首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detailed sampling of two short magnetozones within the Matuyama Chronozone recorded at DSDP Site 609 (49.86°N, 335.77°E) confirms that one, the Cobb Mountain Subchronozone (1.12 Ma), is a very short, full normal polarity interval and that the other, the older interval, is a record of a geomagnetic excursion which occurred at approximately 1.55 Ma. The Cobb Mountain Subchron lasted approximately 25,000 years, one third the duration of the Jaramillo Subchron. The normal polarity interval is bounded by two transition zones which document an antisymmetry in the sequence of directions in the reverse to normal and normal to reverse polarity transitions. We interpret the antisymmetry as reflecting a dependence upon the sense of the reversal, without significant changes in the relative contributions of non-dipole terms. The polarity interval recorded at 1.55 Ma lasted only 8,800 years with what may be regarded as full polarity directions observed across only 3 cm of stratigraphic section. This feature is interpreted as an excursion of the geomagnetic field and appears to be correlative with the Gilsa Subchron. Similarities between the transition bounding these two magnetozones suggest that these features occur as the result of the same process or triggering mechanisms in the earth's outer core.  相似文献   

2.
Oligocene dome complexes of trachydacitic to rhyolitic composition are common in the southern portion of the Mesa Central physiographic province, which forms part of the southern Basin and Range extensional province as well as of the southern Sierra Madre Occidental volcanic province. Generally, dome complexes occur aligned with regional fault systems, mostly associated with the southern Basin and Range province, and thus suggesting that faults controlled the felsic magmas that formed these domes. Two distribution patterns are evident, one aligned NE–SW and another aligned NNE. The set of domes were emplaced at 33–28 Ma. Emplacement of domes occurred in three continuous phases starting with those of trachydacite affinity at 33–32 Ma, to trachydacite–rhyolitic at 32–31 Ma, and finally to those with rhyolitic composition at 31–28 Ma. Felsic magmas that originated the domes were apparently generated by partial melting at the base of the continental crust. Contrary to previous hypothesis, our evidence suggest that these magmas in these particular areas of the Mesa Central were not accumulated in large magma reservoirs emplaced at shallow levels in the crust, but crossed the continental crust directly. Since continental crust in this region is relatively thin (30–33 km), we propose that an intense extensional episode favored the direct ascension of these magmas through the brittle crust, with little interaction with the country rock during ascent to the surface, to end up forming aligned dome chains or complexes. Geochemical data favors this model, as the felsic rocks show no depletions in Nb and Th but instead relatively enrichment in these elements. REE show flat or concave up patterns, suggesting that the magmas involved enriched (fertile), metasomatized lithospheric fluids that generated partial melting at the base of the continental crust. Based upon these data, we infer an intra-plate tectonic setting for these rocks.  相似文献   

3.
We report an 39Ar–40Ar age determination of a whole rock sample of the olivine-rich, martian meteorite Northwest Africa (NWA) 2737. Those extractions releasing 0–48% of the 39Ar define an 39Ar–40Ar isochron age of 160–190 Ma, when evaluated in various ways. Higher temperature extractions show increasing ages that eventually exceed the reported Sm–Nd age of 1.42 Ga. At least part of this excess 40Ar may have been shock implanted from the martian atmosphere. We considered two possible interpretations of the Ar–Ar isochron age, utilizing the measured Ar diffusion characteristics of NWA 2737 and a thermal model, which relates Ar diffusion to the size of a cooling object after shock heating. One interpretation, that 40Ar was only partially degassed by an impact event ~ 11 Ma ago (the CRE age), appears possible only if NWA 2737 was shock-heated to temperatures > 600 °C and was ejected from Mars as an object a few 10 s of cm in diameter. The second interpretation, which we prefer, is that NWA experienced an earlier, more intense shock event, which left it residing in a warm ejecta layer, and a less intense event ~ 11 Ma ago, which ejected it into space. Our evaluation would require NWA 2737 to have been heated by this first event to a temperature of ~ 300–500 °C and buried in ejecta to a depth of ~ 1–20 m. These conclusions are compared to model constraints on meteorite ejection from Mars reported in the literature. The second, Mars-ejection impact ~ 11 Ma ago probably heated NWA 2737 to no more than ~ 400 °C. NWA 2737 demonstrates that some martian meteorites probably experienced shock heating in events that did not eject them into space.  相似文献   

