首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cold Bay and Amak Island, two Quaternary volcanic centers in the eastern Aleutians, are orthogonal relative to the trench and separated by ~50 km. Sr, Nd and Pb isotopic compositions of the calc-alkaline andesite magmas show no sign of contamination from continental crust (average 87Sr86Sr = 0.70323, 143Nd144Nd = 0.51301, 206Pb204Pb = 18.82, 207Pb204Pb = 15.571). These samples plot within the mantle arrays for Sr-Nd and for Pb and are similar to arcs such as the Marianas and New Britain (Sr-Nd) and Marianas and Tonga (Pb). Incompatible element ratios for the Aleutian andesites (K/Rb ~ 332, K/Cs ~ 10,600, K/Sr ~ 22.4, K/Ba ~ 18.3, Ba/La ~ 60) are within the range reported for arc basalts, despite the difference in degree of fractionation.Average K content, K/Rb, K/Ba and K/Sr are approximately the same for basalts from arcs and from oceanic islands (OIB); K/Cs is a factor of 4 lower and Ba/La almost 3 times higher in arcs. Abundance ratio correlations indicate that arcs are enriched in Cs and depleted in La relative to OIB, with other incompatible element abundances very similar. Histograms of Sr and Nd isotopic compositions for MORB, OIB, and intraoceanic arcs show remarkably similar peaks and distribution patterns for intraoceanic arcs and OIB.A “plum pudding” model for the upper mantle best accommodates a) geochemical coherence of OIB and IAV, b) the existence of mantle plumes at some oceanic islands, and c) the presence of a MORB-type source at back arc spreading centers. In this model, OIB plums are imbedded in a MORB matrix; small degrees of melting generate OIB-type magmas while larger degrees of melting dilute the OIB magma with MORB matrix melts.OIB plums are merely less robust lower mantle plumes (i.e., blobs) which are distributed throughout the upper mantle by convection. The existence of at least two types of OIB, as indicated by Sr, Nd, and Pb isotopes, suggests that nuggets of recycled oceanic lithosphère may coexist with lower-mantle plums and that both may be tapped in arcs and intraplate environments.  相似文献   

2.
Combined elemental and Sr, Nd, Pb and O isotopic data for late Cenozoic olivine tholeiite lavas from the northwestern Great Basin indicate derivation from at least two chemically and isotopically distinct mantle source regions with no significant modification by interaction with continental crust. The lack of crustal involvement is a direct reflection of the extensional tectonic environment which favors rapid ascent of magmas, minimal residence time in crustal magma chambers and scattered fissure eruptions.The observed chemical and isotopic variations in the tholeiite suite are attributed to mixing between depleted oceanic type mantle (87Sr86Sr ~ 0.7030 and 143Nd144Nd ~ 0.51305) and old, chemically heterogeneous, isotopically enriched subcontinental mantle (87Sr86Sr ~ 0.7078 and 143Nd144Nd ~ 0.51233). Model incompatible element concentrations suggest strong similarities between the depleted mantle and the mantles beneath normal oceanic ridge segments and back-arc basins and between the enriched mantle and the mantle beneath enriched oceanic ridge segments such as the Azores. Superimposed upon the characteristics derived from the two component mixing model may be the effects of a third mantle source which is identifiable only by its apparent radiogenic 206Pb204Pb ratios. If present, this third source may reflect a component derived from the downgoing slab of an ancient subduction zone.  相似文献   

3.
Twenty-four piston core sediment samples and 13 sediments and 3 basalts from DSDP Leg 78 Site 543 were analyzed for Sr, Nd and Pb isotopic compositions. The results show sediment with highly radiogenic Pb206Pb204Pb up to 19.8) and rather radiogenic Sr and unradiogenic Nd has been deposited in the region since the Cretaceous. The source of this sediment is probably the Archean Guiana Highland, which is drained by the Orinoco River. Pb and Sr isotopic compositions and sediment thickness decrease and143Nd144Nd increases northward due to a decrease in turbiditic component. This decrease is partly due to the damming action of basement ridges. Rare earth concentrations in the sediments are somewhat low, due to the abundance of detrital and biogenic components in the sediment and rapid sedimentation rates. Both positive and negative Ce anomalies occur in the surface sediments, but only positive Ce anomalies occur in the Site 543 sediments. It is unlikely that sediment subducted to the source region of Lesser Antilles arc magmas could be the cause of negative Ce anomalies in those magmas.Isotopic compositions of Site 543 basalts show some effect of contamination by seawater-basalt reaction products and sediments. Beyond this, however, they are typical of “normal” depleted MORB.  相似文献   

