首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An error in the Hayes and Belton (1977), Icarus32, 383–401) estimate of the rotation period of Neptune is corrected. If Neptune exhibits the same degree of limb darkening as Uranus near 4900 Å, the rotation period is 15.4 ± 3 hr. This value is compatible with a recent spectroscopic determination of Munch and Hippelein (1979) who find a period of 11.2?1.2+1.8 hr. However, if, as indirect evidence suggests, the law of darkening on Neptune at these wavelengths is less pronounced than on Uranus, then the above estimates may need to be lengthened by several hours. Recent photometric data are independently analyzed and are found to admit several possible periods, none of which can be confidently assumed to be correct. The period of Neptune most probably falls somewhere in the range 15–20 hr. The Hayes-Belton estimate of the period of Uranus is essentially unaffected by the above-mentioned error and remains at 24 ± 4 hr. All observers agree that the rotation period of Uranus is longer than that of Neptune.  相似文献   

2.
Both Uranus and Neptune are thought to have strong zonal winds with velocities of several 100 m s−1. These wind velocities, however, assume solid-body rotation periods based on Voyager 2 measurements of periodic variations in the planets’ radio signals and of fits to the planets’ magnetic fields; 17.24 h and 16.11 h for Uranus and Neptune, respectively. The realization that the radio period of Saturn does not represent the planet’s deep interior rotation and the complexity of the magnetic fields of Uranus and Neptune raise the possibility that the Voyager 2 radio and magnetic periods might not represent the deep interior rotation periods of the ice giants. Moreover, if there is deep differential rotation within Uranus and Neptune no single solid-body rotation period could characterize the bulk rotation of the planets. We use wind and shape data to investigate the rotation of Uranus and Neptune. The shapes (flattening) of the ice giants are not measured, but only inferred from atmospheric wind speeds and radio occultation measurements at a single latitude. The inferred oblateness values of Uranus and Neptune do not correspond to bodies rotating with the Voyager rotation periods. Minimization of wind velocities or dynamic heights of the 1 bar isosurfaces, constrained by the single occultation radii and gravitational coefficients of the planets, leads to solid-body rotation periods of ∼16.58 h for Uranus and ∼17.46 h for Neptune. Uranus might be rotating faster and Neptune slower than Voyager rotation speeds. We derive shapes for the planets based on these rotation rates. Wind velocities with respect to these rotation periods are essentially identical on Uranus and Neptune and wind speeds are slower than previously thought. Alternatively, if we interpret wind measurements in terms of differential rotation on cylinders there are essentially no residual atmospheric winds.  相似文献   

3.
Observations of tilts of spectral lines in the spectrum of Uranus and Neptune yield the following rotational periods: “Uranus,” 24 ± 3 hr; “Neptune,” 22 ± 4 hr. Neptune is confirmed to rotate in a direct sense. The position angle of the pole of Uranus, projected onto the plane of the sky, is found to be 283 ± 4°. The value for Neptune is 32 ± 11°. These results agree with the direction of the pole of Uranus inferred from the common plane of its four brightest satellites and with the direction of the pole of Neptune as inferred from the precession of Triton's orbit. The rotational period of Uranus is found to be consistent with modern values of its optical and dynamical oblateness and the theory of solid-body rotation with hydrostatic equilibrium. This is barely the case for the period derived for Neptune and we suspect that future observations made under better seeing conditions may lead to a shorter rotation period between 15 and 18 hr. Because of a substantial difference between our results and those of earlier spectroscopic and photometric investigations we include an assessment of several previously published photometric studies and a new reduction of the original Lowell and Slipher spectroscopic plates of Uranus [Lowell Obs. Bull. 2, 17–18, 19–20 (1912)]. The early visual photometry of Campbell (Uranus) and Hall (Neptune) is found to be more satisfactorily accounted for by periods of 21.6 and 23.1 hr, respectively, than by the periods originally suggested by the observers. Our reduction of the Lowell and Slipher Uranus plates yields a period near 33 hr uncorrected for seeing. This value is consistent with the results based on the 4-m echelle date.  相似文献   

