首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The long term recharge in Gobi Desert from Hexi Corridor to Inner Mongolia Plateau was estimated to be 1 mm year−1 by using the chloride mass balance method from one unsaturated zone profile, which shows that no effective modern recharge is taking place. A good rainfall database from Zhangye provides definition of the stable isotopic composition of modern rainfall. The signature of groundwater from the late Pleistocene differs markedly from that of the Holocene, shown clearly by the compositions of −10.5‰ δ18O as compared with values of −7‰ at the present day. It is apparent that the groundwaters in the Minqin Basin, Ejina Basin and feeding the lake system of the Badain Jaran are part of a regional flow network related to a wetter past climate as source of recharge. The recharge source in the past and to a limited extent in the more arid conditions of the present day included the foothills of the mountains of the Tibetan Plateau. The tritium age determinations accurate to the year are impossible and of no meaning to groundwater studies. A tritium value in the groundwater means multiple recharge ages in this region.  相似文献   

2.
The Zhangye Basin, located in arid northwest China, is an important agricultural and industrial center. In recent years rapid development has created an increased demand for water, which is increasingly being fulfilled by groundwater abstraction. Detailed knowledge of the geochemical evolution of groundwater and water quality can enhance understanding of the hydrochemical system, promoting sustainable development and effective management of groundwater resources. To this end, a hydrochemical investigation was conducted in the Zhangye Basin. Types of shallow groundwater in the Zhangye Basin were found to be HCO3 , HCO3 –SO4 2−, SO4 2−–HCO3 , SO4 2−–Cl, Cl–SO4 2− and Cl. The deep aquifer groundwater type was found to be HCO3–SO42− throughout the entire area. Ionic ratio and saturation index calculations suggest that silicate rock weathering and evaporation deposition are the main processes that determine the ionic composition in the study area. The suitability of the groundwater for irrigation was assessed based on the US Salinity Laboratory salinity classification and the Wilcox diagram. In the study area, the compositions of the stable isotopes δ18O and δD in groundwater samples were found to range from −4.00 to −9.28‰ and from −34.0 to −65.0‰, respectively. These values indicate that precipitation is the main recharge source for the groundwater system; some local values indicate high levels of evaporation. Tritium analysis was used to estimate the ages of the different groundwaters; the tritium values of the groundwater samples varied from 3.13 to 36.62 TU. The age of the groundwater at depths of less than 30 m is about 5–10 years. The age of the groundwater at depths of 30–50 m is about 10–23 years. The age of the groundwater at depths of 50–100 m is about 12–29 years. For groundwater samples at depths of greater than 100 m, the renewal time is about 40 years.  相似文献   

3.
《Applied Geochemistry》1998,13(5):593-606
The comparative geochemical and isotopic study of confined and unconfined Chalk groundwaters of the Paris Basin and the N German Basin proves a significant chemical evolution during groundwater flow from the recharge zones to the deep confined aquifer. Different time dependent geochemical parameters have been tested as dating tools: Cation ratios (Sr2+/Ca2+, Mg2+/Ca2+), N–NO3, noble gas contents as paleotemperature indicators (Ne, Ar, Kr, Xe), radiogenic He, 13C, 14C, 18O, 2H, 3H. Cation ratios and 13C show the importance of incongruent dissolution processes in the Chalk aquifer. Water–rock interactions were taken into account in a multi-step dissolution model to determine radiocarbon groundwater ages. The oldest waters in the confined part of the Paris basin Chalk with maximum 14C ages of 14,000 a B.P. contain pleistocene recharge components as can be shown by a stable isotope depletion and noble gas temperatures significantly lower than in recent groundwaters. Chalk waters at the Lägerdorf site in Northern Germany show a distinct stratification with respect to residence times and hydrochemistry.  相似文献   