4.
Pb isotope abundances are reported for six late-kinematic granitoid intrusives from the Quebec sector of the Abitibi greenstone belt. Leaching experiments on K-feldspar separates reveal the presence of radiogenic Pb, attributed to in situ decay of U and Th. Pb-Pb mineral isochrons were constructed with the K-feldspar data plus results obtained on the total-rock, sphene, apatite and other mineral phases; five localities show no evidence of post-emplacement disturbance and yield ages ranging from 2616 ± 19 to 2718 ± 12 Ma. These ages, which are corroborated by U-Pb dating of small populations of sphene, imply that the orogenic events in the Abitibi belt were terminated 2700–2710 Ma ago, and followed by a period of granitization which lasted for 80 to 100 Ma.The initial Pb isotope composition of the magmas shows that their source regions were isotopically heterogeneous; the time integrated 238U204Pb values for the source regions vary from 7.62 to 7.92 and the K-feldspar data indicate that similar heterogeneities were present at the scale of a single intrusion. The range of isotopic composition spans the compositional domain of the mantle, defined by sulfides associated with komatiites and some galenas, and that of the continental crust, defined by sulfides associated with Abitibi iron-formations. Consequently, the granitoid magmas are interpreted as partial melts of a continental crust comprising juvenile, mantle-derived rocks and non-negligible amounts of earlier formed sialic material. The Pb isotope data for the latter are consistent with the presence in the area of 3.0 to 3.4 Ga old sialic crust. The episode of crustal anatexis occurred as a consequence to the orogenic events which resulted in burial of altered supracrustal rocks rich in water and heat-producing elements.  相似文献   

5.
Major-element, trace-element and isotopic compositions of approximately 1200 basalts (< 53 wt. % SiO2) from intra-oceanic island arcs have been compiled to assess the nature and possible sources of primitive island-arc basalts (IAB). The chemical characteristics of IAB are examined with reference to those of mid-ocean ridge basalts (MORB) and intraplate oceanic basalts (IPB). Major-element compositions of primitive [Mg(Mg +Fe2+) > 65] IAB and MORB are similar, but differ significantly from IPB. In general, IAB do not have higher Al2O3, lower TiO2 or a lack of Fe enrichment compared to primitive MORB but many do have greater K2O contents. Differences in major- and minor-element contents between more evolved IAB and MORB result from the dominance of plagioclase + olivine crystal fractionation in MORB magmas vs. clinopyroxene + olivine controlled fractionation in IAB suites. This difference in crystallization history may be related to the higher PH2O or greater depth of crystallization of IAB magmas compared to those inferred for MORB.IAB are characteristically enriched in large-ion-lithophile (LIL) elements and depleted in high-field-strength ions (e.g., Zr, Nb and Hf) relative to normal MORB (N-type) and IPB. The enrichment of some LIL elements (e.g., Sr, Rb, Ba and Pb) relative to the rare-earth elements in IAB is difficult to explain by simple partial melting alone and suggests a multistage petrogenesis involving an LIL-enriched component. Low abundances of high-field-strength ions in evolved IAB are explicable in terms of fractional crystallization, but the cause for consistently low abundances in primitive IAB remains problematic.Island-arc lavas contain greater concentrations of volatiles and have higher CO2H2O and Cl/F ratios than either MORB or IPB, suggesting involvement of a slab-derived volatile component. However, this is not consistent with 3He4He data which indicate that only near-trench volcanics have been significantly affected by dehydration of the oceanic crust.Sr-, Nd-, Pb- and O-isotopic data, in conjunction with the trace-element data, clearly indicate that IAB are derived from heterogeneous, LIL-depleted mantle sources most similar to those which give rise to enriched MORB (E-type). The marked shift towards higher 87Sr86Sr in IAB compared to oceanic lavas with similar 143Nd144Nd values cannot be explained simply by the addition of radiogenic Sr from the slab. Variable degrees of contamination from a crustally-derived sedimentary component is consistent with the isotopic and trace-element data from a number of arcs. However, the lack of correlation between LIL/REE ratios and more radiogenic isotopic ratios suggests that this enrichment/contamination process is complex. A multi-stage petrogenetic model involving subducted oceanic crust (± sediments), dehydration/volatile transfer, and partial melting of metasomatized mantle beneath island arcs is considered the most reasonable, although least constrained, method to generate a variety of primitive IAB.  相似文献   

