首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characteristics of energy dissipation in hyperconcentrated flows   总被引:1,自引:0,他引:1  
An equilibrium equation for the turbulence energy in of solid-liquid two-phase flow theory. The equation sediment-laden flows was derived on the basis was simplified for two-dimensional, uniform, steady and fully developed turbulent hyperconcentrated flows. An energy efficiency coefficient of suspended-load motion was obtained from the turbulence energy equation, which is defined as the ratio of the sediment suspension energy to the turbulence energy of the sediment-laden flows. Laboratory experiments were conducted to investigate the characteristics of energy dissipation in hyperconcentrated flows. A total of 115 experimental runs were carried out, comprising 70 runs with natural sediments and 45 runs with cinder powder. Effects of sediment concentration on sediment suspension energy and flow resistance were analyzed and the relation between the energy efficiency coefficient of suspended-load motion and sediment concentration was established on the basis of experimental data. Furthermore, the characteristics of energy dissipation in hyperconcentrated flows were identified and described. It was found that the high sediment concentration does not increase the energy dissipation; on the contrary, it decreases flow resistance.  相似文献   

2.
1 wrRonvCTIoxIn steady solid-liquid tuIbulen flows, tWo twcal pattems of particle concentration distribuhon, namelypattem I and pattem II, have been found by man investigatOI'S (e.g. Bouvard & Petkovic l985, Wang &Ni l990), as shown in Fig.l. Genend sPeaking, pattem II is conunn, and most inveshgators fOcused theirefforts on this pattem. Vedous theories such as the diffesion theory, the ndxtUre theory, the enery theory,the sindlarity theory and the stochashc theory among others have co…  相似文献   

3.
Two end-member types of pyroclastic density current are commonly recognized: pyroclastic surges are dilute currents in which particles are carried in turbulent suspension and pyroclastic flows are highly concentrated flows. We provide scaling relations that unify these end-members and derive a segregation mechanism into basal concentrated flow and overriding dilute cloud based on the Stokes number (ST), the stability factor (ΣT) and the dense-dilute condition (DD). We recognize five types of particle behaviors within a fluid eddy as a function of ST and ΣT: (1) particles sediment from the eddy, (2) particles are preferentially settled out during the downward motion of the eddy, but can be carried during its upward motion, (3) particles concentrate on the periphery of the eddy, (4) particles settling can be delayed or ‘fast-tracked’ as a function of the eddy spatial distribution, and (5) particles remain homogeneously distributed within the eddy. We extend these concepts to a fully turbulent flow by using a prototype of kinetic energy distribution within a full eddy spectrum and demonstrate that the presence of different particle sizes leads to the density stratification of the current. This stratification may favor particle interactions in the basal part of the flow and DD determines whether the flow is dense or dilute. Using only intrinsic characteristics of the current, our model explains the discontinuous features between pyroclastic flows and surges while conserving the concept of a continuous spectrum of density currents.  相似文献   

4.
《国际泥沙研究》2019,34(6):550-563
The effects of turbulence on water-sediment mixtures is a critical issue in studying sediment-laden flows. The sediment concentrations and particle inertia play a significant role in the effects of turbulence on mixtures. A two-phase mixture turbulence model was applied to investigate the turbulence mechanisms affecting sediment-laden flows. The two-phase mixture turbulence model takes into account the complicated mechanisms arising from interphase transfer of turbulent kinetic energy, particle collisions, and stratification. The turbulence in sediment-laden flows is the result of the interaction of four factors, i.e. the production, dissipation, diffusion, and inter-phase transfer of turbulent kinetic energy of mixtures. The turbulence production and dissipation are two dominant processes which balance the turbulent kinetic energy of mixtures. The turbulence production represents turbulence intensity, while the inter-phase transfer of turbulent kinetic energy denotes the effect of particles on the turbulence of sediment-laden flows. Although, the magnitude of the inter-phase interaction term is much less than that of the turbulence production and dissipation terms, due to an approximate local balance between production and dissipation of the turbulent kinetic energy, even the small order of the inter-phase interaction has a significant impact on the turbulent balance of sediment-laden flows. The presence of particles plays a duel role in the turbulence dissipation of mixtures: both promotion and suppression. An important parameter used to determine the turbulent viscosity of mixtures, which is constant in clear water, is the function of the sediment concentration and particle inertia in sediment-laden flows.  相似文献   

