首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Storglaciären is a 3.2 km long polythermal valley glacier in northern Sweden. Since 1994 a number of small (1–2 m high) transverse debris‐charged ridges have emerged at the ice surface in the terminal zone of the glacier. This paper presents the results of a combined structural glaciological, isotopic, sedimentological and ground‐penetrating radar (GPR) study of the terminal area of the glacier with the aim of understanding the evolution of these debris‐charged ridges, features which are typical of many polythermal glaciers. The ridges originate from steeply dipping (50–70°) curvilinear fractures on the glacier surface. Here, the fractures contain bands of sediment‐rich ice between 0.2 and 0.4 m thick composed of sandy gravel and diamicton, interpreted as glaciofluvial and basal glacial material, respectively. Structural mapping of the glacier from aerial photography demonstrates that the curvilinear fractures cannot be traced up‐glacier into pre‐existing structures visible at the glacier surface such as crevasses or crevasse traces. These curvilinear fractures are therefore interpreted as new features formed near the glacier snout. Ice adjacent to these fractures shows complex folding, partly defined by variations in ice facies, and partly by disseminated sediment. The isotopic composition (δ18O) of both coarse‐clear and coarse‐bubbly glacier ice facies is similar to the isotopic composition of the interstitial ice in debris layers that forms the debris‐charged ridges, implying that none of these facies have undergone any significant isotopic fractionation by the incomplete freezing of available water. The GPR survey shows strong internal reflections within the ice beneath the debris‐charged ridges, interpreted as debris layers within the glacier. Overall, the morphology and distribution of the fractures indicate an origin by compressional glaciotectonics near the snout, either at the thermal boundary, where active temperate glacier ice is being thrust over cold stagnant ice near the snout, or as a result of large‐scale recumbent folding in the glacier. Further work is required to elucidate the precise role of each of these mechanisms in elevating the basal glacial and glaciofluvial material to the ice surface.  相似文献   

2.
This paper describes glaciological features observed on the surface of the large outlet glacier Kuannersuit Glacier on Disko Island, West Greenland, during its initial quiescent phase after a major surge event occurred in 1995–98 in order to classify the glaciomorphological surge system. Focus is on surge features either associated with active surging such as a propagating surge front and serac formation or formed as a consequence of surging such as looped medial moraines and potholes; and on hydrological features related to the evolution of the glacier drainage system such as the supraglacial routing, moulin types and chasms. A chronological glaciomorphological model of the initial quiescent phase of Kuannersuit Glacier, which can be regarded as representative for large outlet surge‐type glaciers with terrestrial terminal regime and long quiescent phase, is proposed.  相似文献   

3.
Small mountain glaciers have short mass balance response times to climate change and are consequently very important for short‐term contributions to sea level. However, a distinct research and knowledge gap exists between (1) wider regional studies that produce overview patterns and trends in glacier changes, and (2) in situ local scale studies that emphasise spatial heterogeneity and complexity in glacier responses to climate. This study of a small glacier in central Austria presents a spatiotemporally detailed analysis of changes in glacier geometry and changes in glaciological behaviour. It integrates geomorphological surveys, historical maps, aerial photographs, airborne LiDAR data, ground‐based differential global positioning surveys and Ground Penetrating Radar surveys to produce three‐dimensional glacier geometry at 13 time increments spanning from 1850 to 2013. Glacier length, area and volume parameters all generally showed reductions with time. The glacier equilibrium line altitude increased by 90 m between 1850 and 2008. Calculations of the mean bed shear stress rapidly approaching less than 100 kPA, of the volume–area ratio fast approaching 1.458, and comparison of the geometric reconstructions with a 1D theoretical model could together be interpreted to suggest evolution of the glacier geometry towards steady state. If the present linear trend in declining ice volume continues, then the Ödenwinkelkees will disappear by the year 2040, but we conceptualise that non‐linear effects of bed overdeepenings on ice dynamics, of supraglacial debris cover on the surface energy balance, and of local topographically driven controls, namely wind‐redistributed snow deposition, avalanching and solar shading, will become proportionally more important factors in the glacier net balance.  相似文献   