4.
A hydrochemical investigation was conducted in the Ejina Basin to identify the hydrochemical characteristics and the salinity of groundwater. The results indicate that groundwater in the area is brackish and are significantly zonation in salinity and water types from the recharge area to the discharge area. The ionic ration plot and saturation index (SI) calculation suggest that the silicate rock weathering and evaporation deposition are the dominant processes that determine the major ionic composition in the study area. Most of the stable isotope δ18O and δD compositions in the groundwater is a meteoric water feature, indicating that the groundwater mainly sources from meteoric water and most groundwater undergoes a long history of evaporation. Based on radioactive isotope tritium (3H) analysis, the groundwater ages were approximately estimated in different aquifers. The groundwater age ranges from less than 5 years, between 5 years and 50 years, and more than 50 years. Within 1 km of the river water influence zone, the groundwater recharges from recent Heihe river water and the groundwater age is about less than 5 years in shallow aquifer. From 1 km to 10 km of the river water influence zone, the groundwater sources from the mixture waters and the groundwater age is between 5 years and 50 years in shallow aquifer. The groundwater age is more than 50 years in deep confined aquifer.  相似文献   

5.
In the Jakarta area (Indonesia), excessive groundwater pumping due to the rapidly increasing population has caused groundwater-related problems such as brackish water contamination in coastal areas and land subsidence. In this study, we adopted multiple hydrogeochemical techniques to demonstrate the groundwater flow system in the Jakarta area. Although almost all groundwater existing in the Jakarta basin is recharged at similar elevations, the water quality and residence time demonstrates a clear difference between the shallow and deep aquifers. Due to the rapid decrease in the groundwater potential in urban areas, we found that the seawater intrusion and the shallow and deep groundwaters are mixing, a conclusion confirmed by major ions, Br?:Cl? ratios, and chlorofluorocarbon (CFC)-12 analysis. Spring water and groundwater samples collected from the southern mountainside area show younger age characteristics with high concentrations of 14C and Ca–HCO3 type water chemistry. We estimated the residence times of these groundwaters within 45 years under piston flow conditions by tritium analysis. Also, these groundwater ages can be limited to 20–30 years with piston flow evaluated by CFCs. Moreover, due to the magnitude of the CFC-12 concentration, we can use a pseudo age indicator in this field study, because we found a positive correlation between the major type of water chemistry and the CFC-12 concentration.  相似文献   

6.
Unplanned exploitation of groundwater constitutes emerging water-related threats to MayoTsanaga River Basin. Shallow groundwater from crystalline and detrital sediment aquifers, together with rain, dams, springs, and rivers were chemically and isotopically investigated to appraise its evolution, recharge source and mechanisms, flow direction, and age which were used to evaluate the groundwater susceptibility to contamination and the basin’s stage of salinization. The groundwater which is Ca–Na–HCO3 type is a chemically evolved equivalent of surface waters and rain water with Ca–Mg–Cl–SO4 chemistry. The monsoon rain recharged the groundwater preferentially at an average rate of 74 mm/year, while surface waters recharge upon evaporation. Altitude effect of rain and springs show a similar variation of −0.4‰ for δ18O/100 m, but the springs which were recharged at 452, 679, and 773 m asl show enrichment of δ18O through evaporation by 0.8‰ corresponding to 3% of water loss during recharge. The groundwater which shows both local and regional flow regimes gets older towards the basins` margin with coeval enrichment in F and depletion in NO3 . Incidentally, younger groundwaters are susceptible to anthropogenic contamination and older groundwaters are sinks of lithologenic fluoride. The basins salinization is still at an early stage.  相似文献   