6.
Three discrete sub-belts of porphyry copper-type mineralization are recognized in the Colombian Andes: a western Eocene sub-belt, an eastern Jurassic to early Cretaceous sub-belt and, between them, a central Miocene sub-belt. The western sub-belt is part of an oceanic domain constituted by oceanic crust and overlying immature island-arc rocks, the eastern sub-belt is within a continental domain underlain by the leading edge of the Guayana shield, and the central sub-belt spans the faulted boundary between them. The thicker continental crust includes important granulitic rocks which crop out locally, as in the vicinity of the Mocoa porphyry copper deposit.Pb-isotopic ratios were determined for pyrite samples collected from 6 porphyry copper centers, 3 in the western sub-belt, 2 in the eastern sub-belt, and one in the central sub-belt. Ratios fall into 3 discrete populations: the most radiogenic values represent the western sub-belt, the least radiogenic represent the eastern sub-belt, and an intermediate value corresponds to the central sub-belt. Ratios therefore become progressively less radiogenic from the western oceanic domain to the eastern cratonic domain.Comparison of the Pb-isotopic ratios with those given in the literature for possible source materials for Colombian porphyry copper leads enables the subcontinental mantle wedge, subducted oceanic crust and subducted metalliferous sediments to be discounted as principal sources. The relatively radiogenic signatures of 5 of the porphyry copper centers appear to be broadly compatible with either a subducted pelagic sediment source or an upper continental crust source, whereas the sixth center, Mocoa, is characterized by a distinctly less radiogenic 206Pb204Pb ratio. An admixture of a relatively small percentage of non-radiogenic Pb from granulitic material in the upper crust with the more radiogenic Pb typical of the western sub-belt centers could account for the Mocoa data. Because much of the upper crustal section in the region of Mocoa is thought to be dominated by granulitic material, the radiogenic Pb component could be best derived from subducted pelagic sediments. If this is the case, then a subducted pelagic sediment source could dominate the Pb-isotopic signatures of all Colombian porphyry copper mineralization, with some of the Pb-isotopic differences being produced by selective contamination with upper crustal leads of variable character. If this conclusion is correct, then the fundamental metal budgets of Colombian porphyry copper systems are probably largely independent of upper crustal influences.  相似文献   

7.
The Hidra Massif (Rogaland complex, S.W. Norway) is a massif-type anorthositic-charnockitic body. It consists of undeformed anorthosites and leuconorites, grading into fine-grained jotunites at the contact with the granulite facies gneisses of the metamorphic envelope. A stockwork of charnockitic dykes cross-cuts the massif. The Pb isotopic compositions of the anorthosites and leuconorites are comparable or slightly less radiogenic than those of the jotunites (206Pb204Pb from 18.079 to 19.307,(207Pb204Pb from 15.568 to 15.657 and 208Pb204Pb from 37.617 to 38.493). These values are compatible with an upper mantle origin for the parental magma of jotunitic composition and for the plagioclasic cumulates, but show the incorporation of lower crustal material (U-depleted and thus less radiogenic). The charnockitic dykes have significantly less radiogenic Pb isotopic compositions (206Pb204Pb from 17.472 to 19.171, 207Pb204Pb from 15.489 to 15.620and 208Pb204Pb from 36.991 to 40.922) which can be explained by a larger proportion of lower crustal contamination material. The contaminant could be the granulite facies gneisses of the metamorphic envelope. This interpretation is compatible with the K-Rb relationships of these rocks and with the O and Sr isotopic geochemistry.The proportion of contaminating lead in the charnockitic dykes can be estimated at 55 ± 15% considering the border facies jotunite as the uncontaminated parental magma and the least radiogenic gneiss of the metamorphic envelope as the contaminant.  相似文献   