5.
Sheet flows occur widely in natural free-surface flows including rivers in flood, tidal estuaries and coastal waters in storm conditions when bed shear stress becomes sufficiently high. Particle volumetric concentration in sheet flows normally follows a linear distribution with the Rouse [Rouse H. Modern conceptions of the mechanics of fluid turbulence. Trans ASCE, 1937;102:463–543] distribution applicable in the dilute water column above the sheet-flow layer. However, a well-verified formula for determining particle velocity distribution in sheet flows is still lacking. This paper presents formulas to describe the particle velocity profile in steady or oscillatory sheet flows. They compare well with measured data. In particular, the novel formula for determining the particle velocity at the top of bedload–sediment-dominated sublayer in sheet flows is also well verified with measured data.  相似文献   

6.
The presence of sediment particles in open-channel flow has an important effect on turbulence; thus, an empirical, turbulent eddy viscosity formula was established for application in the limit for low concentrations. The current study establishes a theoretical relation for the mixture viscosity based on the two-phase mixture model. The percentage contribution of the three mechanisms of mixture viscosity,namely, fluid turbulence(FT), particle turbulence(PT), and inter-particle collisions(IPCs), w...  相似文献   

7.
The paper presents a rheological model for gravity driven granular flows saturated with water. The model adopts the kinetic theory for the collisional regime, which is dominant near the free surface, while for the frictional regime a specific model is proposed, which matches the Coulombian condition at the boundary with the loose static bed. The solution for the frictional regime is based on the observation that the frictional and the collisional regimes are not stratified but coexist across the flow depth.The model is able to predict the distribution along the depth of velocity, concentration, granular temperature, shear and normal stresses. In particular, it is possible to discriminate between the collisional and the frictional components of the normal and shear stresses.The results of the model are compared with the data of a laboratory investigation on a steady, uniform, highly concentrated saturated granular flow, composed of spheres with a uniform diameter of 6 mm.Another important issue addressed in the paper concerns the balances of the kinetic energy of the granular phase. The model is able to describe the mechanisms of production, diffusion and dissipation of kinetic energy, relevant to both the mean component of the flow and the fluctuating component (i.e., the collisional component). Also in this case the comparison with the experimental data is reasonably good. Near the static loose bed, the model predicts that the flux of the diffused fluctuating energy exceeds an order of magnitude the locally dissipated flux of fluctuating energy. This suggests that the motion of the grains, even at concentrations close to that of packing, is always accompanied by a certain degree of granular temperature.  相似文献   

8.
The dynamics of pyroclastic surges accompanied by co-ignimbrite plumes is investigated numerically. The numerical simulations are performed with a newly developed numerical model, which is based on the Navier–Stokes equations for time-dependent flows of a compressible fluid in two-dimensional Cartesian coordinates. We regard pyroclastic surges as dilute turbulent suspensions in which hot gases and fine solid particles are homogeneously mixed owing to vigorous turbulence. In other words, the gas–particle mixture is treated as a single-phase fluid whose bulk density is represented by averaging the density of each component in the numerical model. We focus on the effect of buoyancy forces generated by the thermal expansion of the air mixed into pyroclastic surges from the calm surroundings. For our purpose, the numerical model is designed to simulate relatively simple flows spreading over a horizontal flat surface. Topographic irregularity and the sedimentation process of solid particles are neglected in the present simulations. The motion of pyroclastic surges is generated by the instantaneous release of a gas–particle mixture whose density is initially larger than the ambient air density and changes nonlinearly with the temperature and concentration of suspended solid particles. Turbulent mixing is evaluated by adopting the Smagorinsky model. By employing cubic interpolated pseudo-particle (CIP) method and C-CUP method, we obtain the fine structure of flows. The behavior of calculated flows agrees fairly well with observed pyroclastic surges in nature. The current head, which remains hot and dense, keeps spreading over a horizontal surface at a speed of about 20 m s−1. The spreading speed is of the order of the speed of a gravity current that excludes the influence of thermal expansion. Besides, turbulent mixing between the basal dense layer and the ambient air is enhanced by the successive development of an interfacial less-dense layer. This results in the formation of a number of buoyant plumes rising above a horizontally spreading current. Consequently, the tails of the current thickens as time progresses. A parametric study shows that the initial temperature of a gas–particle mixture should be higher than about 600 K when buoyant plumes occur owing to the thermal expansion of mixed air. The result is quantitatively interpreted by introducing a diagram that describes the relationship among the bulk density, temperature and concentration of solid particles suspended in pyroclastic surges.  相似文献   