7.
The Ejina Basin underlying complex aquifers is located in the lower reaches of the Heihe River with an arid climate and 40 mm mean annual precipitation. As the balance of the natural ecosystem in the Ejina Basin is fragile and easily upset, it is very important to estimate and rationally use the limited groundwater resources to maintain the balance. Water samples were collected from the Heihe River and wells for chemical and isotopic measurements across the basin. The Piper diagram gives two main types of hydrochemical features. Against the background of the regional geology, combining isotope 18O, tritium, and chemical analysis with groundwater flows indicated by a shallow groundwater level contour map, different kinds of groundwater sources and ways to replenish groundwater were discovered. North of the study area are artesian wells that are replenished by the mountainous area at the boundary between China and Mongolia. Replenishment for most of the groundwater resources of the Gurinai oasis comes from the Heihe River seepage flow of the highly conductive paleochannel, not from the Badain Jaran Desert as indicated by TDS and tritium analysis. The different groundwater ages which are younger than 35 years were approximately estimated by radioactive isotope tritium (T). By such efforts, groundwater resources can be effectively evaluated with the engineering impact of the Heihe River Project.  相似文献   

8.
The aim of this study was to determine geochemical properties of groundwater and thermal water in the Misli Basin and to assess thermal water intrusion into shallow groundwater due to over-extraction. According to isotope and hydrochemical analyses results, sampled waters can be divided into three groups: cold, thermal, and mixed waters. Only a few waters reach water–rock chemical equilibrium. Thermal waters in the area are characterized by Na+–Cl–HCO3, while the cold waters by CaHCO3 facies. On the basis of isotope results, thermal waters in the Misli basin are meteoric origin. In particular, δ18O and δ2H values of shallow groundwater vary from −10.2 to −12.2‰ and −71.2 to −82‰, while those of thermal waters range from −7.8 to −10.1‰ and from −67 to −74‰, respectively. The tritium values of shallow groundwater having short circulation as young waters coming from wells that range from 30 to 70 m in depth vary from 10 to 14 TU. The average tritium activity of groundwater in depths more than 100 m is 1.59 ± 1.16, which indicates long circulation. The rapid infiltration of the precipitation, the recycling of the evaporated irrigation water, the influence of thermal fluids and the heterogeneity of the aquifer make it difficult to determine groundwater quality changes in the Misli Basin. Obtained results show that further lowering of the groundwater table by over-consumption will cause further intrusion of thermal water which resulted in high mineral content into the fresh groundwater aquifer. Because of this phenomenon, the concentrations of some chemical components which impairs water quality in terms of irrigation purposes in shallow groundwaters, such as Na+, B, and Cl, are highy probably expected to increase in time.  相似文献   

9.
The recharge and origin of groundwater and its residence time were studied using environmental isotopic measurements in samples from the Heihe River Basin, China. δ18O and δD values of both river water and groundwater were within the same ranges as those found in the alluvial fan zone, and lay slightly above the local meteoric water line (δD=6.87δ18O+3.54). This finding indicated that mountain rivers substantially and rapidly contribute to the water resources in the southern and northern sub-basins. δ18O and δD values of groundwater in the unconfined aquifers of these sub-basins were close to each other. There was evidence of enrichment of heavy isotopes in groundwater due to evaporation. The most pronounced increase in the δ18O value occurred in agricultural areas, reflecting the admixture of irrigation return flow. Tritium results in groundwater samples from the unconfined aquifers gave evidence for ongoing recharge, with mean residence times of: less than 36 years in the alluvial fan zone; about 12–16 years in agricultural areas; and about 26 years in the Ejina oasis. In contrast, groundwater in the confined aquifers had 14C ages between 0 and 10 ka BP.  相似文献   

10.
Radioactive isotopes were used to estimate the rate of seawater intrusion into the coastal aquifer of Israel, the connection between the different sub-aquifers, and the connection between the sub-aquifers and the sea. This was done by dating both fresh and saline groundwaters from the vicinity of the shoreline, which were analyzed for their 14C and tritium content together with their chemical and stable isotope composition. The results indicate that the distinct sub-aquifers differ in their water chemistry and age. The saline groundwater in the lower sub-aquifers is older than ca. 10,000 years, as evidenced by the absence of tritium and low 14C activity (<12 PMC). On the other hand, saline groundwaters in the upper sub-aquifers contain tritium and are thus younger than 50 years, indicating recent intrusion of seawater. The ages of the saline groundwaters become younger upward from the lower sub-aquifers to the upper ones, reflecting the sea-level rise since the last glacial period. The older ages also imply slow groundwater flow in the lower sub-aquifers. The fresh groundwaters in most cases in the lower sub-aquifers were found to be older than ca. 10,000 years and this implies that the flow to the sea is blocked or restricted.  相似文献   