4.
An ice‐dammed lake at the margin of the glacier Sälkaglaciären, in the Kebnekaise Mountains in northern Sweden, drained suddenly in July 2003 producing a flood with a measured peak discharge of 9.5±0.25 m3s‐1. The total lake volume of 4.55×105 million3 drained within two days. The hydrograph of this event is characteristic of a jökulhlaup controlled by a single basal ice tunnel that enlarges due to melting. The jökulhlaup had an exponential rise to a peak discharge, and following the peak, a very steep fall in discharge as the water supply to the drainage system ceased. A similar jökulhlaup was observed in August 1990 with an estimated release of 8.05×105 m3 water. Jökulhlaups at Sälkaglaciären are recurring events and have been indirectly observed since the 1950s.  相似文献   

5.
High-precision measuring of glacier evolution remains a challenge as the available global and regional remote sensing techniques cannot satisfactorily capture the local-scale processes of most small- and medium-sized mountain glaciers. In this study, we use a high-precision local remote sensing technique, long-range terrestrial laser scanning (TLS), to measure the evolution of Urumqi Glacier No.1 at an annual scale. We found that the dense point clouds derived from the TLS survey can be used to reconstruct glacier surface terrain, with certain details, such as depressions, debris-covered areas, and supra-glacial drainages can be distinguished. The glacier experienced pronounced thickness thinning and continuous retreat over the last four mass-balance years (2015-2019). The mean surface slope of Urumqi Glacier No.1 gradually steepened, which may increase the removal of glacier mass. The glacier was deeply incised by two very prominent primary supra-glacial rivers, and those rivers presented a widening trend. Extensive networks of supra-glacial channels had a significant impact on accelerated glacier mass loss. High-precision measuring is of vital importance to understanding the annual evolution of this type of glacier.  相似文献   

6.
Mapping and laboratory analysis of the sediment—landform associations in the proglacial area of polythermal Storglaciären, Tarfala, northern Sweden, reveal six distinct lithofacies. Sandy gravel, silty gravel, massive sand and silty sand are interpreted as glaciofluvial in origin. A variable, pervasively deformed to massive clast‐rich sandy diamicton is interpreted as the product of an actively deforming subglacial till layer. Massive block gravels, comprising two distinctive moraine ridges, reflect supraglacial sedimentation and ice‐marginal and subglacial reworking of heterogeneous proglacial sediments during the Little Ice Age and an earlier more extensive advance. Visual estimation of the relative abundance of these lithofacies suggests that the sandy gravel lithofacies is of the most volumetric importance, followed by the diamicton and block gravels. Sedimentological analysis suggests that the role of a deforming basal till layer has been the dominant factor controlling glacier flow throughout the Little Ice Age, punctuated by shorter (warmer and wetter climatic) periods where high water pressures may have played a more important role. These results contribute to the database that facilitates discrimination of past glacier thermal regimes and dynamics in areas that are no longer glacierized, as well as older glaciations in the geological record.  相似文献   

7.
Glacier mass balance and mass balance gradient are fundamentally affected by changes in glacier 3D geometry. Few studies have quantified changing mountain glacier 3D geometry, not least because of a dearth of suitable spatiotemporally distributed topographical information. Additionally, there can be significant uncertainty in georeferencing of historical data and subsequent calculations of the difference between successive surveys. This study presents multiple 3D glacier reconstructions and the associated mass balance response of Kårsaglaciären, which is a 0.89 ± 0.01 km2 mountain glacier in sub‐arctic Sweden. Reconstructions spanning 101 years were enabled by historical map digitisation and contemporary elevation and thickness surveys. By considering displacements between digitised maps via the identification of common tie‐points, uncertainty in both vertical and horizontal planes were estimated. Results demonstrate a long‐term trend of negative mass balance with an increase in mean elevation, total glacier retreat (1909–2008) of 1311 ± 12 m, and for the period 1926–2010 a volume decrease of 1.0 ± 0.3 × 10–3 km3 yr–1. Synthesising measurements of the glaciers’ past 3D geometry and ice thickness with theoretically calculated basal stress profiles explains the present thermal regime. The glacier is identified as being disproportionately fast in its rate of mass loss and relative to area, is the fastest retreating glacier in Sweden. Our long‐term dataset of glacier 3D geometry changes will be useful for testing models of the evolution of glacier characteristics and behaviour, and ultimately for improving predictions of meltwater production with climate change.  相似文献   