4.
The region located between the Carpathian–Balkan and Aegean arcs, the Moesian Platform and Bulgarian Rhodope, is generally assumed to have been stably attached to the East European craton during the Cenozoic evolution of these arcs. The kinematic evolution of this region is, however, poorly constrained by paleomagnetic analysis. In this paper we provide new paleomagnetic data (800 volcanic and sedimentary samples from 12 localities) showing no significant post-Eocene rotation of the Moesian platform and Rhodope with respect to Eurasia, therefore confirming the stability of this region. We compare this result to a provided review of paleomagnetic data from the South Carpathians (Tisza block) and the Aegean region. The Tisza block underwent 68.4 ± 16.7° of middle Miocene ( 15–10 Ma) clockwise rotation with respect to the Moesian Platform, in line with previous rotation estimates based on structural geology. The stability of the Moesian platform during middle Miocene eastward emplacement of the Tisza block into the Carpathian back-arc supports dextral shear along the Southern Carpathians recorded by 13–6 Ma clockwise strike-slip related rotations in foreland deposits. The new reference direction for the Moesian platform and Rhodope allows accurate quantification of the rotation difference with the west Aegean domain at 38.0 ± 7.2° occurring between 15 and 8 Ma. To accommodate this rotation, we propose that the pivot point of the west-Aegean rotation was located approximately in the middle of the rotating domain rather than at the northern tip as previously proposed. This new scenario predicts less extension southeast of the pivot point, in good agreement with estimates from Aegean structural geology. Northwest of the pivot point, the model requires contraction or extrusion that can be accommodated by the coeval motion of the Tisza Block around the northwestern edge of the Moesian platform.  相似文献   

5.
We present new paleomagnetic results from the well dated Miyako Cretaceous sediments (100–110 Ma) from Northeast Japan. These results, combined with those of Tosha [1], yield an in-situ characteristic directionD = 321°,I = 54.5° (α95 = 4.5°),N = 14 sites; reduced to a reference point at 40°N, 142°E). This direction is found to coincide with that of most older plutonic and sedimentary rocks of Devonian to lower Cretaceous age. It is also identical with the westerly pre-folding direction which is preserved in many Oligocene (20–40 Ma) formations from Northeast Japan [1,2]. In contrast, all recent formations (0–17 Ma) have been magnetized in the direction of the present axial dipole field. Only the Oligocene and Miocene results appear to be primary, or at least pre-folding. The Miyako sulfide-bearing sediments and lower Cretaceous (110–125 Ma) magnetite-bearing granites could either still bear a primary magnetization or be completely remagnetized by a low temperature chemical event. Evidence for such events is now found in many places, and as close as South Korea. Available data constrain the Oligo-Miocene history of Northeast Japan and indicate at least20/30° counterclockwise rotation with respect to mainland Asia during the opening of the Sea of Japan. On the other hand, the pre-40 Ma history of Northeast Japan is not well constrained and three models are proposed which are compatible with various interpretations of the data. None of them can presently document pro-Oligocene motion of Northeast Japan with respect to Asia. The most “economical” model implies widespread remagnetization. We conclude that, because of the scarcity of well tested primary magnetization directions, the classical bending of the Japanese Islands rests on weaker grounds than generally realized and that no pre-40 Ma apparent polar wander path of the Japanese Islands can safely be proposed.  相似文献   

