首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the possibility to detect extrasolar planets in M31 through pixel-lensing observations. Using a Monte Carlo approach, we select the physical parameters of the binary lens system, a star hosting a planet, and we calculate the pixel-lensing light curve taking into account the finite source effects. Indeed, their inclusion is crucial since the sources in M31 microlensing events are mainly giant stars. Light curves with detectable planetary features are selected by looking for significant deviations from the corresponding Paczyński shapes. We find that the time-scale of planetary deviations in light curves increase (up to 3–4 d) as the source size increases. This means that only few exposures per day, depending also on the required accuracy, may be sufficient to reveal in the light curve a planetary companion. Although the mean planet mass for the selected events is about     , even small mass planets  ( M P < 20 M)  can cause significant deviations, at least in the observations with large telescopes. However, even in the former case, the probability to find detectable planetary features in pixel-lensing light curves is at most a few per cent of the detectable events, and therefore many events have to be collected in order to detect an extrasolar planet in M31. Our analysis also supports the claim that the anomaly found in the candidate event PA-99-N2 towards M31 can be explained by a companion object orbiting the lens star.  相似文献   

2.
Recent studies have demonstrated that detailed monitoring of gravitational microlensing events can reveal the presence of planets orbiting the microlensed source stars. With the potential of probing planets in the Galactic bulge and Magellanic Clouds, such detections greatly increase the volume over which planets can be found. This paper expands on the original studies by considering the effect of planetary phase on the form of the resultant microlensing light curve. It is found that crescent-like sources can undergo substantially more magnification than a uniformly illuminated disc, the model typically employed in studying such planets. In fact, such a circularly symmetric model is found to suffer a minimal degree of magnification when compared with the crescent models. The degree of magnification is also a strong function of the planet's orientation with respect to the microlensing caustic. The form of the magnification variability is strongly dependent on the planetary phase and from which direction the planet is swept by the caustic, providing further clues to the geometry of the planetary system. As the amount of light reflected from a planet also depends on its phase, the detection of extreme crescent-like planets requires the advent of 30-m class telescopes, while light curves of planets at more moderate phases can be determined with today's 10-m telescopes.  相似文献   

3.
In 1998 the EXPORT team monitored microlensing event light curves using a charge-coupled device (CCD) camera on the IAC 0.8-m telescope on Tenerife to evaluate the prospect of using northern telescopes to find microlens anomalies that reveal planets orbiting the lens stars. The high airmass and more limited time available for observations of Galactic bulge sources make a northern site less favourable for microlensing planet searches. However, there are potentially a large number of northern 1-m class telescopes that could devote a few hours per night to monitor ongoing microlensing events. Our IAC observations indicate that accuracies sufficient to detect planets can be achieved despite the higher airmass.  相似文献   

4.
5.
Simulations of planetary microlensing at high magnification that were carried out on a cluster computer are presented. It was found that the perturbations owing to two-thirds of all planets occur in the time interval  −0.5 t FWHM,0.5 t FWHM  with respect to the peak of the microlensing light curve, where   t FWHM  is typically ∼14 h. This implies that only this restricted portion of the light curve need be intensively monitored for planets – a very significant practical advantage. Nearly all planetary detections in high-magnification events will not involve caustic crossings. We discuss the issues involved in determining the planetary parameters in high magnification events. Earth-mass planets may be detected with 1-m class telescopes if their projected orbital radii lie within about 1.5–2.5 au. Giant planets are detectable over a much larger region. For multiplanet systems the perturbations caused by individual planets can be separated under certain conditions. The size of the source star needs to be determined independently, but the presence of spots on the source star is likely to be negligible, as is the effect of planetary motion during an event.  相似文献   

6.
The availability of a robust and efficient routine for calculating light curves of a finite source magnified due to bending of its light by the gravitational field of an intervening binary lens is essential for determining the characteristics of planets in such microlensing events, as well as for modelling stellar lens binaries and resolving the brightness profile of the source star. However, the presence of extended caustics, and the fact that the images of the source star cannot be determined analytically while their number depends on the source position (relative to the lens system), makes such a task difficult in general. Combining the advantages of several earlier approaches, an adaptive contouring algorithm is presented, which only relies on a small number of simple rules and operations on the adaptive search grid. By using the parametric representation of critical curves and caustics found by Erdl & Schneider, seed solutions to the adaptive grid are found, which ensures that no images or holes are missed.  相似文献   