8.
Enhanced delivery of water‐saturated, ice‐marginal sediments to the glacier surface is a response to glacier thinning that has the potential to increase both levels of sediment transfer through the glacier hydrological system and total basin sediment yields. Preliminary observations made during summer 2007 at Austre Brøggerbreen, Svalbard, confirm that ice‐marginal debris flows in the upper reaches of the glacier are actively delivering sediments to the glacier surface, which may then be flushed into the glacier's hydrological system. During a four‐day observation period, several stochastic pulses in water turbidity were observed at a single portal where solely supra‐ and englacial drainage emerge at the glacier margin. The erratic suspended sediment fluxes were hypothesized to originate from ice‐marginal sources. Quantitative analysis of continuous turbidity and discharge data confirm that discharge is not driving these turbidity pulses and, combined with observational data, that the most likely origin is the delivery of water‐saturated sediments to the glacier surface from ice‐marginal, debris flows with subsequent transfer to the portal via the glacial drainage system. These observations illustrate the potential importance of the paraglacial component to the overall sediment cascade of deglaciating basins and highlight the need for careful interpretation of turbidity records, where stochastic pulses in turbidity may be attributed to sources and processes other than ice‐marginal sediment inputs.  相似文献   

9.
Information regarding process-structure relationships and change in the Karakoram Himalaya is of great importance in studying glacier hydrollogy, mass balance, and dynamic environmental change. Such information is not readily available. Detailed spatio-temporal assessment requires field investigation coupled with quantitative remote sensing studies. We conducted an investigation of the large Batura Glacier in Pakistan to determine if spectral variability can be quantified and used to characterize glacier surfaces. Specifically, SPOT Panchromatic satellite data were evaluated for differentiating features of glacier structure resulting from ice movement, ablation, and supraglacial fluvial action. Image semivariogram analysis was conducted. for assessing spectral variability patterns and fractal analysis was used to examine scale-dependent variation in the data. Results indicate that spectral variability from fields of ice seracs can exhibit fractal characteristics, although most surface features on the glacier exhibit a change in the fractal dimension over different ranges in scale. The fractal dimension was found to be useful for differentiating between glacier surfaces such as white ice and debris-covered ice. Characteristics of the debris-load and the scale-dependent nature of calculating the fractal dimension ultimately determined the potential of class separability.  相似文献   

10.
This paper evaluates current knowledge of Laurentide eskers in Canada in the light of developments in glacier hydrology and glacial sedimentology. Questions regarding the morpho-sedimentary relations of eskers, the synchroneity and operation of R-channel systems, the role of supraglacial meltwater input and proglacial water bodies, the controls on esker pattern, and the glaciodynamic condition of the ice sheet at the time of esker formation are discussed. A morphologic classification of eskers is proposed. Five types of eskers are identified and investigated. Type I eskers likely formed in extensive, synchronous, dendritic R-channel networks under regionally stagnant ice that terminated in standing water. Type II eskers likely formed in short, subaqueously terminating R-channels or reentrants close to an ice front or grounding line that may have actively retreated during esker sedimentation. Type III eskers plausibly formed in short R-channels that drained either to interior lakes in, or tunnel channels under, regionally stagnant ice. Type IV eskers may have formed as time-transgressive segments in short, subaerially terminating R-channels (or reentrants) that developed close to the ice margin as the ice front underwent stagnation-zone retreat or downwasted and backwasted regionally (stagnant ice); however, formation in synchronous R-channels cannot be discounted on the basis of reported observations. Type V eskers may have formed in H-channels that terminated subaerially. The spatial distribution of these esker types is discussed. The factors that determined Laurentide R-channel pattern and operation were likely a complex combination of (i) supraglacial meltwater discharge, (ii) the number and location of sink holes, (iii) the ice surface slope, thickness and velocity, and (iv) the permeability, topography and rigidity of the bed. These factors cause and respond to changes in ice dynamics and thermal regime over the glacial cycle.  相似文献   