6.
We document the thermal record of breakup of the conjugate Rio Muni (West Africa) and NE Brazil margins using apatite fission track analysis, vitrinite reflectance data and stratigraphic observations from both margins. These results permit determination of the timing of four cooling episodes, and the temperature of samples at the onset of each episode. All samples are interpreted to have experienced higher temperatures in the geological past due to i) elevated basal heatflow (palaeogeothermal gradient in Rio Muni-1 well decaying from 58 °C/km during the Mid Cretaceous to 21.5 °C/km in the Late Cenozoic) and ii) progressive exhumation from formerly greater burial depth. A well constrained history of changing palaeogeothermal gradient allows for much more precise quantification of the thickness of eroded section (exhumation) than if a constant heatflow is assumed. Cooling episodes identified from the palaeotemperature data at 110–95 Ma (both margins) and 85–70 Ma (Rio Muni only) coincide with major unconformities signifying, respectively, the cessation of rifting (breakup) and compressional shortening that affected the African continent following the establishment of post-rift sedimentation (drift). The interval between these separate unconformities is occupied by allochthonous rafts of shallow-water carbonates recording gravitational collapse of a marginal platform. The rift shoulder uplift that triggered this collapse was enhanced by local transpression associated with the obliquely divergent Ascension Fracture Zone, and thermal doming due to the coeval St Helena and Ascension Plumes. The data also reveal a c.45–35 Ma cooling episode, attributed to deep sea erosion at the onset of Eo-Oligocene ice growth, and a c.15–10 Ma episode interpreted as the record of Miocene exhumation of the West African continental margin related to continent-wide plume development. Integration of thermal history methods with traditional seismic- and stratigraphy-based observations yields a dynamic picture of kilometre-scale fluctuations in base level through the breakup and early drift phases of development of these margins. Major unconformities at ocean margins are likely to represent composite surfaces recording not only eustasy, but also regional plate margin-generated deformation, local ‘intra-basinal’ reorganization, and the amplifying effect of negative feedbacks between these processes.  相似文献   

7.
The role of hotter than ambient plume mantle in the formation of a rifted volcanic margin in the northern Arabian Sea is investigated using subsidence analysis of a drill site located on the seismically defined Somnath volcanic ridge. The ridge has experienced > 4 km of subsidence since 65 Ma and lies within oceanic lithosphere. We estimate crustal thickness to be 9.5–11.5 km. Curiously < 400 m of the thermal subsidence occurred prior to 37 Ma, when subsidence rates would normally be at a maximum. We reject the hypothesis that this was caused by increasing plume dynamic support after continental break-up because the size of the thermal anomalies required are unrealistic (> 600 °C), especially considering the rapid northward drift of India relative to the Deccan-Réunion hotspot. We suggest that this reflects very slow lithospheric growth, possibly caused by vigorous asthenospheric convection lasting > 28 m.y., and induced by the steep continent–ocean boundary. Post-rift slow subsidence is also recognized on volcanic margins in the NE Atlantic and SE Newfoundland and cannot be used as a unique indicator of plume mantle involvement in continental break-up.  相似文献   

