首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
利用MODIS数据进行积雪检测   总被引:1,自引:0,他引:1  
积雪是一种重要的地球表层覆盖物,是气象学和水文学中一个非常重要的参数。使用遥感方法能够有效获取大范围的雪盖信息,弥补地面观测资料在空间上的不足。中等分辨率成像光谱仪(MODIS)数据具有高光谱、高空间分辨率、高时间分辨率等特征,越来越多地应用到积雪检测方面。利用MODIS雪盖数据进行雪盖制图,分析了2008年初中国南方的受灾情况,并对雪情进行了分析。结果发现利用MODIS得到的积雪边界线轮廓清晰,对积雪检测非常有效,但由于云的遮蔽可能会使MODIS积雪分布面积出现误差。  相似文献   

2.
基于NDVI背景场的雪盖制图算法探索   总被引:5,自引:0,他引:5  
梁继  张新焕  王建 《遥感学报》2007,11(1):85-93
NDSI算法提取MSS雪盖面积时,受到MSS影像缺少短波红外波段的局限。为充分精确提取MSS影像的雪盖面积,本文探索一种以NDVI为背景场的雪盖制图新思路。该方法首先在辐射校正时利用6S模型反演地表反射率,然后根据各地物的光谱特性差异和NDVI特性差异,在ENVI软件SPECTRAL模块中创建冰雪光谱阈值查找表。通过ETM+和TM影像的三个例证,详细阐明该算法流程以及查找表的创建,并以NDSI对其雪盖制图进行精度验证。结果一致表明,与常规的分类方法(最大似然法)相比较,本文探索的NDVI背景场算法有更高的总体精度和Kappa系数。  相似文献   

3.
SAR干涉测量的相干性特征分析及积雪划分   总被引:5,自引:0,他引:5  
雪盖面积是高山地区和季节雪盖区水文,气象模型的重要输入因子.SAR干涉测量不仅能够生成高精度的DEM,而且能够通过重复轨道雷达信号的相干性来探测地表覆盖的变化.通过分析比较四景重复轨道ERS-1/2的SAR图像发现,裸岩,裸地,灌丛等未受到扰动的地表相干性高,湖面,雪盖等变化明显的地表相干性低.积雪覆盖后的表面,其相干性急剧隐低,利用其相干性特征可以进行积雪划分.根据上述特性,利用地物的散射强度和SAR重复轨道的相干测量进行雪盖划分,分类精度达到82%,结果表明利用SAR干涉测量的相干性特征进行雪盖制图是可行的.  相似文献   

4.
基于1977—2017年的Landsat卫星数据,研究区域积雪季节变化特征以及积雪变化与气候特征之间的响应机制。对Lantsat数据采用面向对象法、雪盖指数法提取波密县流域的积雪像元,研究结果表明,近40年来波密县流域积雪面积在年际尺度上整体面积急剧下降,40年间积雪覆盖率由67%下降至18%,尤其是2007—2017这10年,波密县流域的积雪面积呈现明显下降的趋势。全球气候变暖可能是波密县流域积雪面积不断变小的主要原因。  相似文献   

5.
通过调控成像积分时间改变曝光量,会在改变图像DN值和图像质量的同时,给地面参数定量反演带来很大的不确定性。以环境星(HJ-1)CCD数据为参照标准,以积雪为研究对象,系统分析了北京一号小卫星(BJ-1)多曝光量数据的积雪图像质量及其光谱特征变化规律;在模拟BJ-1多曝光量数据的基础上,提出了面向多曝光量数据的积雪提取方法,并评估了不同算法的积雪面积提取精度。结果表明,BJ-1 CCD数据的积雪图像质量随曝光量增加有所改善,但过分曝光也会导致图像质量下降;阴影区积雪的光谱差特征随曝光量的增加而增强,向阳面积雪的光谱差特征因"饱和"而大大削弱。基于BJ-1模拟数据,提出了面向多时相、多曝光量数据的归一化积雪提取模型,该模型的分类成功指数(classification success index,CSI)达到89.95%,优于单一曝光量的82.25%和传统监督分类的75.95%的提取精度,为研发更具目标针对性的智能传感器和高精度地表参数遥感反演算法提供了有益的借鉴。  相似文献   

