首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conformally flat tilted Bianchi type V cosmological models in presence of a bulk viscous fluid and heat flow are investigated. The coefficient of bulk viscosity is assumed to be a power function of mass density. Some physical andgeometric aspects of the models are also discussed.  相似文献   

2.
Spatially homogeneous and anisotropic LRS Bianchi type-I string cosmological models are studied in the frame work of general relativity when the source for the energy momentum tensor is a bulk viscous fluid containing one dimensional strings. A barotropic equation of state for the pressure and density is assumed to get determinate solutions of the field equations. The bulk viscous pressure is assumed to be proportional to the energy density. The physical and kinematical properties of the models are discussed. The role of bulk viscosity in getting an inflationary phase in the universe is studied.  相似文献   

3.
We present peculiar velocities for 85 clusters of galaxies in two large volumes at distances between 6000 and 15 000 km s−1 in the directions of Hercules–Corona Borealis and Perseus–Pisces–Cetus (the EFAR sample). These velocities are based on Fundamental Plane (FP) distance estimates for early-type galaxies in each cluster. We fit the FP using a maximum likelihood algorithm which accounts for both selection effects and measurement errors, and yields FP parameters with smaller bias and variance than other fitting procedures. We obtain a best-fitting FP with coefficients consistent with the best existing determinations. We measure the bulk motions of the sample volumes using the 50 clusters with the best-determined peculiar velocities. We find that the bulk motions in both regions are small, and consistent with zero at about the 5 per cent level. The EFAR results are in agreement with the small bulk motions found by Dale et al. on similar scales, but are inconsistent with pure dipole motions having the large amplitudes found by Lauer & Postman and Hudson et al. The alignment of the EFAR sample with the Lauer & Postman dipole produces a strong rejection of a large-amplitude bulk motion in that direction, but the rejection of the Hudson et al. result is less certain because their dipole lies at a large angle to the main axis of the EFAR sample. We employ a window function covariance analysis to make a detailed comparison of the EFAR peculiar velocities with the predictions of standard cosmological models. We find that the bulk motion of our sample is consistent with most cosmological models that approximately reproduce the shape and normalization of the observed galaxy power spectrum. We conclude that existing measurements of large-scale bulk motions provide no significant evidence against standard models for the formation of structure.  相似文献   

4.
Hypersurface–homogeneous cosmological models containing a bulk viscous fluid with time varying G and Λ have been presented. We have shown that the field equations are solvable for any arbitrary cosmic scale function. The viscosity coefficient of bulk viscous fluid is assumed to be a power function of the energy density. Exact solutions of Einstein’s field equations are obtained which represent an expanding, shearing and accelerating/decelerating models of the universe. The physical and kinematical behaviours of the models are also discussed.  相似文献   

5.
LRS Bianchi type-I string cosmological models are studied in the frame work of general relativity when the source for the energy momentum tensor is a bulk viscous stiff fluid containing one dimensional strings embedded in electromagnetic field. The bulk viscosity is assumed to be inversely proportional to the scalar expansion. The physical and kinematical properties of the models are discussed. The effects of Viscosity and electromagnetic field on the physical and kinematical properties are also investigated.  相似文献   

6.
We explore flat ΛCDM models with bulk viscosity, and study the role of the bulk viscosity in the evolution of these universe models. The dynamical equations for these models are obtained and solved for some cases of bulk viscosity. We obtain differential equations for the Hubble parameter H and the energy density of dark matter ρ m , for which we give analytical solutions for some cases and for the general case we give a numerical solution. Also we calculate the statefinder parameters for these models and display them in the sr-plane.  相似文献   

7.
LRS Bianchi type-I string cosmological models are studied in the frame work of general relativity when the source for the energy momentum tensor is a bulk viscous fluid containing one dimensional strings embedded in electromagnetic field. A barotropic equation of state for the pressure and density is assumed to get determinate solutions of the field equations. The bulk viscosity is assumed to be inversely proportional to the scalar expansion. The physical and kinematical properties of the models are discussed. The effect of viscosity and electromagnetic field on the physical and kinematical properties is also investigated.  相似文献   

8.
Exact solutions are obtained for an isotropic homogeneous universe with a bulk viscous fluid in the cosmological theory based on Lyra’s geometry. The viscosity coefficient of the bulk viscous fluid is assumed to be a power function of the mass density. Cosmological models with time dependent displacement field have been discussed for a constant value of the deceleration parameter. Finally some possibilities of further problems and their investigations have been pointed out.  相似文献   

9.
Some hypersurface-homogeneous cosmological models with bulk viscous fluid and time-dependent cosmological term are investigated. These expanding, shearing and non-rotating cosmological models of the universe evolve from initial big-bang singularities and give an essentially empty space for large times. Some physical and geometric behaviors of these models are also discussed.  相似文献   

10.
Spatially homogeneous and anisotropic LRSBianchi type-I string cosmological models are studied in the frame work of general relativity when the source for the energy momentum tensor is a bulk viscous fluid containing one dimensional strings embedded in a magnetic field. A barotropic equation of state for the pressure and density is assumed to get determinate solutions of the field equations. The bulk viscous pressure is assumed to be proportional to the energy density. The effects of viscosity and electromagnetic field on the properties of the model are investigated. The role of bulk viscosity and electromagnetic field in getting an inflationary phase and in establishing a string phase in the universe is studied.  相似文献   