4.
J.A. Fernández  W.-H. Ip 《Icarus》1984,58(1):109-120
The final stage of the accretion of Uranus and Neptune is numerically investigated. The four Jovian planets are considered with Jupiter and Saturn assumed to have reached their present sizes, whereas Uranus and Neptune are taken with initial masses 0.2 of their present ones. Allowance is made for the orbital variation of the Jovian planets due to the exchange of angular momentum with interacting bodies (“planetesimals”). Two possible effects that may have contributed to the accretion of Uranus and Neptune are incorporated in our model: (1) an enlarged cross section for accretion of incoming planetesimals due to the presence of extended gaseous envelopes and/or circumplanetary swarms of bodies; and (2) intermediate protoplanets in mid-range orbits between the Jovian planets. Significant radial displacements are found for Uranus and Neptune during their accretion and scattering of planetesimals. The orbital angular momentum budgets of Neptune, Uranus, and Saturn turn out to be positive; i.e., they on average gain orbital angular momentum in their interactions with planetesimals and hence they are displaced outwardly. Instead, Jupiter as the main ejector of bodies loses orbital angular momentum so it moves sunward. The gravitational stirring of planetesimals caused by the introduction of intermediate protoplanets has the effect that additional solid matter is injected into the accretion zones of Uranus and Neptune. For moderate enlargements of the radius of the accretion cross section (2–4 times), the accretion time scale of Uranus and Neptune are found to be a few 108 years and the initial amount of solid material required to form them of a few times their present masses. Given the crucial role played by the size of the accretion cross section, questions as to when Uranus and Neptune acquired their gaseous envelopes, when the envelopes collapsed onto the solid cores, and how massive they were are essential in defining the efficiency and time scale of accretion of the two outer Jovian planets.  相似文献   

5.
Yuan Lian  Adam P. Showman 《Icarus》2010,207(1):373-393
Three-dimensional numerical simulations show that large-scale latent heating resulting from condensation of water vapor can produce multiple zonal jets similar to those on the gas giants (Jupiter and Saturn) and ice giants (Uranus and Neptune). For plausible water abundances (3-5 times solar on Jupiter/Saturn and 30 times solar on Uranus/Neptune), our simulations produce ∼20 zonal jets for Jupiter and Saturn and 3 zonal jets on Uranus and Neptune, similar to the number of jets observed on these planets. Moreover, these Jupiter/Saturn cases produce equatorial superrotation whereas the Uranus/Neptune cases produce equatorial subrotation, consistent with the observed equatorial-jet direction on these planets. Sensitivity tests show that water abundance, planetary rotation rate, and planetary radius are all controlling factors, with water playing the most important role; modest water abundances, large planetary radii, and fast rotation rates favor equatorial superrotation, whereas large water abundances favor equatorial subrotation regardless of the planetary radius and rotation rate. Given the larger radii, faster rotation rates, and probable lower water abundances of Jupiter and Saturn relative to Uranus and Neptune, our simulations therefore provide a possible mechanism for the existence of equatorial superrotation on Jupiter and Saturn and the lack of superrotation on Uranus and Neptune. Nevertheless, Saturn poses a possible difficulty, as our simulations were unable to explain the unusually high speed (∼) of that planet’s superrotating jet. The zonal jets in our simulations exhibit modest violations of the barotropic and Charney-Stern stability criteria. Overall, our simulations, while idealized, support the idea that latent heating plays an important role in generating the jets on the giant planets.  相似文献   

6.
This paper is concerned with the interior structure of Uranus and Neptune. Our approach is three-fold. First, a set of three-layer models for both Uranus and Neptune are constructed using a method similar to that used in the study of the terrestrial planets. The variations of the mass density (s) and flattening e(s) with fractional mean radius s for two representative models of Uranus and Neptune are calculated. The results are tabulated. A comparison of these models shows that these two planets are probably very similar to each other in their basic dynamical features. Such similarity is very seldom seen in our solar system. Secondly, we check the conformance between the theoretical results and observational data for the two planets. And thirdly, the 6th degree Stokes zonal parameters for Uranus and for Neptune are predicted, based on the interior models put forward in this paper.  相似文献   