6.
雪水当量是气候模型与大尺度水文模型中的一个重要参数。积雪容量对全球气候变化研究、大尺度径流估算与水资源管理等方面都有很重要的意义。因此研究积雪辐射模型模拟特征及模型验证显得极为重要。本文选用的积雪辐射模型是采用考虑多次散射的双矩阵法(Matrix Doubling Formulation)作为求解辐射传输方程的方法,利用致密介质理论来考虑积雪的近场效应,辐射传输方程的边界条件和下垫面辐射计算则采用高级积分方程模型(AIEM)。文中首先分析了辐射模型对下垫面参数特性和积雪颗粒特性的敏感性,结果表明下垫面特性和积雪颗粒大小对当前人们采用的温度梯度雪水当量反演算法有着很大影响。另外,本文利用瑞士Weissfluhjoch试验区的地面实验数据,对该积雪辐射模型在宽波段高频率和大角度的辐射信号模拟能力做了验证,验证结果表明该模型模拟值与地面实测数据吻合很好,说明积雪辐射模型能很好模拟自然地表的积雪辐射信号。  相似文献   

7.
阚希  张永宏  曹庭  王剑庚  田伟 《测绘学报》2016,45(10):1210-1221
青藏高原积雪对全球气候变化十分重要,针对已有积雪遥感判识方法中普遍采用的可见光与红外光谱数据易受复杂地形与高海拔影响,导致青藏高原地区积雪判识精度较低的问题,提出了一种基于多光谱遥感与地理信息数据特征级融合的积雪遥感判识方法:以风云三号卫星可见光与红外多光谱遥感资料与多要素地理信息作为数据源,由地面实测雪深数据与现有积雪产品交叉筛选出样本标签,构建并训练基于层叠去噪自编码器(SDAE)的特征融合与分类网络,从而有效辨识青藏高原遥感图像中的云、积雪以及无雪地表。经地面实测雪深数据验证,该方法分类精度显著高于使用相同数据源的FY-3A/MULSS积雪产品,略高于国际主流积雪产品MOD10A1与MYD10A1,并且年均云覆盖率最低。试验结果表明该方法可有效地减少云层对积雪判识的干扰,提升分类精度。  相似文献   

8.
谭琨  杜培军  王小美 《测绘科学》2011,36(1):55-57,31
本文为验证SVM对高维特征的适应性和可靠性,针对不同特征提取方法与特征组合,以国产OMISⅡ传感器获得的北京昌平地区高光谱遥感据为例,对SVM分类器中特征维数对分类准确率的影响进行了试验,通过对主成分分析、最小噪声分离算法、相关系数分组后特征提取、导数光谱等的分析,表明SVM分类器的分类精度随着特征维数波动,其中主成分分析降维后提取的特征具有用于分类能够获得最高的准确率。通过与最大似然法和光谱角制图分类算法的比较,说明在同样的特征输入情况下SVM分类算法分类的准确率高于最大似然法和光谱角制图分类器。  相似文献   

9.
基于小波分量特征值匹配的高光谱影像分类   总被引:1,自引:0,他引:1  
提出了一种基于小波分量特征值的高光谱影像分类算法。针对每个像素构建一个能反映该分量特征的函数,得到其特征值。再利用这些特征值与参考光谱的特征值进行匹配,从而对整幅影像实现分类。实验证明,该方法比传统的光谱角制图法和交叉相关系数法的分类精度有较大提高。  相似文献   

10.
根据卫星遥感影像和数据资料,通过目视判读和数字化图像处理,摸索如何提取雪盖面积、雪线高度和积雪消融等信息及雪盖分类与制图方法,并对相应的方法进行了评价。 对于云与雪的区别问题,利用不同的资料及处理方法对其可分性进行了分析,发现Landsat TM资料中5波段(1.55─1.75μm)和7波段(2.08─2.35μm)以及4(0.78─0.90μm),5,7波段合成对于云与雪的区别效果较好。  相似文献   