8.
9.
To better understand the process of crustal contamination/assimilation, 23 Pb isotopic compositions and 12 concentrations have been measured on lavas and basement rocks from the Edgecumbe volcanic field, SE Alaska. Measured isotopic ratios have the following ranges: 206Pb204Pb = 18.477–19.161; 207Pb204Pb = 15.562–15.679; 208Pb204Pb = 38.17–38.85. While the data form well-constrained linear arrays on Pb-Pb diagrams, no simple correlation exists with major element composition. Basaltic lavas (≤ 51 wt% SiO2) are characterized by two isotopic groups. The olivine basalt (≤ 48% SiO2) is more radiogenic than the plagioclase basalt (48–51%) which also shows more heterogeneity. In the silica range 52–55%, Pb isotopic ratios increase significantly but remain fairly constant in the range 55–70% SiO2. Lead concentrations vary from 1 ppm in the basalts to 7 ppm in the rhyodacites. Analyzed basement rocks are more radiogenic than any of the lavas (206Pb204Pb = 19.20; 207Pb204Pb = 15.65; 208Pb204Pb = 38.86. The Pb isotopic data are qualitatively consistent with the contamination process described by Myerset al. (1984). However, because of fundamental differences in the mixing relations between the Sr system studied earlier and the Pb system, the new Pb data have revealed details of the process not apparent from the Sr data alone. In particular, it has been shown that the parent magma was more primitive than originally assumed, and that two contamination events are recorded in the lavas. The first event, involving a mafic parent and different crustal contaminants, produced the intermediate and siliceous hybrids in cupolas located above the main basaltic chamber. The types of country rock intruded as well as the degree of partial fusion achieved in individual cupolas controlled the range of hybrid compositions produced while the eruption sequence was determined by the order in which the cupolas were tapped. The second contamination event produced the plagioclase basalt, the most voluminous basaltic unit, by mixing the mafic parent with the olivine basalt, an independent, primary magma. Our results suggest crustal contamination models that assume bulk assimilation of crustal end members may be too simplistic.  相似文献   

10.
We report Sr and Pb isotope analyses for an extensive suite of volcanic rocks from the N. Mariana arc together with Sr and Pb isotope analyses of sediments from the nearby Mariana and Nauru basins. In addition ten of the most recent volcanic samples were analysed for 10Be.The Sr isotope compositions cluster tightly around 87Sr86Sr = 0.7035 being slightly but significantly higher than the Pacific ocean floor basalts on either side of the arc and agreeing well with previous data. In contrast, the large number of new Pb isotopic data presented significantly extends the observed range of Pb isotope compositions for volcanic rocks from the Mariana arc to more radiogenic compositions. The concentrations of 10Be were very low (< 0.5 × 106 atom g?1).These new data require either that the Pb and Sr isotopic compositions of the Mariana sub-arc mantle be substantially different from those of the mantle source of ocean floor basalts on either side of the arc, or that the enrichment in radiogenic Pb and Sr relative to the values observed in Pacific ocean floor basalts be related to the subduction process. We prefer the latter hypothesis in which radiogenic Sr and Pb in ocean floor sediments are added to M.O.R.B. type mantle either by direct assimilation of the sediments in partial melts or, more probably, by transfer in a fluid phase into the zone of magma production. The low 10Be concentrations observed suggest the removal of at least the top few metres of sediment during subduction.  相似文献   

11.
Pb isotopic abundances and U-Th-Pb concentrations are reported for feldspar megacrysts from the 3.59 AE old Amîtsoq gneisses, Godthaab District, West Greenland. The distinctive Pb in the feldspars is the most primitive terrestrial Pb so far observed. It is observed in feldspars which are from different geographic localities and which exhibit varying degrees of deformation and recrystallization. This appear to be either the initial Pb in the Amîtsoq gneiss or the initial Pb only slightly modified by subsequent metamorphism in a low 238U204Pb environment. 238U204Pb in the feldspars is low and the corrections for in situ produced Pb are only 0.4% for 207Pb206Pb and 0.6% for 204Pb206Pb. The mean corrected isotopic abundances are 204Pb206Pb = 0.08720, 207Pb206Pb = 1.1513, and 208Pb206Pb = 2.7350. The feldspars contain a very small amount of easily leachable radiogenic Pb which is correlated with U and which indicates the formation of U-rich phases at about 2.7 AE. The matrix surrounding the feldspar megacrysts contains Pb which is much evolved relative to the megacrysts and this matrix does not appear to have behaved as a simple closed system. Element redistribution and open system behavior at about 2.7 AE is also suggested by Pb in feldspar from a dike cutting across the gneiss. Assuming that the Amîtsoq gneiss feldspar Pb corrected for in situ U decay was the initial Pb in the gneiss at 3.59 AE (Baadsgaard, 1973), a single-stage “age of the earth” is determined as 4.47 ± 0.05 AE and μ is 8.5. This is indistinguishable from the single-stage age for modern rocks and is distinctly younger than the 4.55 AE age of some meteorites. If the feldspar Pb was modified by metamorphism at 2.7 AE the model age of the earth is calculated as 4.53 AE which is similar to the 4.55 AE age of some meteorites. Two-stage models using the nominal 3.59 AE initial Pb indicate that if the earth is ~4.55 AE old then μ values were low in the early Earth's history and differentiation occurred within a few hundred million years after the planet formed.  相似文献   