9.
Bridge seismic isolation strategy is based on the reduction of shear forces transmitted from the superstructure to the piers by two means: shifting natural period and earthquake input energy reduction by dissipation concentrated in protection devices. In this paper, a stochastic analysis of a simple isolated bridge model for different bridge and device parameters is conducted to assess the efficiency of this seismic protection strategy. To achieve this aim, a simple nonlinear softening constitutive law is adopted to model a wide range of isolation devices, characterized by only three essential mechanical parameters. As a consequence of the random nature of seismic motion, a probabilistic analysis is carried out and the time modulated Kanai-Tajimi stochastic process is adopted to represent the seismic action. The response covariance in the state space is obtained by solving the Lyapunov equation for a stochastic linearized system. After a sensitivity analysis, the failure probability referred to extreme displacement and the mean value of dissipated energy are assessed by using the introduced stochastic indices of seismic bridge protection efficiency. A parametric analysis for protective devices with different mechanical parameters is developed for a proper selection of parameters of isolation devices under different situations.  相似文献   

10.
A depth-averaged two-phase model is proposed for debris flows over fixed beds, explicitly incorporating interphase and particle-particle interactions, fluid and solid fluctuations and multi grain sizes. A first-order model based on the kinetic theory of granular flows is employed to determine the stresses due to solid fluctuations, while the turbulent kinetic energy - dissipation rate model is used to determine the stresses from fluid fluctuations. A well-balanced numerical algorithm is applied to solve the governing equations. The present model is benchmarked against USGS experimental debris flows over fixed beds. Incorporating the stresses due to fluid and solid fluctuations and properly estimating the bed shear stresses are shown to be crucial for reproducing the debris flows. Longitudinal particle segregation is resolved, demonstrating coarser sediments around the fronts and finer grains trailing the head. Based on extended modeling exercises, debris flow efficiency is shown to increase with initial volume, which is underpinned by observed datasets.  相似文献   

11.
Two-layer equatorial primitive equations for the free troposphere in the presence of a thin atmospheric boundary layer and thermal dissipation are developed here. An asymptotic theory for the resonant nonlinear interaction of long equatorial baroclinic and barotropic Rossby waves is derived in the presence of such dissipation. In this model, a self-consistent asymptotic derivation establishes that boundary layer flows are generated by meridional pressure gradients in the lower troposphere and give rise to degenerate equatorial Ekman friction. That is to say, the asymptotic model has the property that the dissipation matrix has one eigenvalue which is nearly zero: therefore the dynamics rapidly dissipates flows with pressure at the base of the troposphere and creates barotropic/baroclinic spin up/spin down. The simplified asymptotic equations for the amplitudes of the dissipative equatorial barotropic and baroclinic waves are studied by linear theory and integrated numerically. The results indicate that although the dissipation slightly weakens the tropics to midlatitude connection, strong localized wave packets are nonetheless able to exchange energy between barotropic and baroclinic waves on intraseasonal timescales in the presence of baroclinic mean shear. Interesting dissipation balanced wave-mean flow states are discovered through numerical simulations. In general, the boundary layer dissipation is very efficient for flows in which the barotropic and baroclinic components are of the same sign at the base of the free troposphere whereas the boundary layer dissipation is less efficient for flows whose barotropic and baroclinic components are of opposite sign at the base of the free troposphere.  相似文献   

12.
1 INTRODUCTION Debrisflowsoccurwhenrainstormsortheelevationofundergroundwaterlevelcauseloosedepositsorpetrifiedobjectssuchasp?..  相似文献   