11.
为了满足水文和气象模型对长时段积雪面积数据的需求,基于第二代甚高分辨率辐射计(second series of advanced very high resolution radiometer,AVHRR/2)的10 d合成数据提出了一种青藏高原地区AVHRR/2数据亚像元雪填图算法,将中分辨率遥感数据亚像元级积雪面积数据集延伸至30 a时间跨度。本文算法以多端元线性光谱混合分析模型为基础,以归一化植被指数、第一波段、第二波段等作为选取端元的指标,直接从AVHRR/2图像中自动选取所需雪端元与非雪端元。基于TM数据对该算法的AVHRR/2数据亚像元雪填图结果进行验证,其均方根误差接近0.1,在青藏高原山区具有较高的精度。  相似文献   

12.
Snow physical properties, snow cover and glacier facies are important parameters which are used to quantify snowpack characteristics, glacier mass balance and seasonal snow and glacier melt. This study has been done using C-band synthetic aperture radar (SAR) data of Indian radar imaging satellite, radar imaging satellite-1 (RISAT)-1, to estimate the seasonal snow cover and retrieve snow physical properties (snow wetness and snow density), and glacier radar zones or facies classification in parts of North West Himalaya (NWH), India. Additional SAR data used are of Radarsat-2 (RS-2) satellite, which was used for glacier facies classification of Smudra Tapu glacier in Himachal Pradesh. RISAT-1 based snow cover area (SCA) mapping, snow wetness and snow density retrieval and glacier facies classification have been done for the first time in NWH region. SAR-based inversion models were used for finding out wet and dry snow dielectric constant, dry and wet SCA, snow wetness and snow density. RISAT-1 medium resolution scan-SAR mode (MRS) in HV polarization was used for first time in NWH for deriving time series of SCA maps in Beas and Bhagirathi river basins for years 2013–2014. The SAR-based inversion models were implemented separately for RISAT-1 quad pol. FRS2, for wet snow and dry snow permittivity retrieval. Masks for layover and shadow were considered in estimating final snow parameters. The overall accuracy in terms of R2 value comes out to be 0.74 for snow wetness and 0.72 for snow density based on the limited ground truth data for subset area of Manali sub-basin of Beas River up to Manali for winter of 2014. Accuracy for SCA was estimated to be 95 % when compared with optical remote sensing based SCA maps with error of ±10 %. The time series data of RISAT-1 MRS and hybrid data in RH/RV mode based decompositions were also used for glacier radar zones classification for Gangotri and Samudra Tapu glaciers. The various glaciers radar zones or facies such as debris covered glacier ice, clean or bare glacier ice radar zone, percolation/refreeze radar zone and wet snow, ice wall etc., were identified. The accuracy of classified maps was estimated using ground truth data collected during 2013 and 2014 glacier field work to Samudra Tapu and Gangotri glaciers and overall accuracy was found to be in range of 82–90 %. This information of various glacier radar zones can be utilized in marking firn line of glaciers, which can be helpful for glacier mass balance studies.  相似文献   

13.
Integration of the MODIS Snow Cover Produced Into Snowmelt Runoff Modeling   总被引:1,自引:0,他引:1  
Because of the difficulty of monitoring and measuring snow cover in mountainous watersheds, satellite images are used as an alternative to mapping snow cover to replace the ground operations in the watershed. Snow cover is one of the most important data in simulation snowmelt runoff. The daily snow cover maps are received from Moderate Resolution Imaging Spectroradiometer (MODIS), and are used in deriving the snow depletion curve, which is one of the input parameters of the snowmelt runoff model (SRM). Simulating Snowmelt runoff is presented using SRM model as one of the major applications of satellite images processing and extracting snow cover in the Ghara - Chay watershed. The first results of modeling process show that MODIS snow covered area product can be used for simulation and forecast of snowmelt runoff in Ghara - Chay watershed. The studies found that the SCA results were more reliable in the study area.  相似文献   

