首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
张人禾  周顺武 《气象学报》2008,66(6):916-925
利用台站探空观测资料和卫星观测资料,分析了1979—2002年青藏高原上空温度的变化趋势。结果表明:高原地区上空平流层低层和对流层上层的温度与对流层中低层具有反相变化趋势。平流层低层和对流层上层降温,温度出现降低趋势,降温幅度无论是年平均还是季节平均都比全球平均降温幅度更大。高原上空对流层中低层增温,温度显示出增加的趋势,并且比同纬度中国东部非高原地区有更强的增温趋势。对1979—2002年卫星臭氧资料的分析表明,青藏高原上空臭氧总量在每个季节都呈现出明显的下降趋势,并且比同纬度带其他地区下降得更快。由于青藏高原上空臭氧有更大幅度的减少,造成高原平流层对太阳紫外辐射吸收比其他地区更少,使进入对流层的辐射更多,从而导致高原上空平流层低层和对流层上层降温比其他地区更强,而对流层中低层增温更大。因此,高原上空比其他地区更大幅度的臭氧总量减少可能是造成青藏高原上空与同纬度其他地区温度变化趋势差异的一个重要原因。  相似文献   

2.
基于1979—2014年ERA-Interim逐日再分析温度资料,依据温度递减率插值法计算出青藏高原及同纬度其他地区热带对流层顶气压数据,比较了高原和同纬度其他地区热带对流层顶气压季节变化和长期变化趋势,讨论了热带对流层顶气压与高空温度的关系。结果表明:1)在季节变化上,除12月和1月外,青藏高原热带对流层顶气压全年低于同纬度其他地区;青藏高原热带对流层顶气压、对流层中上层以及平流层下部平均温度均表现出比同纬度其他地区更明显的单峰型特征。2)热带对流层顶气压与高空温度变化关系密切,对流层中上层(平流层下部)平均温度升高(降低),有利于热带对流层顶气压降低;相对于同纬度其他地区,青藏高原对流层顶气压与对流层中上层平均温度的关系更密切。3)1979—2014年青藏高原和同纬度其他地区各季节的热带对流层顶气压均呈现出不同程度的下降趋势,冬春季下降趋势更加显著;青藏高原各季节对流层中上层增温和平流层下部降温的幅度均超过同纬度其他地区,导致其热带对流层顶气压的下降趋势比同纬度其他地区更加明显。  相似文献   

3.
Temperature trends in the upper stratosphere are investigated using satellite measurements from Stratospheric Sounding Unit(SSU) outputs and simulations from chemistry–climate models(CCMs) and the Coupled Model Intercomparison Project Phase 6(CMIP6). Observational evidence shows a lack of cooling in the Antarctic, in contrast to strong cooling at other latitudes, during austral winter over 1979–97. Analysis of CCM simulations for a longer period of1961–97 also shows a significant contrast in the...  相似文献   

4.
青藏高原东北侧臭氧垂直分布与平流层-对流层物质交换   总被引:3,自引:0,他引:3  
利用臭氧和温度探空廓线,结合NCEP/NCAR资料、TOMS臭氧总量卫星观测资料和NOAAHYSPLIT后向轨迹模式资料,通过个例分析探讨了影响青藏高原(下称高原)附近臭氧垂直分布的因子和过程。结果表明,动力过程是影响高原上空臭氧垂直分布的主要因子,特别是中高纬度高臭氧浓度的空气向南入侵会导致高原上空臭氧浓度的升高,影响高原上空臭氧低谷的范围大小和形态;尽管大气化学过程对高原上空的平流层下层臭氧垂直分布的影响并不显著,但是高原上空的平流层臭氧变化与温度变化具有较好的一致性。同时还发现,对流层上层的强反气旋系统,特别是中高纬度阻塞高压的边缘有明显的平流层空气向对流层入侵,从而导致对流层内臭氧浓度的增加。  相似文献   