7.
It has been shown that gravitational microlensing events towards the Galactic Bulge are sensitive to the presence of a planet orbiting the lensing star. The probability of planet detection is calculated here as a function of the binary geometry for mass ratios of     taking the effects of resolving the source and the inclusion of unlensed light (blending) into account. Source radii up to     θ E are considered, at which point the detection probability becomes negligible. Small     mass ratio planets become undetectable at source radii of     θ E . Blending has a slight adverse effect on planet detection. It is worst when the unblended detection probability is small and causes planets to become undetectable at smaller source radii than would be the case in the absence of blending. An alternative to current gravitational microlensing follow-up observations is investigated, where only the peaks of high amplification events are followed. Such a strategy promises to be at least twice as efficient at detecting planets as current observations, but requires a large number of high amplification events.  相似文献   

8.
In gravitational microlensing, distant planetary systems may be discovered by utilizing them as naturally occuring lenses. Efforts to find planets by this technique began in the 1990s. The first definitive detection of an extrasolar planet by microlensing was made in 2003 in the event OGLE 2003-BLG-235/MOA 2003-BLG-53, where the observed light curve was best reproduced using a binary microlensing model with a mass ratio of 0.004. Further observations with the HST revealed that the lens system comprises a 2.6 Jupiter mass planet in a 4.3 A.U. wide orbit around a 0.6 Solar mass K dwarf at a distance of 5.8 Kpc. Subsequently, the number of planets detected by microlensing is increasing.  相似文献   

9.
赵佳  赵刚 《天文学进展》2012,30(1):48-63
自1995年第一颗类太阳恒星周围的系外行星发现以来,随着已发现的系外行星数目的增多,对系外行星性质的统计分析变得重要和有意义。截至2011年6月9日,共发现系外行星555颗。以这些系外行星的轨道参数为依据,对系外行星的性质进行统计分析,得出了一些有意义的结论。同时简要介绍现有的行星形成与演化模型并依据得出的行星统计性质对其进行检验,这对于系外行星的进一步探测具有一定的指导作用。  相似文献   

10.
The technique of gravitational microlensing is currently unique in its ability to provide a sample of terrestrial exoplanets around both Galactic disk and bulge stars, allowing to measure their abundance and determine their distribution with respect to mass and orbital separation. Thus, valuable information for testing models of planet formation and orbital migration is gathered, constituting an important piece in the puzzle for the existence of life forms throughout the Universe. In order to achieve these goals in reasonable time, a well‐coordinated effort involving a network of either 2m or 4×1m telescopes at each site is required. It could lead to the first detection of an Earth‐mass planet outside the Solar system, and even planets less massive than Earth could be discovered. From April 2008, ARTEMiS (Automated Robotic Terrestrial Exoplanet Microlensing Search) is planned to provide a platform for a three‐step strategy of survey, follow‐up, and anomaly monitoring. As an expert system embedded in eSTAR (e‐Science Telescopes for Astronomical Research), ARTEMiS will give advice for follow‐up based on a priority algorithm that selects targets to be observed in order to maximize the expected number of planet detections, and will also alert on deviations from ordinary microlensing light curves by means of the SIGNALMEN anomaly detector. While the use of the VOEvent (Virtual Observatory Event) protocol allows a direct interaction with the telescopes that are part of the HTN (Heterogeneous Telescope Networks) consortium, additional interfaces provide means of communication with all existing microlensing campaigns that rely on human observers. The success of discovering a planet by microlensing critically depends on the availability of a telescope in a suitable location at the right time, which can mean within 10 min. To encourage follow‐up observations, microlensing campaigns are therefore releasing photometric data in real time. On ongoing planetary anomalies, world‐wide efforts are being undertaken to make sure that sufficient data are obtained, since there is no second chance. Real‐time modelling offers the opportunity of live discovery of extra‐solar planets, thereby providing “Science live to your home”. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Gaudi & Gould showed that close companions of remote binary systems can be efficiently detected by using gravitational microlensing via the deviations in the lensing light curves induced by the existence of the lens companions. In this paper, we introduce another channel to detect faint close-in binary companions by using microlensing. This method utilizes a caustic-crossing binary lens event with a source also composed of binary stars, where the companion is a faint star. Detection of the companion is possible because the flux of the companion can be highly amplified when it crosses the lens caustic. The detection is facilitated since the companion is more amplified than the primary because it, in general, has a smaller size than the primary, and thus experiences less finite source effect. The method is an extension of the previous one suggested to detect close-in giant planets by Graff & Gaudi and Lewis & Ibata and further developed by Ashton & Lewis. From the simulations of realistic Galactic bulge events, we find that companions of K-type main-sequence or brighter stars can be efficiently detected from the current type of microlensing follow-up observations by using the proposed method. We also find that compared with the method of detecting lens companions for which the efficiency drops significantly for binaries with separations ≲0.2 of the angular Einstein ring radius, θ E, the proposed method has an important advantage of being able to detect companions with substantially smaller separations down to ∼     .  相似文献   

