive MORB but many do have greater K2O contents. Differences in major- and minor-element contents between more evolved IAB and MORB result from the dominance of plagioclase + olivine crystal fractionation in MORB magmas vs. clinopyroxene + olivine controlled fractionation in IAB suites. This difference in crystallization history may be related to the higher PH2O or greater depth of crystallization of IAB magmas compared to those inferred for MORB.IAB are characteristically enriched in large-ion-lithophile (LIL) elements and depleted in high-field-strength ions (e.g., Zr, Nb and Hf) relative to normal MORB (N-type) and IPB. The enrichment of some LIL elements (e.g., Sr, Rb, Ba and Pb) relative to the rare-earth elements in IAB is difficult to explain by simple partial melting alone and suggests a multistage petrogenesis involving an LIL-enriched component. Low abundances of high-field-strength ions in evolved IAB are explicable in terms of fractional crystallization, but the cause for consistently low abundances in primitive IAB remains problematic.Island-arc lavas contain greater concentrations of volatiles and have higher CO2H2O and Cl/F ratios than either MORB or IPB, suggesting involvement of a slab-derived volatile component. However, this is not consistent with 3He4He data which indicate that only near-trench volcanics have been significantly affected by dehydration of the oceanic crust.Sr-, Nd-, Pb- and O-isotopic data, in conjunction with the trace-element data, clearly indicate that IAB are derived from heterogeneous, LIL-depleted mantle sources most similar to those which give rise to enriched MORB (E-type). The marked shift towards higher 87Sr86Sr in IAB compared to oceanic lavas with similar 143Nd144Nd values cannot be explained simply by the addition of radiogenic Sr from the slab. Variable degrees of contamination from a crustally-derived sedimentary component is consistent with the isotopic and trace-element data from a number of arcs. However, the lack of correlation between LIL/REE ratios and more radiogenic isotopic ratios suggests that this enrichment/contamination process is complex. A multi-stage petrogenetic model involving subducted oceanic crust (± sediments), dehydration/volatile transfer, and partial melting of metasomatized mantle beneath island arcs is considered the most reasonable, although least constrained, method to generate a variety of primitive IAB.  相似文献   

10.
The partitioning of germanium between forsterite (Fo) and liquids in the diopside-anorthiteforsterite join was investigated by electron microprobe analysis of Ge-doped samples equilibrated at 1300°–1450°C. Germanium is somewhat incompatible in Fo relative to the haplobasaltic melts, with a grand mean for all simple partition coefficients (DFo-lGe) of 0.68 ± 0.06. For the melt composition range studied, DFo-lGe is virtually constant in isothermal series of experiments, and shows only minor overall temperature dependence. The exchange reaction partition coefficient KD = (Mg2GeO4)Fo(SiO2)l(Mg2SiO4)Fo(GeO2)l] is near unity in all cases, with a grand mean of 0.93 ± 0.11. One exploratory run at 20 kbar yielded a distinctly lower partition coefficient (DFo-lGe = 0.54 ± 0.04), which confirms the negative pressure dependence predicted by the thermodynamics of Ge ai Si exchange.These new data indicate that absolute Ge enrichment must occur in terrestrial magmas undergoing olivine fractionation, while GeSi remains nearly constant.  相似文献   

11.
A new technique for the determination of intrinsic oxygen fugacities (?O2's) of single and polyphase geological samples with solid ZrO2, oxygen-specific electrolytes is described. Essentially the procedure involves isolating the emf signal from the sample from that unavoidably imposed by the residual atmosphere inside the sample-bearing sensor. By varying the ?O2 of the residual atmosphere, it is possible to determine a ‘plateau’ value of constant ?O2 recorded from the sensor which represents a reversed intrinsic ?O2 measurement for the sample alone, and where the extent of the plateau reflects the innate buffering capability of the sample. A measure of the precision and accuracy of the data obtained is the fact that identical ?O2 values are obtained whether on a heating or cooling cycle of the sample + compatible atmosphere system.These techniques have been applied to measurements of the intrinsic ?O2 of spinels from peridotites and megacryst assemblages from Australia, West Germany and the U.S.A. Oxidation states range from ~- 0.25 log10 units more oxidized to 1 log10 unit more reduced than the iron-wüstite (IW) buffer. The overall reduced nature of the spinels and the range of ?O2's obtained are striking features of the data. One implication of the results is that the majority of mantle-derived magmas are initially highly reduced, and the relatively oxidized values observed at surface (~- 4–5 log10 orders more oxidized than IW) reflect late-stage alteration, perhaps by H2 loss (Sato, 1978).  相似文献   