5.
Total column ozone (TCO) over the Tibetan Plateau (TP) is lower than that over other regions at the same latitude, particularly in summer. This feature is known as the “TP ozone valley”. This study evaluates long-term changes in TCO and the ozone valley over the TP from 1984 to 2100 using Coupled Model Intercomparison Project Phase 6 (CMIP6). The TP ozone valley consists of two low centers, one is located in the upper troposphere and lower stratosphere (UTLS), and the other is in the middle and upper stratosphere. Overall, the CMIP6 models simulate the low ozone center in the UTLS well and capture the spatial characteristics and seasonal cycle of the TP ozone valley, with spatial correlation coefficients between the modeled TCO and the Multi Sensor Reanalysis version 2 (MSR2) TCO observations greater than 0.8 for all CMIP6 models. Further analysis reveals that models which use fully coupled and online stratospheric chemistry schemes simulate the anticorrelation between the 150 hPa geopotential height and zonal anomaly of TCO over the TP better than models without interactive chemistry schemes. This suggests that coupled chemical-radiative-dynamical processes play a key role in the simulation of the TP ozone valley. Most CMIP6 models underestimate the low center in the middle and upper stratosphere when compared with the Microwave Limb Sounder (MLS) observations. However, the bias in the middle and upper stratospheric ozone simulations has a marginal effect on the simulation of the TP ozone valley. Most CMIP6 models predict the TP ozone valley in summer will deepen in the future.  相似文献   

6.
平流层对对流层的作用是准确评估、预测对流层气候变化的一个重要方面。其中平流层成分尤其是臭氧的变化,可以改变平流层乃至对流层的辐射平衡,从而影响平流层、对流层的热动力过程。本文从辐射、动力2个角度介绍了平流层臭氧影响对流层气候变化的若干研究进展。平流层臭氧可以通过长短波辐射的方式对对流层大气造成辐射强迫,利用大气化学气候模式可以定量计算平流层臭氧变化引起的辐射强迫,但是辐射强迫的估算受模式中辐射传输模块本身缺陷的影响存在不确定性。动力方面,平流层臭氧变化产生的辐射效应可以改变温度的垂直和经向梯度,造成波折射指数的变化,进而影响平流层甚至对流层内波的折射与反射,通过上对流层下平流层区域内的波—流相互作用,对对流层气候产生影响。另外,南极臭氧损耗可通过大气环状模影响冬春季中高纬度对流层的天气气候,但是其影响的强度大小以及物理机制仍需进一步的确认。值得注意的是,北极平流层臭氧的变化与北半球中高纬度气候变化之间的关系相比南半球要更加复杂,需要更为深入的研究。  相似文献   

7.
The summertime ozone valley over the Tibetan Plateau is formed by two influences,the Asian summer monsoon(ASM) and air column variations.Total ozone over the Tibetan Plateau in summer was ~33 Dobson units(DU) lower than zonal mean values over the ocean at the same latitudes during the study period 2005-2009.Satellite observations of ozone profiles show that ozone concentrations over the ASM region have lower values in the upper troposphere and lower stratosphere(UTLS) than over the non-ASM region.This is caused by frequent convective transport of low-ozone air from the lower troposphere to the UTLS region combined with trapping by the South Asian High.This offset contributes to a ~20-DU deficit in the ozone column over the ASM region.In addition,along the same latitude,total ozone changes identically with variations of the terrain height,showing a high correlation with terrain heights over the ASM region,which includes both the Tibetan and Iranian plateaus.This is confirmed by the fact that the Tibetan and Iranian plateaus have very similar vertical distributions of ozone in the UTLS,but they have different terrain heights and different total-column ozone levels.These two factors(lower UTLS ozone and higher terrain height) imply 40 DU in the lower-ozone column,but the Tibetan Plateau ozone column is only ~33 DU lower than that over the non-ASM region.This fact suggests that the lower troposphere has higher ozone concentrations over the ASM region than elsewhere at the same latitude,contributing ~7 DU of total ozone,which is consistent with ozonesonde and satellite observations.  相似文献   