11.
Many temperate glaciers in the southeast Tibetan Plateau are covered by supraglacial debris in the ablation area. To evaluate the effect of such debris on summer ablation and mass balance, the surface ablation on the 24K Glacier was measured in the summer of 2008. Mean ablation rates varied from 10 to 52 mm/day, strongly correlated to debris thickness. Synchronous observations of air temperature allowed application of a simple degree‐day model to calculate ablation rates. Maximum values of both ablation rate and degree‐day factors appeared in the middle area of the glacier where the debris layer thickness was about 1 cm. The simulated daily ablation obtained from the degree‐day approach showed that the debris layers significantly affected the total summer ablation. The calculated ablation would be increased by 36% of the total ablation with the actual surface debris cover if glacier surface had been assumed to be entirely debris free. If completely covered by 65 cm thick debris in the ablation area, the glacier would experience a 59% decrease in summer ablation. The presence of a debris cover also leads to a change in the ablation gradient in the ablation zone.  相似文献   

12.
Jökulhlaups (glacial outburst floods) are common hazards in many glaciated environments. However, research on the controls on the sedimentological and geomorphological impact of jökulhlaups is rare. Developing a more comprehensive understanding of flood impacts may be useful for hazard identification, prediction and mitigation. This study determines the controls on the sedimentological and geomorphological impact of a jökulhlaup in January 2002 at Kverkfjöll, northern Iceland. This jökulhlaup, caused by geothermal activity, reached a peak discharge of 490 m3s?1 as recorded at a permanent gauging station 40 km downstream from the glacier snout. However, reconstructed peak discharges in the proximal part of the jökulhlaup channel near the glacier snout indicate a peak discharge of 2590 m3s?1. The jökulhlaup hydrograph was characterized by a rapid rising stage and a more gradual falling stage. As a result, sedimentary and geomorphological impacts included poorly sorted, structureless, matrix‐supported deposits; massive sand units; clast‐supported units; ice‐proximal cobbles, rip‐up clasts and kettle‐holes; and steep‐sided kettle‐holes. These features are proposed to be characteristic of rapid rising stage deposition. Additionally, large‐scale gravel bars and bedload sheets prograded and migrated during the rapid rising stage. The development of these bedforms was facilitated by high bedload transport rates, due to high discharge acceleration rates during the rapid rising stage. During the more prolonged falling stage, there was sufficient time for sediment incision and erosion to occur, exhuming cobbles, ice blocks and rip‐up clasts, and creating well‐defined terrace surfaces. This study provides a clearer understanding of hydrological and sedimentological processes and mechanisms operating during jökulhlaups, and helps to identify flood hazards more accurately, which is fundamental for hazard management and minimizing risk.  相似文献   

13.
During the deglaciation stages of the last glacial period a rock avalanche took place on the glacier that occupied the upper sector of the Cuerpo de Hombre Valley (Sierra de Béjar). The material displaced during the avalanche fell onto the ice, was transported by the glacier and later deposited as supraglacial ablation till. The cause of the avalanche was the decompression of the valley slopes after they were freed from the glacier ice (stress relaxation). Reconstruction of the ice masses has been carried out to quantify the stress relaxation that produced the collapse. The rock avalanche took place on a lithologically homogeneous slope with a dense fracture network. The avalanche left a 0.4 ha scar on the slope with a volume of displaced material of 623 ± 15 × 103 m3. The deposit is an accumulation of large, angular, heterometric boulders (1–100 m3 in volume) with a coarse pebble‐size matrix. The avalanche can be explained as a relaxation process. This implies rock decompression once the glacier retreat left the wall ice free (debuttressing). Calculations show that the avalanche took place where the decompression stresses were highest (130–170 kPa). In the Spanish Central System paleoglaciers the largest accumulation of morainic deposits occurred after the glacial maximum and the earliest stages of the ice retreat. The process described here is used as an example to formulate a hypothesis that the largest accumulations of tills were formed in relation to enhanced slope dynamics once some glacier retreat had occurred.  相似文献   