8.
Changes in oceanic O–Sr isotopic compositions and global cooling beginning in the Eocene are considered to have been caused by the uplift of the Tibetan Plateau. The specific timing and uplift mechanism, however, have long been subjects of debate. We investigated the Duogecuoren lavas of the central-western Qiangtang Block, which form the largest outcrops among Cenozoic lavas in northern-central Tibet and have widely been considered as shoshonitic. Our study demonstrates, however, that most of these lavas are high-K calc-alkaline andesites, dacites and rhyolites. Moreover, they are characterized by high Sr (367–2472 ppm) and Al2O3 (14.55–16.86 wt.%) and low Y (3.05–16.9 ppm) and Yb (0.31–1.48 ppm) contents and high La/Yb (27–100) and Sr/Y (48–240) ratios, similar to adakitic rocks derived by partial melting of an eclogitic source. They can be further classified as either peraluminous and metaluminous subtypes. The peraluminous rocks have relatively high SiO2 (> 66 wt.%) contents, and low MgO (< 1.0 wt.%), Cr (4.94–23.3 ppm) and Ni (2.33–17.0 ppm) contents and Mg# (20–50) values, while the metaluminous rocks exhibit relatively low SiO2 (55–69 wt.%) contents, and high MgO (1.41–6.34), Cr (25.7–383 ppm), Ni (14.13–183 ppm) and Mg# (46–69) values, similar to magnesian andesites. 40Ar/39Ar and SHRIMP zircon U–Pb dating reveal that both peraluminous and metaluminous adakitic rocks erupted in the Eocene (46–38 Ma). Paleocene–Early Miocene thrust faults and associated syn-contractional basin deposits in the Qiangtang Block suggest that this region was undergoing crustal shortening within a continent during the Eocene. The low εNd (− 2.81 to − 6.91) and high 87Sr/86Sr (0.7057–0.7097), Th (11.2–32.3 ppm) and Th/La (0.23–0.88) values in the Duogecuoren adakitic rocks further indicate that they were not derived by partial melting of subducted oceanic crust. Taking into account tectonic and geophysical data and the compositions of xenoliths in Cenozoic lava in northern-central Tibet, we suggest that the peraluminous adakitic rocks were most probably derived by partial melting of subducted sediment-dominated continent of the Songpan-Ganzi Block along the Jinsha suture to the north at a relatively shallow position (the hornblende + garnet stability field), but the metaluminous adakitic rocks likely originated from the interaction between peraluminous adakitic melts generated at greater depths (the garnet + rutile stability field) and mantle. Because the Duogecuoren adakitic rocks must have originated from a garnet-bearing (namely, eclogite facies) source, Eocene continental subduction along the Jinsha suture caused the thickening of the Qiangtang crust. Given that crustal thickening generally equates with elevation, the uplift of the Central Tibetan Plateau probably began as early as 45–38 Ma, which provides important evidence for tectonically driven models of oceanic O–Sr isotope evolution during global cooling and Asian continental aridification beginning in the Eocene.  相似文献   

9.
We present new 40Ar/39Ar ages and paleomagnetic data for São Miguel island, Azores. Paleomagnetic samples were obtained for 34 flows and one dike; successful mean paleomagnetic directions were obtained for 28 of these 35 sites. 40Ar/39Ar age determinations on 12 flows from the Nordeste complex were attempted successfully: ages obtained are between 0.78 Ma and 0.88 Ma, in contrast to published K–Ar ages of 1 Ma to 4 Ma. Our radiometric ages are consistent with the reverse polarity paleomagnetic field directions, and indicate that the entire exposed part of the Nordeste complex is of a late Matuyama age. The duration of volcanism across São Miguel is significantly less than previously believed, which has important implications for regional melt generation processes, and temporal sampling of the geomagnetic field. Observed stable isotope and trace element trends across the island can be explained, at least in part, by communication between different magma source regions at depth. The 40Ar/39Ar ages indicate that our normal polarity paleomagnetic data sample at least 0.1 Myr (0–0.1 Ma) and up to 0.78 Myr (0–0.78 Ma) of paleosecular variation and our reverse polarity data sample approximately 0.1 Myr (0.78–0.88 Ma) of paleosecular variation. Our results demonstrate that precise radiometric dating of numerous flows sampled is essential to accurate inferences of long-term geomagnetic field behavior. Negative inclination anomalies are observed for both the normal and reverse polarity time-averaged field. Within the data uncertainties, normal and reverse polarity field directions are antipodal, but the reverse polarity field shows a significant deviation from a geocentric axial dipole direction.  相似文献   