8.
Effects of the Tibetan Plateau on total column ozone distribution   总被引:4,自引:0,他引:4  
The relatively low total column ozone (TCO) above the Tibetan Plateau (TP) observed in summer is only partly due to the thinness of the atmospheric column. In this paper the effect of the TP on the TCO is further investigated using satellite data [Total Ozone Mapping Spectrometer (TOMS) ozone column and Stratospheric Aerosol and Gas Experiment II (SAGE II) ozone profiles], ECMWF ERA-40 reanalysis data and a 3-D chemistry-climate model (CCM). It is found that the low TCO over the TP is also closely related to large-scale uplift and descent of isentropic surfaces implied by seasonal and longitudinal variations in the tropopause height. The variations in tropopause height, with a maximum in summer, can be driven by various processes including convective activity, air expansion as well as the monsoon system. While previous studies have showed an important role of troposphere-to-stratosphere transport in contributing to the observed low ozone column over the TP, the mechanism revealed in this study is an alternative amendment to the causes of the TCO low over the TP. It is also found that the monsoon anticyclone circulation induces an isentropic transport of trace gases from high latitudes towards the TP in the lower stratosphere and hence modifies tracer distributions. For the vertical distribution of ozone, the modulation by the TP is most significant below ∼20 km, that is, in the upper troposphere and lower stratosphere (UTLS). The smaller differences in NO x between Eastern TP and TP compared to large dynamically caused differences in ozone and methane imply the TCO low over the TP is mainly due to transport processes rather than chemistry.  相似文献   

9.
郭艳君  王国复 《气象学报》2019,77(6):1073-1085
基于118站探空资料研究了近60年中国850—100 hPa气温变化趋势及季节和区域特征,并通过与1979—2017年卫星微波气温的对比研究了中国探空气温均一化的不确定性。研究表明,1958—2017年中国平均对流层气温呈上升趋势,300 hPa升温最为显著,平流层下层(100 hPa)为降温趋势。冬季对流层上层升温趋势和夏季平流层下层降温趋势较强。1979—2017年较整个时段对流层升温趋势较强,平流层下层降温趋势较弱。青藏高原和西北地区对流层上层升温趋势较强。通过与卫星微波气温和邻近探空站探空气温的对比以及均一化前后日夜气温差值检测出中国探空均一化气温仍残存非均一性问题。由于参照序列的局限性,均一化未能完全去除21世纪最初10年中国探空系统变化造成的对流层中、上层至平流层下层气温系统性下降的影响,导致中国对流层上层升温趋势被低估和平流层下层降温趋势被高估。未来可通过参考卫星微波气温和邻近探空站序列调整非均一性订正顺序并增加合理性检验等方法改进中国探空气温均一化方案。   相似文献   

10.
采用1979—2005年美国大气海洋局(NOAA)的卫星观测资料和IPCC第5次全球气候变化比较试验(CMIP5)的模式资料,对全球对流层和平流层近26 a的气温趋势进行了研究。结果表明,CMIP5模拟的全球平均大气温度趋势与观测结果较一致,能够再现平流层冷却和对流层增温等特点,但是在气温趋势的经纬度分布上,模式资料与观测资料间存在较大差异,同时模式间也存在明显的不一致。与观测资料相比,CMIP5模式资料低估了平流层在热带地区的降温速率,而且明显高估了对流层中部到平流层下层的南极区域的降温趋势。不同CMIP5模式间的最大标准方差出现在平流层的南北极区域,但是在对流层所有纬度上标准方差都保持着较小值。  相似文献   

11.
To analyze the mechanism by which water vapor increase leads to cooling in the stratosphere, the effects of water-vapor increases on temperature in the stratosphere were simulated using the two-dimensional, interactive chemical dynamical radiative model (SOCRATES) of NCAR. The results indicate that increases in stratospheric water vapor lead to stratospheric cooling, with the extent of cooling increasing with height, and that cooling in the middle stratosphere is stronger in Arctic regions. Analysis of the radiation process showed that infrared radiative cooling by water vapor is a pivotal factor in middle-lower stratospheric cooling. However, in the upper stratosphere (above 45 km), infrared radiation is not a factor in cooling; there, cooling is caused by the decreased solar radiative heating rate resulting from ozone decrease due to increased stratospheric water vapor. Dynamical cooling is important in the middle-upper stratosphere, and dynamical feedback to temperature change is more distinct in the Northern Hemisphere middle-high latitudes than in other regions and signiffcantly affects temperature and ozone in winter over Arctic regions. Increasing stratospheric water vapor will strengthen ozone depletion through the chemical process. However, ozone will increase in the middle stratosphere. The change in ozone due to increasing water vapor has an important effect on the stratospheric temperature change.  相似文献   