12.
J.G Rønsbo  A.K Pedersen  J Engell 《Lithos》1977,10(3):193-204
Microprobe analyses on a xenocrystic suite of salites, aegirine-augites, aegirines, titan-aegirines and acmites from a lower Tertiary ash layer in northern Denmark are presented. The sodic pyroxenes show an unusual titan-enrichment and up to 42 mol.% of the component NaTi124+M122+Si3O6 (M = Fe2+, Mn or Mg), is estimated. Optical absorption measurements show no evidence for Ti3+. The titan-aegirines were formed during late to post-magmatic crystallization in a system with a high Ti4+/Fe2+ ratio and were followed by acmite showing enrichment in jadeite. Comparison with experimentally investigated titan-aegirine indicates crystallization far below the Mn2O3Mn3O4f02 buffer.  相似文献   

13.
Megacrysts and polymineralic fragments of extraordinary diversity from a Tertiary monchiquitic dyke of Ubekendt Ejland comprise three groups: (1) Cr-diopside-fassaitic diopside + olivine, Fo90.5?81.5 + CrAl spinels. (II) Fassaitic salite-ferrisalite + KTi-pargasite-ferropargasite + apatite + AlTi-magnetite, (III) Scapolite + hyalophane + potassium feldspar + nepheline + analcime. By comparison with mineralogy and phase relations in the host rock and experimental data from alkaline rocks the megacrysts are related to a sequence of crystallization from primitive monchiquitic to potassic phonolitic magmas rich in H2O and CO2 at 5–11 kb. Group I megacrysts formed at temperatures of 1300-1150°C and group II between ? 1150–?800°C and fo2 < 10?9 bar at the latter temperature. High Pco2 may have stabilized the scapolite in the more evolved liquid and K-feldspar and nepheline began to crystallize at ca. 800°C possibly together with the ferrisalite.  相似文献   

14.
The chemical composition of gas mixtures emerging in thermal areas can be used to evaluate the deep thermal temperatures. Chemical analyses of the gas compositions for 34 thermal systems were considered and an empirical relationship developed between the relative concentrations of H2S, H2, CH4 and CO2 and the reservoir temperature. The evaluated temperatures can be expressed by: t°C = 24775α + β + 36.05 ?273 where α = 2 logCH4CO2 ?log H2CO2?3 log H2SCO2 (concentrations in % by volume) and β = 7 logPco2  相似文献   

15.
Equations are developed for calculating the density of aluminosilicate liquids as a function of composition and temperature. The mean molar volume at reference temperature Tr, is given by Vr = ∑XiV?oi + XAV?oA, where the summation is taken over all oxide components except A12O3, X stands for mole fraction, V?oi terms are constants derived independently from an analysis of volume-composition relations in alumina-free silicate liquids, and V?oA is the composition-dependent apparent partial molar volume of Al2O3. The thermal expansion coefficient of aluminosilicate liquids is given by α = ∑Xi\?gaio + XA\?gaAo, where \?gaio terms are constants independent of temperature and composition, and \?gaoA is a composition-dependent term representing the effect of Al2O3 on the thermal expansion. Parameters necessary to calculate the volume of silicate liquids at any temperature T according to V(T) = Vrexp[α(T-Tr)], where Tr = 1400°C have been evaluated by least-square analysis of selected density measurements in aluminosilicate melts. Mean molar volumes of aluminosilicate liquids calculated according to the model equation conform to experimentally measured volumes with a root mean square difference of 0.28 ccmole and an average absolute difference of 0.90% for 248 experimental observations. The compositional dependence of V?oA is discussed in terms of several possible interpretations of the structural role of Al3+ in aluminosilicate melts.  相似文献   

16.
Lamproite sills and their associated sedimentary and contact metamorphic rocks from Woodson County, Kansas have been analyzed for major elements, selected trace elements, and strontium isotopic composition. These lamproites, like lamproites elsewhere, are alkalic (molecular K2O + Na2OAl2O3 = 1.6–2.6), are ultrapotassic (K2ONa2O = 9.6–150), are enriched in incompatible elements (LREE or light rare-earth elements, Ba, Th, Hf, Ta, Sr, Rb), and have moderate to high initial strontium isotopic compositions (0.7042 and 0.7102). The silica-saturated magma (olivine-hypersthene normative) of the Silver City lamproite could have formed by about 2 percent melting of a phlogopite-garnet lherzolite under high H2OCO2 ratios in which the Iherzolite was enriched before melting in the incompatible elements by metasomatism. The Rose Dome lamproite probably formed in a similar fashion although the extreme alteration due to addition of carbonate presumably from the underlying limestone makes its origin less certain. Significant fractional crystallization of phases that occur as phenocrysts (diopside, olivine, K-richterite, and phlogopite) in the Silver City magma and that concentrate Co, Cr, and Sc are precluded as the magma moved from the source toward the surface due to the high abundances of Co, Cr, and Sc in the magma similar to that predicted by direct melting of the metasomatized Iherzolite.Ba and, to a lesser extent, K and Rb and have been transported from the intrusions at shallow depth into the surrounding contact metamorphic zone. The Silver City lamproite has vertical fractionation of some elements due either to volatile transport or to variations in the abundance of phenocrysts relative to groundmass most probably due to flow differentiation although multiple injection or fractional crystallization cannot be conclusively rejected.  相似文献   