14.
The precise glacier boundary is a fundamental requirement for glacier inventory, the assessment of climate change and water management in remote mountain areas. However, some glaciers in mountain areas are covered by debris. The high spatial resolution images bring opportunities in mapping debris-covered glaciers. To discuss the capability of Chinese GaoFen-1 satellite lacking the short wave infrared band and thermal infrared band in mapping glaciers, this study distinguished supraglacial terrain from surrounding debris by combining GaoFen-1(GF-1) wide-field-view(WFV) images, the ratio of the thermal infrared imagery and morphometric parameters(DEM and slope) with 30 m resolution. The overall accuracy of 90.94% indicated that this method was effective for mapping supraglacial terrain in mountain areas. Comparing this result with the combination of GF-1 WFV and low-resolution morphometric parameters shows that a high-quality DEM and the thermal infrared band enhanced the accuracy of glacier mapping especially debris-covered ice in steep terrain. The user's and producer's accuracies of glacier area were also improved from 89.67% and 85.95% to 92.83% and 90.34%, respectively. GF data is recommended for mapping heavily debris-covered glaciers and will be combined with SAR data for future studies.  相似文献   

15.
The daily water balance for the drainage basin of Koryto Glacier, Kamchatka Peninsula, Russia, was calculated during the period from August to September 2000. The result shows that 14×106 m3 of meltwater and 2×106 m3 of rainwater entered the basin, while 26×106 m3 of water drained from the basin through proglacial streams. Thus, about ?9×106 m3 of water storage reduction occurred in the basin. Vertical displacements of the glacier surface showed that the volume change due to contraction of subglacial cavities was nearly 20% of the total storage change. The remaining fraction of water storage during the period is thought to be stored in englacial and supraglacial locations. The estimate of water balance components in the early ablation season in 2000 indicates that meltwater was already stored within the glacier before the spring, even during the previous year, and that the stored water drained through the ablation season.  相似文献   

16.
The subject of this study is the ephemeral relief of the edge of one of the Vatnajökull outlet glaciers, called Sidujökull, developed in the shape of dirt cones. Special attention has been paid to the distribution of these forms, influenced by the existence of a system of fissures, supraglacial channels and shear planes in the glacier surface, and to the origin of covering material and development of conical forms. Taking into account the main process of ablation and the shape, a suggestion is made to use the term ‘ablation cone’ instead of ‘dirt cone’.  相似文献   

17.
This study documents thinning and retreat of the South Greenland ice margin and discusses possible reasons in the light of mass‐balance and change of dynamic conditions. Analyses of satellite images have shown that the glacier tongue of Sermilik glacier disintegrated within the past 15 years. Furthermore, the observed thinning close to the Sermilik glacier front was as much as 120 m water equivalent during this period. This figure was derived by comparing surface elevation data from a digital elevation model (1985) and laser altimeter measurements from the year 2000, showing surface elevation changes along a flow line of Sermilik glacier. Mass‐balance data from in situ measurements performed at a centre flow line of the glacier are presented. These data are compared to results from remote sensing analyses of the study area. Net ablation reconstruction over the last 41 years from positive‐degree‐day modelling, at various locations along the Sermilik glacier massbalance transect, shows an increase during the past decades. These analyses indicate that only 55% of the total thinning in this area can be explained by mass‐balance changes. The remaining 45% of the thinning is attributed to changes in the dynamic behaviour of the glacier, such as an increase of creep towards the end of the twentieth century. The significant thinning along the Qagssimiut lobe can also be explained as a combination of mass‐balance changes and changes in ice dynamic behaviour.  相似文献   