12.
沈熙  徐海明  胡景高 《气象科学》2017,37(6):718-726
本文采用1979—2014年NCEP/NCAR月平均再分析资料、CMAP和GPCP月平均降水资料,分析了北半球平流层极涡崩溃早晚的环流特征及其与南亚降水的关系。结果表明,北半球平流层极涡崩溃时间存在明显的年际变化特征。极涡崩溃偏早(偏晚)年,自3月开始异常信号从平流层向下传播,之后的4月,从平流层到对流层高层极区温度异常偏高(偏低),极涡异常偏弱(偏强),极夜急流异常偏弱(偏强)。结果还表明,5月南亚降水异常与平流层极涡崩溃时间的早晚存在显著相关,5月南亚降水异常与平流层极涡崩溃早晚年平流层异常信号的下传有关。当平流层极涡崩溃偏晚年,4月平流层极区表现为位势高度异常偏低,而中纬度则位势高度场异常偏高,并伴随位势高度异常场的向下传播,5月该位势高度异常场下传至阿拉伯海北部大陆上空对流层顶,形成有利于降水的环流场,导致南亚降水偏多。反之,则相反。  相似文献   

13.
利用美国大气海洋局卫星应用和研究实验室 (The Center for Satellite Applications and Research,STAR) 提供的MSU/AMSU卫星微波亮温资料V3.0版本,结合三套再分析资料数据集,通过对海洋上空不同高度、不同区域及不同季节的适用性分析,来探讨MSU/AMSU资料在热带海洋区域高空大气的温度变化特征,并通过合成分析揭示亮温资料与海洋的响应关系,从而探讨MSU/AMSU资料在热带海洋区域上的适用性和科学性。结果表明:(1)MSU/AMSU亮温资料在30 °E~70 °W,15 °S~15 °N范围的热带海洋区域适用性较好;(2)热带海洋区域对流层上层和中层大气均呈增温趋势,变化速率分别为0.045 K/(10 a) 和0.107 K/(10 a),增温突变现象出现在1980年代末—1990年代初,平流层低层大气呈降温趋势,变化速率为-0.345 K/(10 a),降温突变现象出现在1990年代中期;(3)在热带海洋区域,高空大气温度的变化趋势具有较强的区域性特征,相对于中东太平洋而言,印度洋-西太平洋区域的增、降温趋势变化更显著。对流层的增温幅度随高度的升高而有所降低。平流层低层的降温趋势在季节内变化不大,而对流层则是秋、冬季的增温趋势要明显大于春、夏季,冬季的增温尤为明显;(4)MSU/AMSU亮温资料对热带海洋温度异常有很好的响应关系,能在弥补海洋区域观测资料稀缺的情况下,对海洋区域起着较好的监测作用。   相似文献   

14.
采用UARS卫星1993—2004年卤素掩星试验的观测资料(HALOE),分析了青藏高原(下称高原)上空大气中H2O和CH4的分布和季节变化,也与同纬度其它地区作对比,找出它们的差异,并分析了H2O和CH4的多年变化趋势。结果表明:高原上空H2O混合比在对流层上层随高度迅速减少,在对流层顶和平流层底达到极小值,平流层里水汽混合比随高度增加。高原上空CH4混合比从140 hPa直至1 hPa随高度递减。在对流层上部和平流层下部H2O和CH4混合比季节差异最明显。高原上空H2O和CH4混合比与同纬度带其它地区相比有不少差异,这种差异在对流层上部和平流层下部更明显。分析还表明:高原上空对流层上部和平流层下部H2O和CH4的分布明显受到高原热力作用引起的垂直运动的影响,高原区域是平流层和对流层交换的活跃区。平流层中上层H2O和CH4的关系很密切,其原因主要是在平流层中上层CH4很容易被氧化成H2O。趋势分析表明,在对流层顶附近,水汽在1993—2004年呈下降趋势,而CH4在1998年以前和2001年以后也呈下降趋势;平流层中层1993—2000年H2O混合比呈增加趋势,CH4呈下降趋势,2000—2004年H2O混合比呈下降趋势,而CH4呈增加趋势。  相似文献   