17.
The spectrophotometric measurements of chloro complexes of lead in aqueous HCl, NaCl, MgCl2 and CaCl2 solutions at 25°C have been analyzed using Pitzer's specific interaction equations. Parameters for activity coefficients of the complexes PbCl+, PbCl20 and PbCl3? have been determined for the various media. Values of K1 = 30.0 ± 0.6, K2 = 106.7 ± 2.1 and K3 = 73.0 ± 1.5 were obtained for the cumulative formation constants. [Pb2+ + nCl? → PbCln2?n)]. These values are in reasonable agreement with literature data. The Pitzer parameters for the PbCl ion pairs in various media were used to calculate the speciation of Pb2+ in an artificial seawater solution.  相似文献   

18.
Aragonite mineralization was observed in serpentinized peridotites from the Romanche and Vema Fracture Zones in the Atlantic and the Owen Fracture Zone in the Indian Ocean, either in veins or as radial aggregates in cavities within the serpentinites. Evidence of incipient dissolution of the aragonite crystals was observed in one case. The aragonites tend to have lower Mg content (< 0.03%) and higher Sr content (> 0.95%) relative to other marine aragonites. Their 18O16O, 13C12C and 87Sr86Sr isotopic ratios suggest the aragonite was deposited at ocean floor temperatures from solutions derived from sea water circulating in fissures and fractures within the ultramafic rocks. The 18O16O ratios of the serpentines indicate serpentinization occurred at higher temperatures, probably deeper in the crust. Low-T reactions between circulating seawater and Mg-silicates (primarily serpentine and pyroxenes) caused high pH and enrichment of Mg and Ca in the solution, conditions favoring carbonate precipitation. Aragonite was formed rather than calcite presumably because the high Mg2+ concentration in the solution inhibited calcite precipitation. The high Sr content of the aragonites is probably related, at least in part, to their low temperature of formation. Opaque mineral grains containing over 8% NiO and over 40% MnO were observed concentrated along the margins of some of the aragonite veins, suggesting that Ni is one of the elements mobilized during reactions between ultramafic rocks and circulating seawater.  相似文献   

19.
Optical and analytical studies were performed on 400 N2 + CO2 gas bearing inclusions in dolomites and quartz from Triassic outcrops in northern Tunisia. Other fluids present include brines (NaCl and KCl bearing inclusions) and rare liquid hydrocarbons. At the time of trapping, such fluids were heterogeneous gas + brine mixtures. In hydrocarbon free inclusions the N2(N2+ CO2) mole ratio was determined using two different non-destructive and punctual techniques: Raman microprobe analysis, and optical estimation of the volume ratios of the different phases selected at low temperatures. In the observed range of compositions, the two methods agree reasonably well.The N2 + CO2 inclusions are divided into three classes of composition: (a) N2(N2 + CO2) > 0,57: Liquid nitrogen is always visible at very low temperature and homogenisation occurs in the range ?151°C to ? 147°C (nitrogen critical temperature) dry ice (solid CO2) sublimates between ?75°C and ?60°C; (b) 0,20 < N2(N2 + CO2) ? 0,57: liquid nitrogen is visible at very low temperature but dry ice melts on heating; liquid and gas CO2 homogenise to liquid phase between ?51°C to ?22°C; (c) N2(N2 + CO2) ? 0,20: liquid nitrogen is not visible even at very low temperature (?195°C) and liquid and gas CO2 homogenise to liquid phase between ?22°C and ?15°C. The observed phases changes are used to propose a preliminary phase diagram for the system CO2-N2 at low temperatures.Assuming additivity of partial pressures, isochores for the CO2-N2 inclusions have been computed. The intersection of these isochores with those for brine inclusions in the same samples may give the P and T of trapping of the fluids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号