12.
We consider small-scale spheroidal clusters of weakly interacting massive particles in our Galaxy as non-compact gravitational microlenses and predict the appearance of caustics in the plane of a lensed source. The crossing of these caustics by a lensed star can produce a large variety of light curves, including some observed in actual microlensing events that have been interpreted as manifestations of binary gravitational lenses. We consider also observable effects during the gravitational microlensing of stars of non-zero angular size with a given brightness distribution across their disks by such an exotic objects as natural wormholes and objects whose space-time environment is described with the NUT metric. We demonstrate that, under certain conditions, the microlensing light curves, chromatic and polarizational effects due to the properties of the lens and the star disk brightness distributions can differ considerably from those observed for a Schwarzschild gravitational lens, so that their analysis can facilitate the identification of such objects.  相似文献   

13.
Planets result from a series of processes within a circumstellar disk. Evidence comes from the near planar orbits in the Solar System and other planetary systems, observations of newly formed disks around young stars, and debris disks around main-sequence stars. As planet-hunting techniques improve, we approach the ability to detect systems like the Solar System, and place ourselves in context with planetary systems in general. Along the way, new classes of planets with unexpected characteristics are discovered. One of the most recent classes contains super Earth-mass planets orbiting a few AU from low-mass stars. In this contribution, we outline a semi-analytic model for planet formation during the pre-main sequence contraction phase of a low-mass star. As the star contracts, the “snow line”, which separates regions of rocky planet formation from regions of icy planet formation, moves inward. This process enables rapid formation of icy protoplanets that collide and merge into super-Earths before the star reaches the main sequence. The masses and orbits of these super-Earths are consistent with super-Earths detected in recent microlensing experiments.  相似文献   

14.
15.
In this paper, we investigate the colour changes of gravitational microlensing events caused by the two different mechanisms of differential amplification for a limb-darkened extended source and blending. From this investigation, we find that the colour changes of limb-darkened extended source events (colour curves) have dramatically different characteristics depending on whether the lens transits the source star or not. We show that for a source transit event, the lens proper motion can be determined by simply measuring the turning time of the colour curve instead of fitting the overall colour or light curves. We also find that even for a very small fraction of blended light, the colour changes induced by blending are equivalent to those induced by limb darkening, causing serious distortion in the observed colour curve. Therefore, to obtain useful information about the lens and source star from the colour curve of an event, it will be essential to correct for blending. We discuss various methods of blending correction .  相似文献   

16.
Microlensing events are usually selected among single-peaked non-repeating light curves in order to avoid confusion with variable stars. However, a microlensing event may exhibit a second microlensing brightening episode when the source or/and the lens is a binary system. A careful analysis of these repeating events provides an independent way to study the statistics of wide binary stars and to detect extrasolar planets. Previous theoretical studies predicted that 0.5–2 per cent of events should repeat due to wide binary lenses. We present a systematic search for such events in about 4000 light curves of microlensing candidates detected by the Optical Gravitational Lensing Experiment (OGLE) towards the Galactic bulge from 1992 to 2007. The search reveals a total of 19 repeating candidates, with six clearly due to a wide binary lens. As a by-product, we find that 64 events (∼2 per cent of the total OGLE-III sample) have been misclassified as microlensing; these misclassified events are mostly nova or other types of eruptive stars. The number and importance of repeating events will increase considerably when the next-generation wide-field microlensing experiments become fully operational in the future.  相似文献   