10.
11.
Age of Seychelles–India break-up   总被引:1,自引:0,他引:1  
Many continental flood basalt provinces are spatially and temporally linked with continental break-up. Establishing the relative timing of the two events is a key step in determining their causal relationship. Here we investigate the example of the Deccan Traps and the separation of India and the Seychelles. Whilst there has been a growing consensus as to the age of the main phase of the Deccan emplacement (65.5 ± 1 Ma, chron 29r), the age of the rifting has remained unclear. We resolve this issue through detailed seafloor magnetic anomaly modeling (supported by wide-angle and reflection seismic results) of the north Seychelles and conjugate Laxmi Ridge/Gop Rift margins, and geochemistry and 40Ar/39Ar geochronology of rocks from the north Seychelles margin. We show that syn-rift volcanics offshore the Seychelles Islands in the form of seaward-dipping reflectors were most likely erupted during chron 28n, and the first organized seafloor spreading at the Carlsberg Ridge also initiated during this chron at 63.4 Ma. The severing of the Seychelles occurred by a south-eastward ridge propagation that was completed by the start of chron 27n (~ 62 Ma). A brief, pre-28r phase of seafloor spreading occurred in the Gop Rift, possibly as early as 31r–32n (~ 71 Ma). Initial extension at the margin therefore preceded or was contemporaneous with the Deccan emplacement, and separation of the Seychelles was achieved less than 3.5 Ma afterwards. This is the shortest time interval between flood basalt emplacement and break-up yet reported for any continental flood basalt-rifted margin pair. A contributing factor to the apparently short interval in the Deccan case may be that rifting occurred by a ridge jump into already thinned continental lithosphere. However, we conclude that external plate-boundary forces, rather than the impact of a mantle plume, were largely responsible for the rifting of the Seychelles from India.  相似文献   

12.
A high-resolution sea surface temperature and paleoproductivity reconstruction on a sedimentary record collected at 36°S off central-south Chile (GeoB 7165-1, 36°33′S, 73°40′W, 797 m water depth, core length 750 cm) indicates that paleoceanographic conditions changed abruptly between 18 and 17 ka. Comparative analysis of several cores along the Chilean continental margin (30°–41°S) suggests that the onset and the pattern of deglacial warming was not uniform off central-south Chile due to the progressive southward migration of the Southern Westerlies and local variations in upwelling. Marine productivity augmented rather abruptly at 13–14 ka, well after the oceanographic changes. We suggest that the late deglacial increase in paleoproductivity off central-south Chile reflects the onset of an active upwelling system bringing nutrient-rich, oxygen-poor Equatorial Subsurface Water to the euphotic zone, and a relatively higher nutrient load of the Antarctic Circumpolar Current. During the Last Glacial Maximum, when the Southern Westerlies were located further north, productivity off central-south Chile, in contrast to off northern Chile, was reduced due to direct onshore-blowing winds that prevented coastal upwelling and export production.  相似文献   

13.

Sediments shed from the northern margin of the Tibetan Plateau, the Qilian Mountains, are widely deposited in the foreland basin, the Jiuxi Basin, archiving plenty of information about the mountain surface uplift and erosion history. The Laojunmiao section, 1960 m thick, representing the upper sequence of the Cenozoic basin sediments, is paleomagnetically dated to about 13-0 Ma BP. Detailed sedimentary study of this sequence has revealed five sedimentary facies associations which determine four stages of sedimentary environment evolution. They are: (I) the half-deep lake system before 12.18 Ma BP, (II) the shallow lake system between 12.18 and 8.26 Ma BP, (III) the fan delta dominated sedimentary system in dry climate between 8.26 and 6.57 Ma BP, and (IV) alluvial fan system since 6.57 Ma BP. The associated mountain erosion and uplift are suggested to have experienced three phases, that is, tectonic stable (13-8.26 Ma BP), gradual uplift (8.26-<4.96 Ma BP), and rapid intermittent uplift (>3.66-0 Ma BP). The uplift at ∼3.66 Ma BP is of great importance in tectonics and geomorphology. Since then, tectonic uplift and mountain building have been accelerated and become strong intermittent. At least three significant tectonic events took place with ages at <1.80-1.23, 0.93-0.84 and 0.14 Ma BP, respectively. Thus, the uplift of the northern Tibetan Plateau is a complex process of multiple phases, unequal speed and irregular movements.