18.
Elizabeth B. Oswald  Ellen Wohl   《Geomorphology》2008,100(3-4):549-562
A jökulhlaup burst from the head of Grasshopper Glacier in Wyoming's Wind River Mountains during early September 2003. Five reaches with distinct sedimentation patterns were delineated along the Dinwoody Creek drainage. This paper focuses on a portion of the jökulhlaup route where erosion of the forested banks created 16 large logjams spaced at longitudinal intervals of tens to hundreds of meters. Aggradation within the main channel upstream from each logjam created local sediment wedges, and the jams facilitated overbank deposition during the jökulhlaup. Field surveys during 2004 and 2006 documented logjam characteristics and associated erosional and depositional features, as well as initial modification of the logjams and flood deposits within the normal seasonal high-flow channel. Overbank deposits have not been altered by flows occurring since 2003. Field measurements supported three hypotheses that (i) logjams present along the forested portions of the jökulhlaup route are larger and more closely spaced than those along adjacent, otherwise comparable stream channels that have not recently experienced a jökulhlaup; (ii) logjams are not randomly located along the jökulhlaup route, but instead reflect specific conditions of channel and valley geometry and flood hydraulics; and (iii) the presence of logjams facilitated significant erosional and depositional effects. This paper documents a sequence of events in which outburst floodwaters enhance bank erosion and recruitment of wood into the channel, and thus the formation of large logjams. These logjams sufficiently deflect flow to create substantial overbank deposition in areas of the valley bottom not commonly accessed by normal snowmelt peak discharges, and through this process promote valley-bottom aggradation and sediment storage. Changes in the occurrence of glacier outburst floods thus have the potential to alter the rate and magnitude of valley-bottom dynamics in these environments, which is particularly relevant given predictions of worldwide global warming and glacial retreat. Processes observed at this field site likely occur in other forested catchments with headwater glaciers.  相似文献   

19.
This paper outlines the results of stable isotope (δD-δ18O) analysis of snow and glacier ice undertaken as part of a larger study concerning structural glaciology, debris entrainment and debris transport patterns at Midtre Lovénbreen, Svalbard. Samples of fresh snow were collected from the glacier surface in spring 1999 and samples of surface glacier ice and basal ice samples were collected in summer 1999. When plotted on bivariate co-isotopic diagrams (δD-δ18O), the slopes obtained for snow and unmodified glacier ice (6.4 and 6.9, respectively) are less steep than those for the basal ice layer and transverse ice layers on the ice surface (7.6 and 7.7, respectively). The difference in the slope of these lines is not statistically significant at the sample size (50) used in this study. The results indicate that although stable isotope analysis clearly has potential for studies of debris entrainment, transport and structural glaciology, difficulties remain with applying this technique. It is therefore not possible to apply these isotopic techniques to ice facies of unknown origins. In particular, large sample numbers are required to establish statistical differences and high-resolution sampling of specific ice facies may be necessary to establish isotopic differences.  相似文献   

20.
中国冰川区表碛厚度估算及其影响研究进展   总被引:5,自引:1,他引:4  
张勇  刘时银 《地理学报》2017,72(9):1606-1620
表碛覆盖型冰川是中国西部分布较为广泛的冰川类型,其典型特征是冰川消融区部分或全部覆盖了一层厚度不一的表碛。与裸冰或雪相比,表碛覆盖层下冰的融化过程有独特性,表碛厚度空间分布对一条冰川的消融、物质平衡和径流过程的影响有别于无表碛覆盖型冰川。本文回顾了近年来表碛厚度分布及其影响的研究,通过对这些进展进行总结以进一步明晰表碛影响研究的方向;同时着重介绍了近期发展的基于遥感影像热红外波段和可见光近红外波段、大气—表碛层—冰川界面能量平衡过程的表碛厚度估算方法和表碛覆盖综合评估模型,结合地面观测,分析了以遥感反演的表碛层热阻系数表征表碛厚度的精度,介绍了这类模型在表碛覆盖型冰川物质平衡和径流研究中的应用效果,以及在综合评估流域/区域尺度表碛影响的应用情况,并分析了该模型存在的不足及进一步改进的研究方向,为实现中国西部区域表碛影响的系统评估奠定基础,从而提升对区域水资源和冰川灾害的模拟和预测能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号