13.
Experiments were carried out on granular flows generated by instantaneous release of gas-fluidised, bidisperse mixtures and propagating into a horizontal channel. The mixture consists of fine (< 100 μm) and coarse (> 100 μm) particles of same density, with corresponding grain size ratios of ∼ 2 to 9. Initial fluidisation of the mixture destroys the interparticle frictional contacts, and the flow behaviour then depends on the initial bed packing and on the timescale required to re-establish strong frictional contacts. At a fines mass fraction (α) below that of optimal packing (∼ 40%), the initial mixtures consist of a continuous network of coarse particles with fines in interstitial voids. Strong frictional contacts between the coarse particles are probably rapidly re-established and the flows steadily decelerate. Some internal friction reduction appears to occur as α and the grain size ratio increases, possibly due to particle rolling and the lower roughness of internal shear surfaces. Segregation only occurs at large grain size ratio due to dynamical sieving with fines concentrated at the flow base. In contrast, at α above that for optimal packing, the initial mixtures consist of coarse particles embedded in a matrix of fines. Flow velocities and run-outs are similar to that of the monodisperse fine end-member, thus showing that the coarse particles are transported passively within the matrix whatever their amount and grain size are. These flows propagate at constant height and velocity as inviscid fluid gravity currents, thus suggesting negligible interparticle friction. We have determined a Froude number of 2.61 ± 0.08 consistent with the dam-break model for fluid flows, and with no significant variation as a function of α, the grain size ratio, and the initial bed expansion. Very little segregation occurs, which suggests low intensity particle interactions during flow propagation and that active fluidisation is not taking place. Strong frictional contacts are only re-established in the final stages of emplacement and stop the flow motion. We infer that fines-rich (i.e. matrix-supported) pyroclastic flows propagate as inviscid fluid gravity currents for most of their emplacement, and this is consistent with some field data.  相似文献   

14.
There are still relatively few hydrochemical studies of glacial runoff and meltwater routing from the high latitudes, where non-temperate glacier ice is frequently encountered. Representative samples of glacier meltwater were obtained from Scott Turnerbreen, a ‘cold-based’ glacier at 78° N in the Norwegian high Arctic archipelago of Svalbard, during the 1993 melt season and analysed for major ion chemistry. Laboratory dissolution experiments were also conducted, using suspended sediment from the runoff. Significant concentrations of crustal weathering derived SO2−4 are present in the runoff, which is characterized by high ratios of SO2−4: (SO2−4+HCO3) and high p(CO2). Meltwater is not routed subglacially, but flows to the glacier terminus through subaerial, ice marginal channels, and partly flows through a proglacial icing, containing highly concentrated interstitial waters, immediately afront the terminus. The hydrochemistry of the runoff is controlled by: (1) seasonal variations in the input of solutes from snow- and icemelt; (2) proglacial solute acquisition from the icing; and (3) subaerial chemical weathering within saturated, ice-cored lateral moraine adjoining drainage channels at the glacier margins, sediment and concentrated pore water from which is entrained by flowing meltwater. Diurnal variations in solute concentration arise from the net effects of variable sediment pore water entrainment and dilution in the ice marginal streams. Explanation of the hydrochemistry of Scott Turnerbreen requires only one major subaerial flow path, the ice marginal channel system, in which seasonally varying inputs of concentrated snowmelt and dilute icemelt are modified by seepage or entrainment of concentrated pore waters from sediment in lateral moraine, and by concentrated interstitial waters from the proglacial icing, supplied by leaching, slow drainage at grain intersections or simple melting of the icing itself. The ice marginal channels are analogous neither to dilute supra/englacial nor to concentrated subglacial flow components. © 1998 John Wiley & Sons, Ltd.  相似文献   

15.
A simple two-dimensional random walk model is developed for the motion of a particle in a fluid flow. Some earlier results for the persistent injection of particles into the flow are extended, and the distribution of the maximum number of particles in suspension over the period (0,t) is derived.  相似文献   