  相似文献   

14.
Magnetostratigraphic study of the Toarcian type sections of Thouars and Airvault (Deux-Sèvres, France) has yielded two reliable magnetic polarity sequences. Most samples were treated by mixed cleaning: thermal demagnetization (250°, 300° or 350°C) and subsequent alternating field demagnetization. Polarity intervals are easily identified and correlate well between the two sections using the biostratigraphic data provided by the detailed standard ammonite zonation of the Toarcian stage. The polarity sequence extends from ammonite horizon V (Pseudoserpentinum horizon,Serpentinus zone) to horizon XXV (Subcompta horizon,Aalensis zone); it shows 5 reversed and 5 normal polarity magnetozones.  相似文献   

15.
Appalachian Deep Core Hole 2 (ADCOH-2) penetrated part of one of the most persistent and important tectonostratigraphic belts in the southern Appalachians—the Brevard-Chauga belt in South Carolina. The Brevard-Chauga belt is a subdivision of the Inner Piedmont and it includes the Brevard fault zone. The 307 m core contains four imbricated slices of Early Ordovician Henderson Gneiss and metasedimentary rocks of the Chauga River Formation. Aqueous (NaCl–CaCl2) inclusions and CO2–CH4-rich inclusions present in syntectonic quartz veins in the metasedimentary units, together with garnet-biotite geothermometry, provide information on the P-T conditions during uplift. Garnet-biotite geothermometry in the Brevard metasiltstone indicates a crystallization temperature of 466±52 °C, which together with published 40Ar/39Ar hornblende data from the Chauga belt, are interpreted as a Neoacadian (late Devonian) garnet crystallization age. High-density CO2-rich fluid inclusion isochores indicate a pressure of 4.5 kbar at 466±52 °C at this time. A Rb–Sr muscovite model age of 302 Ma in retrograde mylonitic Henderson Gneiss is interpreted as an Alleghanian recrystallization age. Fluid inclusions record a 2.5 kbar decompression event at this time, consistent with thrust assembly of the tectonostratigraphic units in the core.  相似文献   

16.
The Table Rock Complex (TRC; Pliocene–Pleistocene), first documented and described by Heiken [Heiken, G.H., 1971. Tuff rings; examples from the Fort Rock-Christmas Lake valley basin, south-central Oregon. J. Geophy. Res. 76, 5615-5626.], is a large and well-exposed mafic phreatomagmatic complex in the Fort Rock–Christmas Lake Valley Basin, south-central Oregon. It spans an area of approximately 40 km2, and consists of a large tuff cone in the south (TRC1), and a large tuff ring in the northeast (TRC2). At least seven additional, smaller explosion craters were formed along the flanks of the complex in the time between the two main eruptions. The first period of activity, TRC1, initiated with a Surtseyan-style eruption through a 60–70 m deep lake. The TRC1 deposits are dominated by multiple, 1-2 m thick, fining upward sequences of massive to diffusely-stratified lapilli tuff with intermittent zones of reverse grading, followed by a finely-laminated cap of fine-grained sediment. The massive deposits are interpreted as the result of eruption-fed, subaqueous turbidity current deposits; whereas, the finely laminated cap likely resulted from fallout of suspended fine-grained material through a water column. Other common features are erosive channel scour-and-fill deposits, massive tuff breccias, and abundant soft sediment deformation due to rapid sediment loading. Subaerial TRC1 deposits are exposed only proximal to the edifice, and consist of cross-stratified base-surge deposits. The eruption built a large tuff cone above the lake surface ending with an effusive stage, which produced a lava lake in the crater (365 m above the lake floor). A significant repose period occurred between the TRC1 and TRC2 eruptions, evidenced by up to 50 cm of diatomitic lake sediments at the contact between the two tuff sequences. The TRC2 eruption was the last and most energetic in the complex. General edifice morphology and a high percentage of accidental material suggest eruption through saturated TRC1 deposits and/or playa lake sediments. TRC2 deposits are dominated by three-dimensional dune features with wavelengths 200–500 m perpendicular to the flow, and 20–200 m parallel to the direction of flow depending on distance from source. Large U-shaped channels (10–32 m deep), run-up features over obstacles tens of meters high, and a large (13 m) chute-and-pool feature are also identified. The TRC2 deposits are interpreted as the products of multiple, erosive, highly-inflated pyroclastic surges resulting from collapse of an unusually high eruption column relative to previously documented mafic phreatomagmatic eruptions.  相似文献   