12.
Tertiary-Recent Tasmanian and Newer (Victoria/South Australia) basalts range from quartz tholeiite to olivine melilitite and show systematic increases in their incompatible element abundances with increasing degree of silica undersaturation. These two basalt provinces show similar relative abundances of rare earth elements (REE), differences in the relative concentrations of Rb, Ba, Th, K and Nb, and distinct, restricted isotopic compositions. The Tasmanian basalts have 87Sr86Sr from 0.7026 to 0.7034, and ?Nd from + 7.5 to + 5.8; the Newer basalts have higher 87Sr86Sr from 0.7038 to 0.7045, and lower ?Nd from +4.2 to + 1.7. The range in Sr and Nd isotope compositions can be denned by primary magma compositions for both provinces, using Mg-values, Ni content and the presence of spinel lherzolite nodules. Major and trace element and Sr, Nd and Pb isotope compositions are uniform on a scale of up to 50 km for four separate Newer basanite centers. The chemical and isotopic data are consistent with a model whereby tholeiitic basalts are derived by large degrees of partial melting from a chemically uniform but isotopically variable source, and generation of undersaturated, alkaline basalts by smaller degrees of partial melting of the same source. No isotopic or geochemical evidence was found which would suggest that the more evolved basalts have been contaminated by continental crust.In contrast to tholeiitic and alkalic basalts from Hawaii, there is a continuous spectrum of isotope compositions for the Newer tholeiitic to alkalic basalts. A model is proposed for the generation of these basalts involving mixtures of hotspot mantle plume-derived melt and lithospheric mantle-derived melt, where observed differences between ocean island and continental alkaline basalts are attributed to differences between the sub-oceanic and sub-continental lithospheric mantles. Isotopic differences between tholeiitic and alkalic basalts are interpreted to be due to varying degrees of exchange and mixing between the hotspot plume and lithospheric mantle melt components. The model is consistent with the generation of these basalts from a source which has been recently enriched in the LREE.  相似文献   

13.
The degassing of radiogenic Ar40 is defined as coherent if only the Ar40 associated with parent K is degassed as K is transferred from the mantle to crust. Coherency predicts, for a 4.55 b.y. Earth, a sialic crust with 2.50 per cent K, using only the Ar content of the atmosphere and present crust (from a Hurley and Rand, 1969, age distribution). This is a maximum limit to K content of the sialic crust if the age of the Earth is no younger than 4.55 b.y. A K content of the sialic crust of 1.9 per cent (Holland and Lambert, 1972) implies an efficiency (E) less than 100 per cent for K transfer from oceanic basalt to sialic crust in subduction zones and/or some non-coherent (preferential) degassing of Ar from the mantle.K, Ar coherence for mantle differentiation to crust is supported however, by the agreement of the predicted oceanic He flux and radiogenic He-Ar ratios of volcanic gases with the observed limits if the best estimate of K, U, Th influx rates at oceanic ridges is used.Assuming K, Ar coherence, various sea-floor spreading rates as functions of time, and limiting K contents of the sialic crust, computed models give E and the portion of the sialic crust derived from melting oceanic basalt in subduction zones. Except for models with very high spreading rates in the Precambrian, they also predict that a significant part of the sialic crust was derived from vertical differentiation of the mantle, presumably early in Earth history. The results are in accord with Armstrong's model of an early sialic crust that is recycled to give a Hurley-type age pattern with the proviso that the ‘vertical’ sial Kυis formed early in Earth history for models with a high Kυcomponent.The coherent K, Ar models with preferred estimates of input parameters are also consistent with a limited mixing model (only old and new sial are equilibrated) for Sr isotopic evolution and the probable average Sr87Sr86 ratio now of the sialic crust.  相似文献   