14.
Spaceborne passive microwave data have been available for the past 27 years, and have supported the development of several algorithms for the retrieval of snow water equivalent and snow depth that, in turn, can be used for mapping snow-covered areas. In contrast, only recently has the application of spaceborne active microwave instruments been investigated for remote sensing of snow on a global scale. This raises the question of whether a technique combining active and passive microwave data can improve the mapping of snow parameters with respect to techniques based solely on passive data. In this letter, we report results concerning the mapping of snow-covered area (SCA) in the Northern Hemisphere between the years 2000 and 2004 derived from the combination of the brightness temperatures at 19.35 and 37 GHz measured by the Special Sensor Microwave Imager Radiometer with backscatter coefficients at 13.4 GHz measured by the NASA's QuickSCAT. SCA derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) is used as a reference to evaluate the performance of the microwave-based techniques and their combination. Results show that, generally, the technique using passive data provides better agreement with MODIS SCA than the technique using only scatterometer data. However, the results when both datasets are used show considerable improvement, demonstrating the potential benefits of a multisensor approach  相似文献   

15.
The Qinghai-Tibetan Plateau (QTP) snow cover information acquisition of the high precision spatial and temporal characteristics is of great significance for the research on its land surface atmosphere coupled system and global climate change effects. The Moderate Resolution Imaging Spectro-radiometer (MODIS) daily snow cover products (MOD10A1 and MYD10A1) have been widely used in long time series of spatial and temporal variation analysis, but they are limited to be used because of high cloud cover ratio. In this paper, a 7-day rolling combination algorithm was presented to eliminate cloud obscuration, and the whole cloud amount falls below 7 %. The ground station in situ measurements verify that the overall precision is more than 90 %. The presented algorithm guaranteed the same spatial resolution and temporal resolution, and has higher precision than products MOD10A1 and MYD10A1. The MODIS 7-day rolling combination snow cover datasets products were obtained between 2003 and 2014 in the QTP, and the snow cover area of spatial and temporal variation was analyzed. The change characteristics of snow cover duration was also studied combining with the Digital Elevation Model data. Results show that the snow cover area of the whole QTP has a slowly decreased trend, but increases in autumn. Thus, the snow cover proportion of annual periodic and unstable in different elevations has the highest correlation with area of the elevation.  相似文献   

16.
Snow-covered area (SCA) is a key variable in the Snowmelt-Runoff Model (SRM) and in other models for simulating discharge from snowmelt. Landsat Thematic Mapper (TM), Enhanced Thematic Mapper (ETM + ) or Operational Land Imager (OLI) provide remotely sensed data at an appropriate spatial resolution for mapping SCA in small headwater basins, but the temporal resolution of the data is low and may not always provide sufficient cloud-free dates. The coarser spatial resolution Moderate Resolution Imaging Spectroradiometer (MODIS) offers better temporal resolution and in cloudy years, MODIS data offer the best alternative for mapping snow cover when finer spatial resolution data are unavailable. However, MODIS’ coarse spatial resolution (500 m) can obscure fine spatial patterning in snow cover and some MODIS products are not sensitive to end-of-season snow cover. In this study, we aimed to test MODIS snow products for use in simulating snowmelt runoff from smaller headwater basins by a) comparing maps of TM and MODIS-based SCA and b) determining how SRM streamflow simulations are changed by the different estimates of seasonal snow depletion. We compared gridded MODIS snow products (Collection 5 MOD10A1 fractional and binary SCA; SCA derived from Collection 6 MOD10A1 Normalised Difference Snow Index (NDSI) Snow Cover), and the MODIS Snow Covered-Area and Grain size retrieval (MODSCAG) canopy-corrected fractional SCA (SCAMG), with reference SCA maps (SCAREF) generated from binary classification of TM imagery. SCAMG showed strong agreement with SCAREF; excluding true negatives (where both methods agreed no snow was present) the median percent difference between SCAREF and SCAMG ranged between −2.4% and 4.7%. We simulated runoff for each of the four study years using SRM populated with and calibrated for snow depletion curves derived from SCAREF. We then substituted in each of the MODIS-derived depletion curves. With efficiency coefficients ranging between 0.73 and 0.93, SRM simulation results from the SCAMG runs yielded the best results of all the MODIS products and only slightly underestimated discharge volume (between 7 and 11% of measured annual discharge). SRM simulations that used SCA derived from Collection 6 NDSI Snow Cover also yielded promising results, with efficiency coefficients ranging between 0.73 and 0.91.In conclusion, we recommend that when simulating snowmelt runoff from small basins (<4000 km2) with SRM, we recommend that users select either canopy-corrected MODSCAG or create their own site-specific products from the Collection 6 MOD10A1 NDSI.  相似文献   