7.
J.A. Fernández  W.-H. Ip 《Icarus》1981,47(3):470-479
The dynamical evolution of bodies under the gravitational influence of the accreting proto-Uranus and proto-Neptune is investigated. The main aim of this study is to analyze the interrelations between the accretion of Uranus and Neptune with other processes of cosmological importance as, for example, the formation of a cometary reservoir from bodies placed into near-parabolic orbits by planetary perturbations and the scattering of bodies to the region of the terrestrial planets. Starting with a mass ratio (initial mass/present mass) of 0.1, Uranus and Neptune acquire masses close to their present ones in a time scale of 108 years. Neptune is found to be the most important contributor of comets to the cometary reservoir. The time scale of bodies scattered by Neptune to reach near-parabolic orbits (semimajor axes a > 104 AU)is about 109 years. The contribution of Uranus was partially inhibited because a large part of the residual bodies of its accretion zone fell under the strong gravitational influence of Jupiter and Saturn. A significant fraction of the bodies dispersed by Uranus and Neptune reached the region of the terrestrial planets in a time scale of some 108 years.  相似文献   

8.
The non-axisymmetric, non-dipolar magnetic fields of Uranus and Neptune are markedly different from the axially-dipolar dominated fields of the other planets in our Solar System with active dynamos. Stanley and Bloxham [Stanley, S., Bloxham, J., 2004. Nature 428, 151-153] used numerical modeling to demonstrate that Uranus' and Neptune's unusual fields could be the result of a different convective region geometry in these planets. They found that a numerical dynamo operating in a thin shell surrounding a stably-stratified fluid interior produces magnetic field morphologies similar to those of Uranus and Neptune. This geometry for the convective region was initially proposed by Hubbard et al. [Hubbard, W.B., Podolak, M., Stevenson, D.J., 1995. In: Cruickshank, D. (Ed.), Neptune and Triton. Univ. of Arizona Press, Tucson, pp. 109-138] to explain both the magnetic field morphology as well as the low intrinsic heat flows from these planets. Here we examine the influence of varying the stable layer radius in numerical models and compare the results to thin shell models surrounding solid inner cores. We find that a limited range of stable-layer shell thicknesses exist in which Uranus/Neptune-like field morphologies result. This allows us to put constraints on the size of the convective layers in Uranus and Neptune.  相似文献   

9.
Charge-coupled device images of Uranus and Neptune taken in the 8900-Å absorption band of methane are presented. The images have been digitally processed by means of nonlinear deconvolution techniques to partially remove the effects of atmospheric seeing. The restored Uranus images show strong limb brightening consistent with previous observations and theoretical models of the planet's atmosphere. The computer-processed images of Neptune show discreted cloud features similar to those reported previously by B. A. Smith, H. J. Reitsema and S. M. Larson (1979 Bull. Amer. Astron. Soc.11, 570). A time series of the restored Neptune images shows a continuous variation which may be due to the planet's rotation.  相似文献   

10.
《Icarus》1986,67(2):289-304
We have made narrowband photometric measurements of Uranus and Neptune covering the wavelength range from 0.35 to 3.3 mm. The observations provide accurate comparative radiometry of these planets. Absolute calibration was referenced to Mars, and to Jupiter as a secondary standard. The results establish Uranus and Neptune as reliable secondary calibrators in their own right. We have combined our observations with other measurements made in the period 1978 through 1984 in the spectral range of 17 μm through 3 mm to form models for atmospheric temperature structure in the vertical range from 100 mbar to 8 bar. The simplest models imply that the tropospheres of both planets are consistent with “frozen” equilibrium H2 and a mixing ratio of CH4 of about 2% by volume in the deep atmosphere. There is some evidence in the Uranus data which implies the presence of discrete spectral lines. These could be due to CH4 pure rotational or dimer transitions or to minor constituents such as CO, which remain uncondensed even at the cold temperatures in the atmosphere of Uranus.  相似文献   