14.
Lead isotope data on late Precambrian igneous rocks from the eastern desert of Egypt are presented. Previous work has indicated that this igneous suite is characterized by uniformly low initial ratios of 37Sr86Sr (< 0.7035). The Pb data define three groups, loosely corresponding to age. An older tonalite to granodiorite (OTG) suite, with ages in the range 610–710 Ma, has Pb isotope characteristics similar to modern, mantle-derived oceanic mafic rocks. The age-corrected initial Pb isotope ratios of the OTG group lie near the “ocean regression line” in correlation diagrams of 206Pb204Pb vs. 207Pb204Pb and 203Pb204Pb. The isotope data imply an origin for the OTG group analogous to calc-alkalic igneous rocks in modern intra-oceanic island arcs.A younger suite of K-rich plutonic rocks (570–595 Ma) has similar 206Pb204Pb and 208Pb204Pb initial ratios relative to the OTG suite, but have higher 207Pb204Pb initial ratios when calculated from measured whole-rock U and Pb contents. However, K-feldspar and galena, associated with this suite, indicate initial Pb isotope ratios close to the OTG suite. We interpret this to indicate that the younger granites could have originated by anatexis of OTG-type material, but they probably experienced an episode of metasomatism after emplacement.A suite of volcanic rocks (the Dokhan Volcanics) from the central eastern desert are intermediate between the younger granites and OTG in both age (~ 610 Ma) and Pb isotope characteristics.Limited data on initial 208Pb204Pb ratios suggest that all the Egyptian samples originated from a source with anomalously low ThPb ratios.Although the relative abundance of granitic rocks in the Egyptian Shield decreases to the south, no evidence of north-south heterogeneity in the Pb isotope composition of the respective source regions is apparent in the data. However, the westernmost sample studied, from the Aswan area, contains distinctly more radiogenic Pb relative to the mean. This location may mark the boundary between the Late Precambrian ensimatic orogen now outcropping in the Egyptian and Saudi Arabian Shields, and an older sialic craton to the west.  相似文献   

15.
16.
Basalts from the Columbia River flood basalt province of the northwestern U.S.A. show a large diversity in chemical and Nd and Sr isotopic compositions. 143Nd144Nd ranges from 0.51303 to 0.51208 and is strongly correlated with variations in 87Sr86Sr. This correlation suggests mixing between two end member compositions, one characterized by 143Nd144Nd > 0.51303 and 87Sr86Sr < 0.7035, and the other with 143Nd144Nd < 0.5120 and 87Sr86Sr > 0.715. The more radiogenic component could be mantle enriched in incompatible elements during the Precambrian, or Precambrian materials of the continental crust. A quartz-rich xenolith found in the Columbia lavas has Rb-Sr and Sm Nd model ages of ≈ 1.4Æ, implying the existence of old, isotopically evolved crustal basement which could serve as contaminant. Nevertheless, crustal contamination alone cannot explain the chemical variation of the samples studied, and other fractionation processes must have occurred simultaneously. A model involving combined assimilation and crystal fractionation reproduces the chemical and isotopic characteristics of the volumetrically dominant Grande Ronde unit for an assumed crystallizing component of plagioclase, low calcium pyroxene and minor olivine. The data are not consistent with the suggestion that a ‘primordial’ mantle is the source for this continental flood basalt province. Rather they suggest that the main volume of these lavas was originally derived from a mantle similar in isotopic composition to island arc and ocean island basalts of the north Pacific. The primary magma was modified chemically and isotopically by crystal fractionation and assimilation of sialic crustal materials during its transport through, or storage in the continental crust.  相似文献   