11.
The impacts of environmental flow controls on the water table and chemistry of groundwater in the Ejina Delta, an arid inland river basin in northwest China, were investigated with field observations in 2001 and 2009. The results indicate that the shallow groundwater level rose by 0–2 m in the upper reaches of the east tributary of the Heihe River and in the areas of Saihantaolai—Dalaikubu during the period of environmental flow controls. The chemical constituents of the groundwater show a distinct spatial heterogeneity with the total dissolved solids (TDS) in the groundwater increasing from the periphery towards the depocenter of the Ejina Basin. In addition, the rate of groundwater cycling in the south of the Ejina Delta increased, and the mineralization of groundwater declined, while the overall mineralization and salinity increased in the northern regions, especially in the depocenter of the Ejina Basin. Since shallow groundwater is important to the ecology of arid regions, and because understanding the changes in the shallow groundwater environment (groundwater level and hydrochemistry) in response to environmental flow controls is essential for the sustainable improvement of the ecological environment, the results of this paper can be used as a reference for watershed water resources planning and management to help maintain the health and proper function of rivers in arid regions.  相似文献   

12.
13.
Stable isotopes (δ18O, δ2H), tritium (3H), and helium isotopes (3He, 4He) were used for evaluating groundwater recharge sources, flow paths, and residence times of three watersheds in the Cape Verde Islands (West Africa). Stable isotopes indicate the predominance of high-elevation precipitation that undergoes little evaporation prior to groundwater recharge. In contrast to other active oceanic hotspots, environmental tracers show that deep geothermal circulation does not strongly affect groundwater. Low tritium concentrations at seven groundwater sites indicate groundwater residence times of more than 50 years. Higher tritium values at other sites suggest some recent recharge. High 4He and 3He/4He ratios precluded 3H/3He dating at six sites. These high 3He/4He ratios (R/Ra values of up to 8.3) are consistent with reported mantle derived helium of oceanic island basalts in Cape Verde and provided end-member constraints for improved dating at seven other locations. Tritium and 3H/3He dating shows that São Nicolau Island’s Ribeira Fajã Basin has groundwater residence times of more than 50 years, whereas Fogo Island’s Mosteiros Basin and Santo Antão Island’s Ribeira Paul Basin contain a mixture of young and old groundwater. Young ages at selected sites within these two basins indicate local recharge and potential groundwater susceptibility to surface contamination and/or salt-water intrusion.  相似文献   

14.
Tritium is a short-lived radioactive isotope (T 1/2=12.33 yr) produced naturally in the atmosphere by cosmic radiation but also released into the atmosphere and hydrosphere by nuclear activities (nuclear power stations, radioactive waste disposal). Tritium of natural or anthropogenic origin may end up in soils through tritiated rain, and may eventually appear in groundwater. Tritium in groundwater can be re-emitted to the atmosphere through the vadose zone. The tritium concentration in soil varies sharply close to the ground surface and is very sensitive to many interrelated factors like rainfall amount, evapotranspiration rate, rooting depth and water table position, rendering the modeling a rather complex task. Among many existing codes, SOLVEG is a one-dimensional numerical model to simulate multiphase transport through the unsaturated zone. Processes include tritium diffusion in both, gas and liquid phase, advection and dispersion for tritium in liquid phase, radioactive decay and equilibrium partitioning between liquid and gas phase. For its application with bare or vegetated (perennial vegetation or crops) soil surfaces and shallow or deep groundwater levels (contaminated or non-contaminated aquifer) the model has been adapted in order to include ground cover, root growth and root water uptake. The current work describes the approach and results of the modeling of a tracer test with tritiated water (7.3×108 Bq m−3) in a cultivated soil with an underlying 14 m deep unsaturated zone (non-contaminated). According to the simulation results, the soil’s natural attenuation process is governed by evapotranspiration and tritium re-emission. The latter process is due to a tritium concentration gradient between soil air and an atmospheric boundary layer at the soil surface. Re-emission generally occurs during night time, since at day time it is coupled with the evaporation process. Evapotranspiration and re-emission removed considerable quantities of tritium and limited penetration of surface-applied tritiated water in the vadose zone to no more than ∼1–2 m. After a period of 15 months tritium background concentration in soil was attained.  相似文献   