15.
我国北方地区对流层中下层臭氧收支   总被引:1,自引:0,他引:1       下载免费PDF全文
为了揭示我国北方地区对流层中下层臭氧(O3) 的形成机理以及周边地区的污染输送对我国北方地区对流层中下层O3收支的影响, 在与外场观测数据比较分析的基础上, 利用全球化学输送模式(MOZART-2) 采用收支分析方法定量分析了影响我国北方地区对流层中下层O3的各个物理化学过程。结果表明:我国北方地区对流层下层O3最重要的来源是光化学生成作用, 约占总来源的58.3%(41.5 Tg), 光化学生成反应中HO2对于O3生成的贡献最大; 最大的汇是干沉降过程, 约占总汇的43.2%(26.2Tg); 水平净输送作用对我国北方地区对流层中下层O3收支的影响非常大, 在我国北方地区对流层下层, 41.6%左右的O3来自水平净输送, 随高度增加, 水平输送影响增大, 我国北方地区对流层中层大约81.5%的O3来自水平净输送。  相似文献   

16.
利用MLS卫星资料和ERA-Interim再分析资料,比较了青藏高原和北美夏季臭氧谷的垂直结构和形成机制。结果如下:青藏高原夏季臭氧谷在垂直方向上存在两个低值中心,一个中心位于对流层顶附近,强度约为-15 DU,形成原因主要为水平幅散,另一个中心位于上平流层,强度约为-1 DU,形成原因可能为光化学反应参与的氯自由基的催化损耗。北美夏季臭氧谷仅存在一个低值中心,位于对流层顶附近,该中心强度约为-5 DU,其形成的主要原因是水平辐散。  相似文献   

17.
近30 a华北地区高空温度时空演变特征   总被引:3,自引:1,他引:2  
根据华北地区12个探空站近30 a(1979-2008年)的各标准等压面月平均气温资料,对该地区高空年、季气温时空演变特征进行了分析.结果表明:华北地区高空年、季平均气温变化均具有非常高的空间一致性,其中冬季的一致性特征最明显;华北地区高空年、季平均气温大致以150-100 hPa层为界,以上(平流层下层)和以下(对流层)的气温存在着不同的变化特征:从近地面到200 hPa冬(夏)季最低(高),但在年平均气温最低的100-70 hPa,气温季节变化位相与对流层相反,50 hPa层以上气温的年变化不大;近30 a来华北地区对流层中下层的年、季平均气温变化以上升为主,而对流层上层至平流层下层则以下降为主.低层的变暖始于20世纪80年代后期,高层的变冷普遍始于20世纪90年代.  相似文献   

18.
利用Aura卫星微波临边观测仪(Microwave Limb Sounder,MLS)数据,评估了ERA-I、MERRA、JRA-55、CFSR和NCEP2等5套再分析资料的水汽数据在青藏高原及周边上对流层-下平流层(Upper Troposphere and Lower Stratosphere,UTLS)的质量,然后选取其中质量较好的两套水汽数据,分析它们对青藏高原及周边UTLS水汽的时空分布和演变的表征能力。结果表明,与MLS数据相比,5套再分析资料中在UTLS普遍偏湿,最大偏湿在上对流层215 hPa,约为165%,而在下平流层,ERA-I和MERRA与MLS的差异相对较小。总的来看,ERA-I和MERRA表征的水汽与MLS更为接近。进一步的对比表明,ERA-I和MERRA中青藏高原及周边水汽含量的时空分布与MLS较为接近,夏季能够表征青藏高原在纬向和经向上的水汽高值区,冬季能够表征对流层顶、西风急流中心附近的水汽梯度带,而且MERRA的结果要好于ERA-I。ERA-I、MERRA和MLS中青藏高原地区的水汽季节演变都表现为冬季1-2月水汽含量低,夏季7-8月水汽含量高,水汽的季节变化在200~300 hPa最大。MLS资料显示,在青藏高原地区对流层顶附近,存在随时间向上向极的水汽传输信号。相较而言,ERA-I对向上水汽传输信号的表征更好,而MERRA对下平流层(100 hPa)向极水汽传输信号的表征更好。  相似文献   