11.
W.B. Hubbard 《Icarus》1978,35(2):177-181
We extend a Jovian convective-cooling model to Uranus and Neptune. The model assumes that efficient interior convection prevails, so that escape of interior heat is governed by the radiative properties of the atmosphere. A comparison of the thermal evolution of Uranus and Neptune indicates that the larger amount of solar radiation absorbed in Uranus' atmosphere tends to differentially suppress the escape of interior heat. The model is shown to be consistent with recent infrared observations of the thermal balance of Uranus and Neptune, and with the presumed age of these planets.  相似文献   

12.
H.B. Hammel  G.W. Lockwood 《Icarus》2007,186(1):291-301
Long-term photometric measurements of Uranus and Neptune through 2005 show variations in brightness. For Uranus, much of the variation can be interpreted as seasonal, i.e., caused by viewing angle changes of an oblate planet. The photometry suggests that if seasonal variations on Uranus are north-south symmetric, then the northern pole should begin to brighten in 2006. However, seasonal “aspect” changes cannot explain all the variation; the Uranus observations require intrinsic atmospheric change. Furthermore, Uranus observations spanning many scale heights in the atmosphere may show similar change. For Neptune, variations in sub-solar latitude may explain the general shape of the long-term light curve, but significant deviations occur that have no explanation at present. Observations are needed over a longer temporal baseline than currently exists to fully characterize both atmospheres.  相似文献   

13.
R. Smoluchowski  M. Torbett 《Icarus》1981,48(1):146-148
It has been shown by us previously that a hydromagnetic dynamo can operate in the core of Uranus but probably not on Neptune. A similar analysis is made for the “icy” liquid mantles of both planets. It is concluded that pressure ionization and the associated increased conductivity of water is probably not enough to satisfy the necessary conditions for a dynamo on Uranus and that it is marginal for Neptune. On the other hand the expected presence of metallic water in a thick layer around the core of Neptune makes the operation of a dynamo on this planet plausible. A similar layer on Uranus might be too thin to play the same role. It appears that if a magnetic field is indeed present on Uranus it is probably generated in the core of the planet, while on Neptune it is more likely operating in the icy mantle.  相似文献   

14.
The assumption that the very low albedo determined for Halley's comet is typical of all short period comets, taken together with the assumption that the average sizes of long and short period comets are approximately equal, leads to an increase in the total mass of comets in the solar system by almost two orders of magnitude. If gravitational ejection from the Uranus - Neptune zone during the later phases of planet formation is indeed responsible for the classical Oort cloud between 104–1015 AU, then the mass of comets in this transplanetary region during cosmogonie times has to exceed the combined masses of Uranus and Neptune by over an order of magnitude. Furthermore, if the recent arguments for as many as 1014 comets in an inner Oort cloud between ~40– 104AU are valid, then the total mass of comets in the solar system approaches 2% of a solar mass.  相似文献   

15.
Previous studies have used models of three-dimensional (3D) Boussinesq convection in a rotating spherical shell to explain the zonal flows on the gas giants, Jupiter and Saturn. In this paper we demonstrate that this approach can also generate flow patterns similar to those observed on the ice giants, Uranus and Neptune. The equatorial jets of Uranus and Neptune are often assumed to result from baroclinic cloud layer processes and have been simulated with shallow layer models. Here we show that vigorous, 3D convection in a spherical shell can produce the retrograde (westward) equatorial flows that occur on the ice giants as well as the prograde (eastward) equatorial flows of the gas giants. In our models, the direction of the equatorial jet depends on the ratio of buoyancy to Coriolis forces in the system. In cases where Coriolis forces dominate buoyancy, cylindrical Reynolds stresses drive prograde equatorial jets. However, as buoyancy forces approach and exceed Coriolis forces, the cylindrical nature of the flow is lost and 3D mixing homogenizes the fluid's angular momentum; the equatorial jet reverses direction, while strong prograde jets form in the polar regions. Although the results suggest that conditions involving strong atmospheric mixing are responsible for generating the zonal flows on the ice giants, our present models require roughly 100 and 10 times the internal heat fluxes observed on Uranus and Neptune, respectively.  相似文献   