11.
Field equations in a scalar-tensor theory of gravitation proposed by Saezand Ballester (1985) are obtained with the aid of (i) Friedmann-type metric (ii) a non static plane symmetric metric and (iii) spatially homogeneous Bianchi type – III metric. Some cosmological models corresponding to perfect fluid and bulk viscous fluid are presented. Physical and kinematical properties of the models are also discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
We investigate, independently of specific emission models, the constraints on the value of the bulk Lorentz factor Γ of a fireball. We assume that the burst emission comes from internal shocks in a region transparent to Thomson scattering, and before deceleration caused by the swept-up external matter is effective. We consider the role of Compton drag in decelerating fast-moving shells before they interact with slower ones, thus limiting the possible differences in the bulk Lorentz factor of shells. Tighter constraints on the possible range of Γ are derived by requiring that the internal shocks transform more than a few per cent of the bulk energy into radiation. Efficient bursts may require a hierarchical scenario, where a shell undergoes multiple interactions with other shells. We conclude that fireballs with average Lorentz factors larger than 1000 are unlikely to give rise to the observed bursts.  相似文献   

13.
Friedmann Robertson Walker cosmological models with bulk viscosity are constructed in the scale covariant theory of gravitation. A new class of solutions for the field equations of the model is found by applying variable deceleration parameter. Some physical models of these solutions are briefly discussed in this paper.  相似文献   

14.
Plane models of the magnetopause are investigated under the assumption that ionospheric electrons are able to short-circuit electric fields (exact charge neutrality). Using the Vlasov theory a general method is presented for constructing distribution functions that lead to given magnetic field and tangential bulk velocity profiles. As an example we describe the magnetic field transition in terms of error functions and obtain particle distributions in explicit form, including bulk velocities.It is thus shown that bulk velocities in the direction of the magnetic field do not necessarily lead to a non-equilibrium magnetopause which investigations by Parker and Lerche seem to suggest.Of the European Space Research Organisation (ESRO).  相似文献   

15.
This paper deals with the general class of Bianchi cosmological models with bulk viscosity and particle creation described by full causal thermodynamics in Brans-Dicke theory. We discuss three types of average scale-factor solutions for the general class of Bianchi cosmological models by using a special law for the deceler- ation parameter which is linear in time with a negative slope. The exact solutions to the corresponding field equations are obtained in quadrature form and solutions to the Einstein field equations are obtained for three different physically viable cosmologies. All the physical parameters are calculated and discussed in each model.  相似文献   

16.
Photogrammetry is a low-cost, nondestructive approach for producing 3-D models of meteorites for the purpose of determining sample bulk density. Coupled with the use of a nondestructive magnetic susceptibility/electrical conductivity field probe, we present measurements for the interrogation of several physical properties, on a set of Antarctic meteorites. Photogrammetry is an effective technique over a range of sample sizes, with meteorite bulk density results that are closely comparable with literature values, determined using Archimedean glass bead or laser scanning techniques. The technique is completely noncontaminating and suitable for the analysis of rare or fragile samples, although there are limitations for analyzing reflective samples. It is also flexible, and, with variations in equipment setup, may be appropriate for samples of a wide range of sizes. X-ray computed tomography analyses of the same meteorite samples yielded slightly different bulk density results, predominantly for samples below 10 g, although the reason for this is unclear. Such analyses are expensive and potentially damaging to certain features of the sample (e.g., organic compounds), but may be useful in expanding the measurements to accommodate an understanding of internal voids within the sample, lending itself to measurement of grain density. Measurements of bulk density are valuable for comparisons with estimates of the bulk densities of asteroids that are suggested as meteorite parent bodies.  相似文献   

17.
FRW models of universe in the presence of viscous fluid are investigated in the cosmological theory based on Lyra’s Manifold. By considering the deceleration parameter to be a variable and the viscosity coefficient of bulk viscous fluid to be a constant, exacts solutions have been obtained from which three forms of model of the universe are derived. The physical properties of the models are also investigated.  相似文献   

18.
Field equations of cosmological models with bulk viscosity are constructed in the scale covariant theory of gravitation. A new class of solutions for the model is found by applying a variable deceleration parameter. Some physical implications of these solutions are briefly discussed.  相似文献   

19.
Bianchi type-I string cosmological models are studied in Saez-Ballester theory of gravitation when the source for the energy momentum tensor is a viscous string cloud coupled to gravitational field. The bulk viscosity is assumed to vary with time and is related to the scalar expansion. The relationship between the proper energy density ρ and string tension density λ are investigated from two different cosmological models.  相似文献   

20.
Hoyle's steady-state cosmology and relativistic Robertson-Walker world models with a constant bulk viscosity are briefly reviewed and compared. It is shown that, although they are identifical from a purely formal point of view, the interpretation of Hoyle's model in terms of viscous dissipation would be physically unrealistic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号