15.
Major ion geochemistry and environmental isotopes were used to identify the origins and the mineralisation processes of groundwater flowing within the three aquifer levels of the multilayer system of the Gafsa-south mining district (Southwestern Tunisia). It has been demonstrated that groundwaters are characterised by a Ca–Mg–SO4 water type. Geochemical pattern is mainly controlled by the dissolution of halite, gypsum and/or anhydrite as well as by the incongruent dissolution of dolomite. δ18O and δ2H values are much lower than the isotopic signature of regional precipitation and fall close to the meteoric water lines, indicating that groundwaters have not been significantly affected by evaporation or mineral–water reactions. The distribution of stable and radiogenic isotopes (δ18O, δ2H, δ13C and 14C) within the aquifer levels suggests that the deep confined aquifer receives a significant modern recharge at higher altitudes, while, the shallow unconfined aquifer has been mainly recharged under cooler paleoclimatic condition, likely during Late Pleistocene and Early Holocene humid periods. However, waters from the intermediate confined/unconfined aquifer have composite isotopic signatures, highlighting that they are derived from a mixture of the two first end-members.  相似文献   

16.
Pollution of groundwater by seawater intrusion poses a threat to sustainable agriculture in the coastal areas of Korea. Therefore, seawater intrusion monitoring stations were installed in eastern, western, and southern coastal areas and have been operated since 1998. In this study, groundwater chemistry data obtained from the seawater intrusion monitoring stations during the period from 2007 to 2009 were analyzed and evaluated. Groundwater was classified into fresh (<1,500 μS/cm), brackish (1,500–3,000 μS/cm), and saline (>3,000 μS/cm) according to EC levels. Among groundwater samples (n = 233), 56, 7, and 37% were classified as the fresh, brackish, and saline, respectively. The major dissolved components of the brackish and saline groundwaters were enriched compared with those of the fresh groundwater. The enrichment of Na+ and Cl was especially noticeable due to seawater intrusion. Thus, the brackish and saline groundwaters were classified as Ca–Cl and Na–Cl types, while the fresh groundwater was classified as Na–HCO3 and Ca–HCO3 types. The groundwater included in the Na–Cl types indicated the effects of seawater mixing. Ca2+, Mg2+, Na+, K+, SO4 2−, and Br showed good correlations with Cl of over r = 0.624. Of these components, the strong correlations of Mg2+, SO4 2−, and Br with Cl (r ≥ 0.823) indicated a distinct mixing between fresh groundwater and seawater. The Ca/Cl and HCO3/Cl ratios of the groundwaters gradually decreased and approached those of seawater. The Mg/Cl, Na/Cl, K/Cl, SO4/Cl, and Br/Cl ratios of the groundwaters gradually decreased, and were similar to or lower than those of seawater, indicating that Mg2+, Na+, K+, SO4 2−, and Br, as well as Cl in the saline groundwater can be enriched by seawater mixing, while Ca2+ and HCO3 are mainly released by weathering processes. The influence of seawater intrusion was evaluated using threshold values of Cl and Br, which were estimated as 80.5 and 0.54 mg/L, respectively. According to these criteria, 41–50% of the groundwaters were affected by seawater mixing.  相似文献   