17.
Analytical techniques have been developed for using a secondary ion mass spectrometer, the ion microprobe mass analyzer (IMMA), to determine, in situ, 207Pb206Pb and U/Pb ages on approximately 10-μm areas of individual mineral phases containing relatively abundant radiogenic Pb isotopes. Standard samples of known age and U, Th and Pb contents, together with the Andersen-Hinthorne local thermal equilibrium (LTE) model for predicting ionization parameters are used to establish a semi-empirical relationship for correcting observed U/Pb intensities to atom ratios. Measurements of isotope standards show that mass fractionation corrections are not required and that the accuracy and precision of analysis are generally limited by Poisson counting statistics.Many U-rich accessory minerals yield spectra which consist only of Pb at masses 204, 206, 207 and 208; thus the measurement of 207Pb206Pb ages is accomplished by simply measuring the intensities of these peaks and the background. An excellent correspondence of the ages determined using the IMMA with those from more conventional techniques is demonstrated for terrestrial, lunar and meteoritic phases. For example, the following 207Pb206Pb ages were obtained from polished thin sections of crystalline lunar samples: 10047, 3.75 ± 0.05 (2σ) Ga; 14310, 3.96 ± 0.03 Ga; and 15555, 3.36 ± 0.06 Ga. From small U-rich phases in CaAl-rich inclusions in the Allende carbonaceous chondrite, seven 207Pb206Pb ages were obtained, averaging 4.60 ± 0.09 (2σ) Ga.A method of correcting low-resolution Pb-isotope data for molecular ion interferences in zircon and baddeleyite is presented and shown to be practical through the analysis of terrestrial and lunar samples.  相似文献   

18.
The U-Th-Pb isotope systematics of the eucrite “Juvinas” have been studied in whole rock fragments as well as in plagioclases and pyroxenes. The results show that this monomict breccia crystallized with a very high UPb initial ratio at T = 4.539 ± 0.004 AE ago. There is evidence for a less radiogenic Pb component (206Pb204Pb = 13.0; 207Pb204Pb = 13.5; 208Pb204Pb = 32.71) interpreted as “exotic lead” induced by a meteoritical impact at the surface of the Juvinas parent body, 1.92 ± 0.06 AE ago.  相似文献   

19.
Clinopyroxenes in the metamorphic alpine peridotites from Ronda, Béni Bouchera, Lanzo and Othris have 87Sr86Sr ratios in the range of 0.70228 – 0.70370, similar to ocean ridge tholeiitic rock. Insofar as these lherzolites represent mantle sources, the present data allows simple evolutionary models relating basalt genesis and alpine peridotite. The highly radiogenic Sr reported in many whole rock alpine peridotites may be due to contamination in olivine and thus, earlier models that deny a simple relationship between alpine peridotite and the oceanic gabbros and basalts need a re-evaluation.  相似文献   

20.
The isotopic composition of Pb and Sr and the abundances of Rb, Sr, U, Th, and Pb were determined for whole rock samples from all major volcanic centres of the Cenozoic alkaline volcanism of Central and South Italy, together with some samples from the contemporaneous anatectic Tuscan volcanism. The Sr and Pb isotopic compositions of the alkaline rocks show a negative correlation combined with a regional trend: the 87Sr86Sr ratios decrease from 0.711 in the north-west to 0.704 in the south-east, while the 206Pb204Pb ratios increase from 18.7 to 20.0. Variations in both isotopic compositions are generally small throughout erupted rock sequences for any volcanic centre.The Pb and Sr isotopic abundance variations are interpreted on the basis of two alternative models, which correspond to two groups of geological processes: variations can result (i) from a time dependent development in subsystems with different RbSr or U(Th)Pb ratios or, (ii) from mixing of Sr or Pb with different isotopic compositions. Combining both Pb and Sr isotope abundance measurements it is shown that the source of each volcanic centre is formed by various degrees of mixing between two components. One component and the most southern Tuscan anatectic rocks most likely have a common source, whereas the other component of the mixing process is suggested to be a liquid fraction derived from a small degree of partial fusion of a hydrous mantle. Thus at least a two-stage evolution of the Italian alkaline rocks is indicated: first a mixing process leading to the formation of the parental material followed by differentiation processes leading to the formation of the erupted rock sequences.The geodynamic model which explains the data best is that of a lateral inhomogeneous mantle. The lateral inhomogeneities in the mantle would be the result of mixing between originally mantle and crustal derived material. The mixing process itself would not have any primary connection with the Quarternary volcanic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号