16.
The importance of particle-particle collisions in sediment saltation in the bed-load layer is analyzed herein by means of numerical simulation. The particle saltation theoretical/numerical model follows a Lagrangian approach, and addresses the motion of sediment particles in an open channel flow described by a logarithmic velocity profile. The model is validated with experimental data obtained from the literature. In order to evaluate the importance of the phenomenon, simulations with and without particle-particle collisions were carried out. Results for two different sediment concentrations are presented, namely 0.13% and 2.33%. For each concentration of particles, three different flow intensities were considered, and trajectories of two different particle sizes, within the sand range were computed. Changes in particle rotation, particle velocity, and angle of trajectory before and after particle-particle collisions appear to be relatively important at lower shear stresses, whereas they decrease in significance with increasing flow intensities. Analyses of the evolution in time of the second order moment of particle location suggest that inter-particle collisions introduce transverse diffusion in saltating particles in the span-wise direction.  相似文献   

17.
A model is developed for predicting the settling velocity in suspensions of particles of two different sizes based on experimental data for the settling rate of two-size suspensions in various liquids using particles of equal density. In these experiments, the retarding effect of the smaller particles on the settling velocities of the larger ones is taken into account. The model considers Steinour’s fundamental equation and assumes a fixed arrangement of particles and constant velocity in a single-size susp...  相似文献   

18.
《国际泥沙研究》2020,35(1):1-14
A two-dimensional(2 D) computational model for simulation of incipient sediment motion for noncohesive uniform and non-uniform particles on a horizontal bed was developed using the Discrete Element Method(DEM).The model was calibrated and verified using various experimental data reported in the literature and compared with different theories of incipient particle motion.Sensitivity analysis was done and the effects of relevant parameters were determined.In addition to hydrodynamic forces such as drag,shear lift and Magnus force,the particle-particle interaction effects were included in the model.The asymptotic critical mobility number was evaluated for various critical particle Reynolds numbers(R*) in the range of very small and very large R*.The obtained curve is classified into four regions.It was found that in the linear region,the drag force has the principal role on the initiation of motion.Moreover,the critical mobility number is independent of particle diameter.A procedure for estimating the critical shear velocity directly from the information on particle diameter and roughness height was developed.Finally,the mechanism of incipient motion for the different regions was studied and the effect of different forces on the incipient particle motion was obtained.It was found that the maximum effects of lift and Magnus forces were,respectively,less than ten and twenty percent of the total force.The drag force,however,was typically the dominant force accounting for majority of the net hydrodynamic force acting on sediment particles at the onset of incipient motion.  相似文献   

19.
The ability of turbulent nuées ardentes (surges) to transport coarse pyroclasts has been questioned on the basis that settling velocities of coarse fragments in the deposits are much too high for them to have been supported by turbulence in a dilute gas suspension. A computer model is used to evaluate the settling velocity of pyroclasts in suspensions of varying concentration and temperature. Since suspension of grains in low-concentration surges occurs if the shear velocity exceeds the settling velocity, the shear velocities related to the 16th and 84th percentiles, and the mean of the grain-size distribution are compared in surge deposits of the Vulsini, with the shear velocity necessary to move the coarsest grain on the bed surface (the Shields criterion). The results show that the settling velocities do not vary significantly in gaseous suspensions having volume concentrations lower than 15%, and that an increase in concentration to 25% is not sufficient to decrease the settling velocity of the coarser fraction, if it represents flow shear velocity. It is shown that the settling velocity of the mean grain size (M z ) best depicts the shear velocity of a dilute turbulent suspension. Applying the results to the May 1902 paroxysmal nuées ardentes of Mount Pelée shows that the estimated mean velocities are well within the observed velocities, and sufficient to support all the clasts in dilute, turbulent suspensions.  相似文献   

20.
消能减震结构设计参数研究与试验验证   总被引:10,自引:1,他引:9  
本文就消能减震结构设计参数,即消能部件的支撑刚度、层间最大阻尼力与结构层间屈服力比值等恢复力模型参数的选取进行了讨论。通过对消能装置的耗能特性理论分析,导出了消能装置产生的层间等效阻尼比与这些参数的关系曲线,建议了这些参数的合理取值范围。同时通过对两个消能减震试验结果的分析,验证了本文建议的参数取值的合理性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号