17.
Stable isotopes (??2H, ??18O and ??13C) and radiocarbon (14C) have been used in conjunction with chemical data to evaluate recharge mechanisms and groundwater residence time, and to identify inter-aquifer mixing in the Djeffara multi-aquifer in semi-arid southeastern Tunisia. The southern part of this basin, the Djeffara of Medenine aquifer system, is comprised of two main aquifers of Triassic and Miocene sandstone. The Triassic aquifer presents two compartments; the first one (west of the Medenine fault system) is unconfined with a well-defined isotope fingerprint; the second compartment is deeper and confined. Multi-tracer results show groundwater of different origins, ages and salinities, and that tectonic features control groundwater flows. Fresh and brackish groundwater from the unconfined part of the Triassic aquifer was mostly recharged during the Holocene. The recharge rates of this aquifer, inferred by 14C ages, are variable and could reach 3.5?mm/year. Brackish water of the deep confined part of the Triassic aquifer has stable isotope composition and 14C content that indicates earlier recharge during late Pleistocene cold periods. Brackish to saline water of the Miocene aquifer presents variable isotope composition. Groundwater flowing through the Medenine fault system is mainly feeding the Miocene aquifer rather than the deep confined part of the Triassic aquifer.  相似文献   

18.
The ionic and isotopic compositions (δD, δ18O, and 3H) of urban groundwaters have been monitored in Seoul to examine the water quality in relation to land-use. High tritium contents (6.1–12.0 TU) and the absence of spatial/seasonal change of O–H isotope data indicate that groundwaters are well mixed within aquifers with recently recharged waters of high contamination susceptibility. Statistical analyses show a spatial variation of major ions in relation to land-use type. The major ion concentrations tend to increase with anthropogenic contamination, due to the local pollutants recharge. The TDS concentration appears to be a useful contamination indicator, as it generally increases by the order of forested green zone (average 151 mg/l), agricultural area, residential area, traffic area, and industrialized area (average 585 mg/l). With the increased anthropogenic contamination, the groundwater chemistry changes from a Ca–HCO3 type toward a Ca–Cl(+NO3) type. The source and behavior of major ions are discussed and the hydrochemical backgrounds are proposed as the basis of a groundwater management plan.  相似文献   

19.
 An unconfined aquifer system suggests an open system in the study area. Hydrochemical evolution is related to the flow path of groundwater. The groundwaters are divided into two hydrochemical facies in the study area, 1) Ca–Mg–HCO3 and 2) Ca–Mg–SO4HCO3. Facies 1 has shallow (young) waters which dominate in recharge areas during rapid flow conditions, whereas facies 2 may show shallow and mixed waters which dominate intermediate or discharge areas during low flow conditions. Ionic concentrations, TDS, EC and water quality are related to groundwater residence time and groundwater types. The groundwaters in the plain are chemically potable and suitable for both domestic and agricultural purposes. Received: 20 May 1996 · Accepted: 30 July 1996  相似文献   

20.
High levels of fluoride concentration were observed in deep groundwater of the Mizunami area in Central Japan. Fluoride occurs mainly due to the reaction between granitic basement rock and groundwater. Granites were collected, crushed to powder, and then allowed to react with purified water for 80 days. Water–rock interaction results showed that the major factor affecting fluoride concentration is the residence time of the groundwater. Coexisting ions have also some contribution toward fluoride concentration. The groundwater residence time in the Mizunami area was estimated by applying results of water–rock interaction to correspond with field data. A regression model relating fluoride concentration, residence time, and coexisting ions was developed. The parameters of the regression model were determined using the genetic algorithms technique. Residence time was estimated by extrapolating experimental data to correspond with filed data. Near the recharge area, residence times in the potential fluoride source rock varied between 1 and 2,000 years, whereas near the discharge area residence times were in excess of tens of thousands of years. The groundwater residence time was also estimated by the groundwater particle-tracking-flow model. The estimates of groundwater residence time based on geochemical regression model were often larger than estimates of groundwater residence time developed by particle-tracking analysis using a groundwater flow model. There were large uncertainties—on the order of 10–10,000 years—in the estimates based on geochemical data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号