17.
Snow cover mapping is important for snow and glacier-related research. The spatial and temporal distribution of snow cover area is a fundamental input to the atmospheric models, snowmelt runoff models and climate models, as well as other applications. Daily snow cover maps from Moderate Resolution Imaging Spectroradiometer (MODIS) Terra satellite were retrieved for the period between 2004 and 2007, and pixels in these images were classified as cloud, snow or snow-free. These images have then been compared with ground snow depth (SD) measurements from the four observatories located at different parts of Himalayas. Comparison of snow maps with in situ data showed good agreement with overall accuracies in between 78.15 and 95.60%. When snow cover was less, MODIS data were found to be less accurate in mapping snow cover region. As the SD increases, the accuracy of MODIS snow cover maps also increases.  相似文献   

18.
We aim a better understanding of the effect of spring-time snow melt on the remotely sensed scene reflectance by using an extensive amount of optical spectral data obtained from an airborne hyperspectral campaign in Northern Finland. We investigate the behaviour of thin snow reflectance for different land cover types, such as open areas, boreal forests and treeless fells. Our results not only confirm the generally known fact that the reflectance of a melting thin snow layer is considerably lower than that of a thick snow layer, but we also present analyses of the reflectance variation over different land covers and in boreal forests as a function of canopy coverage. According to common knowledge, the highly variating reflectance spectra of partially transparent, most likely also contaminated thin snow pack weakens the performance of snow detection algorithms, in particular in the mapping of Fractional Snow Cover (FSC) during the end of the melting period. The obtained results directly support further development of the SCAmod algorithm for FSC retrieval, and can be likewise applied to develop other algorithms for optical satellite data (e.g. spectral unmixing methods), and to perform accuracy assessments for snow detection algorithms.A useful part of this work is the investigation of the competence of Normalized Difference Snow Index (NDSI) in snow detection in late spring, since it is widely used in snow mapping. We conclude, based on the spectral data analysis, that the NDSI -based snow mapping is more accurate in open areas than in forests. However, at the very end of the snow melting period the behavior of the NDSI becomes more unstable and unpredictable in non-forests with shallow snow, increasing the inaccuracy also in non-forested areas. For instance in peatbogs covered by melting snow layer (snow depth < 30 cm) the mean NDSI -0.6 was observed, having coefficient of variation as high as 70%, whereas for deeper snow packs the mean NDSI shows positive values.  相似文献   

19.
遥感估算地表蒸散发真实性检验研究进展   总被引:3,自引:1,他引:2  
地表蒸散发是连接土壤—植被—大气连续体的纽带,结合遥感技术估算地表蒸散发已成为获取区域乃至全球尺度时空连续地表蒸散发量的有效手段。由于遥感估算地表蒸散发容易受到地表空间异质性和近地层气象条件复杂性的影响,在模型机理与变量参数化方案、输入数据和时间尺度扩展等方面存在不确定性,影响了其准确度的提高和应用范围的拓展,因此需要开展真实性检验。本文综述了当前遥感估算地表蒸散发(包括植被蒸腾和土壤蒸发)真实性检验研究的相关成果,重点归纳并总结了应用于遥感估算地表蒸散发真实性检验的直接检验法和间接检法的主要原理、适用性和优缺点,在此基础上阐述了当前遥感估算地表蒸散发真实性检验研究所面临的挑战。分析表明:由于地表空间异质性的普遍存在,遥感估算地表蒸散发真实性检验研究在理论和方法方面还受到诸多挑战,今后应打破地表蒸散发遥感产品真实性检验局限在均匀地表的传统思路,发展非均匀地表遥感估算地表蒸散发真实性检验的理论框架,包括地表水热状况空间异质性的度量、非均匀地表验证场的优化布设、非均匀下垫面地表蒸散发的多尺度观测试验、卫星像元/区域尺度地表蒸散发相对真值的获取、验证过程中的不确定性分析以及遥感估算地表蒸散发的实证研究等,并构建一个多源、多尺度、多方法、多层次的真实性检验技术流程,以期把遥感估算地表蒸散发真实性检验作为突破口,提升相应遥感产品的应用水平,推动定量遥感科学的发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号