16.
Using current concepts for the origin of the Jovian planets and current constraints on their interior structure, we argue that the presence of large amounts of “ice” (H2O, CH4, and NH3) in Uranus and Neptune indicates temperatures low enough to condense these species at the time Uranus and Neptune formed. Yet such low temperatures imply orders-of-magnetude fractionation effects for deuterium into the “ice” component if isotopic equilibration can occur. Our models thus imply that Uranus and Neptune should have a D/H ratio at least four times primordial, contrary to observation for Uranus. We find that the Jovian and Saturnian D/H should be close to primordial regardless of formation scenario. The Uranus anomaly could indicate that there was a strong initial radial gradient in D/H in the primordial solar nebula, or that Uranus is so inactive that no significant mixing of its interior has occurred over the age of the solar system. Observation of Neptune's atmospheric D/H may help to resolve the problem.  相似文献   

17.
The interior of giant planets can give valuable information on formation and evolution processes of planetary systems. However, the interior and evolution of Uranus and Neptune is still largely unknown. In this paper, we compare water-rich three-layer structure models of these planets with predictions of shell structures derived from magnetic field models. Uranus and Neptune have unusual non-dipolar magnetic fields contrary to that of the Earth. Extensive three-dimensional simulations of Stanley and Bloxham (Stanley, S., Bloxham, J. [2004]. Nature 428, 151-153) have indicated that such a magnetic field is generated in a rather thin shell of at most 0.3 planetary radii located below the H/He rich outer envelope and a conducting core that is fluid but stably stratified. Interior models rely on equation of state data for the planetary materials which have usually considerable uncertainties in the high-pressure domain. We present interior models for Uranus and Neptune that are based on ab initio equation of state data for hydrogen, helium, and water as the representative of all heavier elements or ices. Based on a detailed high-pressure phase diagram of water we can specify the region where superionic water should occur in the inner envelope. This superionic region correlates well with the location of the stably-stratified region as found in the dynamo models. Hence we suggest a significant impact of the phase diagram of water on the generation of the magnetic fields in Uranus and Neptune.  相似文献   

18.
Significant variations in the near-infrared brightness of Neptune during July and August 1980 were observed. These observations show a well-defined, large-amplitude variation in Neptune's J-K color, with a period of 17.73 ± 0.1 hr and are interpreted as diurnal variations resulting from the 17.73-hr rotation period of the upper atmosphere of Neptune in the presence of inhomogeneous weather. These results qualitatively corroborate those of D. P. Cruikshank (1978, Astrophys. J.220, L57-L59) in an earlier study using similar techniques. In addition, variations were observed in the 5-μm spectral region which are in phase with the variations seen at shorter wavelengths. A new 5-μm measurement of Uranus is also reported.  相似文献   

19.
We present 20-μm photometry of Uranus and Neptune which confirms the presence of a temperature inversion in the lower stratospheres in both planets. We find the brightness temperature difference between 17.8 and 19.6 μm to be 0.8 ± 0.5°K for Uranus and 1.8 ± 0.6°K for Neptune. These results indicate that the temperature inversions on both planets are weaker than previously thought. Comparison to model atmospheres by J. Appleby [Ph.D. thesis, SUNY at Stony Brook 1980] indicates that the temperature inversions can be understood as arising from heating by the absorption of sunlight by CH4 and aerosols. However, the stratospheric CH4 mixing ratio on Neptune must be higher than that at the temperature minimum.  相似文献   

20.
The latitudinal and seasonal variation of the direct solar radiation incident at the top of the atmosphere of Uranus and Neptune has been recalculated by use of updated values for the period of axial rotation and the oblateness. Values for the solar radiation are given in Watt per square meter instead of the unit used in earlier papers (calories per square centimeter per planetary day). The solar radiation averaged over a season and a year as a function of planetocentric latitude has also been reviewed. In addition, attention is made to the ratio of the solar radiation incident on an oblate planet to that incident on a spherical planet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号