19.
基于WACCM+DART的临近空间SABER和MLS臭氧观测同化试验研究   总被引:1,自引:0,他引:1  
本研究在WACCM+DART(Whole Atmosphere Community Climate Model,Data Assimilation Research Test-Bed)临近空间资料同化预报系统中加入SABER(Sounding of the Atmosphere using Broadband Emission Radiometry)和MLS(Microwave Limb Sounder)臭氧观测同化接口,并以2016年2月一次平流层爆发性增温(SSW)过程为模拟个例进行了SABER和MLS臭氧观测同化试验,得出以下结论:同化SABER和MLS臭氧体积浓度观测得出的WACCM+DART臭氧分析场能够较真实反映SSW期间北极上空平流层臭氧廓线随时间的演变特征,且与ERA5(Fifth Generation of ECMWF Reanalyses)再分析资料描述的臭氧变化特征具有很好的一致性;基于SABER和MLS臭氧观测的WACCM臭氧6 h预报检验表明同化臭氧观测对臭氧分析和预报误差的改善效果主要体现在南半球高纬平流层和北半球中高纬平流层中上层-中间层底部;基于ERA5再分析资料的WACCM+DART分析场检验表明同化SABER和MLS臭氧体积浓度资料可在提高北半球高纬地区上平流层-中间层底部臭氧场分析质量的同时减小该地区上平流层-中间层底部温度场和中间层底部纬向风场的分析误差;基于MLS臭氧资料的臭氧中期预报检验表明相对控制试验同化SABER和MLS臭氧体积浓度资料能更好改善0~5 d下平流层和中间层底部臭氧的预报效果。  相似文献   

20.
夏季7~8月青藏高原及周边地区上对流层水汽质量的年际异常分布为整体异常型和东西偶极异常型所主导。本文基于ERA-Interim再分析资料并利用HYSPLIT(Hybrid Single Particle Lagrangian Integrated Trajectory)轨迹模式,分析了两个主导分布型对应的水汽质量向平流层绝热和非绝热传输的异常特征,结果表明:青藏高原上空水汽质量整体偏多(少)时,对应南亚高压和青藏高原地区垂直向上的水汽质量非绝热输送偏强(弱),青藏高原及周边水汽质量向平流层的绝热和非绝热传输均偏强(弱)。水汽质量整体偏多与偏少年,水汽质量向平流层绝热和非绝热传输的主要区域和层次相近,只是水汽质量整体偏多年,水汽质量向平流层非绝热传输的层次略高。当青藏高原上空水汽质量呈西多/东少分布时,对应南亚高压偏西,青藏高原西北、东北侧水汽质量向中纬度平流层的绝热传输偏强,青藏高原南侧高层水汽质量向热带平流层的经向绝热传输也偏强,而青藏高原北侧水汽质量向中纬度平流层的经向绝热传输明显减弱。同时青藏高原主体上空水汽质量向平流层的非绝热传输偏强,而青藏高原南侧高层和北侧低层水汽质量向平流层的非绝热传输偏弱。水汽质量呈西少/东多分布时有相反的结果。轨迹模式模拟的结果证实了水汽质量整体偏多年,青藏高原及周边地区绝热进入平流层的轨迹频次偏多;也证实了水汽质量呈西多/东少分布时,青藏高原西北、东北和南侧绝热进入平流层的轨迹频次偏多,而青藏高原北侧绝热进入平流层的轨迹频次偏少。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号