17.
Two pelagic limestone sections in the Southern Alps spanning the Kimmeridgian (Late Jurassic) to Barremian (Early Cretaceous) interval yield magnetostratigraphies which can be correlated to oceanic magnetic anomalies M1–M3 and M8–M23. This includes the interval M11–M13 which has not previously been correlated to a sedimentary section. Detailed investigations of nanofossils and calpionellids in these sequences allow precise correlation of polarity chrons to biostratigraphic events and these results compare favorably to those of previous studies. The close correspondence in polarity pattern between that interpreted from the M8 to M15 interval in the Hawaiian lineations and that recorded at the Capriolo section, suggests that sedimentation rates in this sequence and spreading rates in the Hawaiian lineations were rather constant during this interval. In contrast, the sedimentation rate at the Xausa section appears to increase up-section with the facies transition from the Rosso Ammonitico to the Maiolica Formation.  相似文献   

18.
A new measurement technique enables the complex dielectric properties of the geological strata comprising the UG1–UG2 (Upper Group 1–Upper Group 2) unit of the Bushveld Complex in South Africa to be determined with unprecedented detail at radio frequencies (RF). Results of non-destructive laboratory measurements of representative diamond drill core samples from the UG1–UG2 unit are presented at 25 MHz. These data establish that the UG1 and UG2 chromitite layers are embedded in rock strata (norite, pyroxenite and anorthosite) which are translucent in the HF spectral band, whereas the chromitite layers themselves exhibit significant velocity contrast, making them good radar reflectors. The data presented here is useful for calibration of the radar system, and for predicting the range and resolution performance of borehole radars operating in both the hanging and footwalls of the economically important platiniferous UG2 reef.  相似文献   

19.
This study provides a detailed magnetostratigraphic record of subsidence in the Linxia Basin, documenting a 27 Myr long sedimentary record from the northeastern edge of the Tibetan Plateau. Deposition in the Linxia Basin began at 29 Ma and continued nearly uninterruptedly until 1.7 Ma. Increasing rates of subsidence between 29 and 6 Ma in the Linxia Basin suggest deposition in the foredeep portion of a flexural basin and constrain the timing of shortening in the northeastern margin of the plateau to Late Oligocene–Late Miocene time. By Late Miocene–Early Pliocene time, a decrease in subsidence rates in the Linxia Basin associated with thrust faulting and a 10° clockwise rotation in the basin indicates that the deformation front of the Tibetan plateau had propagated into the currently deforming region northeast of the plateau.  相似文献   

20.
Recent analyses of the geomagnetic reversal sequence have led to different conclusions regarding the important question of whether there is a discernible difference between the properties of the two polarity states. The main differences between the two most recent studies are the statistical analyses and the possibility of an additional 57 reversal events in the Cenozoic. These additional events occur predominantly during reverse polarity time, but it is unlikely that all of them represent true reversal events. Nevertheless the question of the relative stabilities of the polarity states is examined in detail, both for the case when all 57 “events” are included in the reversal chronology and when they are all excluded. It is found that there is not a discernible difference between the stabilities of the two polarity states in either case. Inclusion of these short events does, however, change the structure of the non-stationarity in reversal rate, but still allows a smooth non-stationarity. Only 7 of the 57 short events are pre-38 Ma, but the evidence suggests that this is a real geomagnetic phenomenon rather than degradation of the magnetic recording or a bias in observation. This could be tested by detailed magnetostratigraphic and oceanic magnetic surveys of the Paleogene and Late Cretaceous. Overall it would appear that the present geomagnetic polarity timescale for 0–160 Ma is probably a very good representation of the actual history, and that different timescales and additional events now represent only changes in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号