17.
Some of the difficulties in determining the underlying physical properties that are relevant for observed anomalies in microlensing light curves, such as the mass and separation of extrasolar planets orbiting the lens star, or the relative source–lens parallax, are already anchored in factors that limit the amount of information available from ordinary microlensing events and in the way these are being parametrized. Moreover, a real-time detection of deviations from an ordinary light curve while these are still in progress can only be done against a known model of the latter, and such is also required for properly prioritizing ongoing events for monitoring in order to maximize scientific returns. Despite the fact that ordinary microlensing light curves are described by an analytic function that only involves a handful of parameters, modelling these is far less trivial than one might be tempted to think. A well-known degeneracy for small impacts, and another one for the initial rise of an event, makes an interprediction of different phases impossible, while in order to determine a complete set of model parameters, the fundamental characteristics of all these phases need to be properly assessed. While it is found that the wing of the light curve provides valuable information about the time-scale that absorbs the physical properties, the peak flux of the event can be meaningfully predicted only after about a third of the total magnification has been reached. Parametrizations based on observable features not only ease modelling by bringing the covariance matrix close to diagonal form, but also allow good predictions of the measured flux without the need to determine all parameters accurately. Campaigns intending to infer planet populations from observed microlensing events need to invest some fraction of the available time into acquiring data that allow to properly determine the magnification function.  相似文献   

18.
C.E. KenKnight 《Icarus》1977,30(2):422-433
It is proposed that the presence or absence of Jupiter-like planets, and perhaps even Venus-like planets, around nearby stars be studied with a 2-m telescope in Earth orbit. According to the Abbe theory of imaging, the coherence of the light from an unresolvable star can be used to discriminate between planet light and scattered light from the star. Most scattered light is shown to arise from the imperfect figure of the telescope surface, but an analog of a phase contrast trast microscope can be used to control the figure automatically. A number of arrangements are possible for using the interference properties of light to cancel the residual scattered starlight by two to three orders of magnitude without affecting the planet light.  相似文献   

19.
If gravitational microlensing occurs in a binary source system, both source components are magnified, and the resulting light curve deviates from the standard one of a single source event. However, in most cases only one source component is highly magnified and the other component (the companion) can be treated as a simple blending source: this is a blending approximation. In this paper we show that, unlike the light curves, the astrometric curves, representing the trajectories of the source image centroid, of an important fraction of binary source events will not be sufficiently well-modelled by the blending effect alone. This is because the centroid shift induced by the source companion endures to considerable distances from the lens. Therefore, in determining the lens parameters from astrometric curves to be measured by future high-precision astrometric instruments, it will be important to take the full effect of the source companion into consideration.  相似文献   

20.
Giant planets in circumstellar disks can migrate inward from their initial (formation) positions at several AUs. Inward radial migration of the planet is caused by torques between the planet and the disk; outward radial migration of the planet is caused by torques between the planet and the spinning star, and by torques due to Roche lobe overflow and consequent mass loss from the planet. We present self-consistent numerical considerations of the problem of migrating giant planets by summing torques on planets for various physical parameters of the disk and of planets. We find that Jupiter-mass planets can stably arrive and survive at small heliocentric distances, thus reproducing observed properties of some of the recently discovered extra-solar planets. The range of fates of massive planets is broad, and some perish by losing all their mass onto the central star during Roche lobe overflow, while others survive for the lifetime of the central star. Surviving planets cluster into two groups when examined in terms of final mass and final heliocentric distance: those which have lost mass and those which have not. Some of the observed extrasolar planets fall into each of these two exclusive classes. We also find that there is an inner boundary for planets' final heliocentric distances, caused by tidal torques with the central star. Planets in small orbits are shown to be stable against atmospheric loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号