首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 676 毫秒
1.
《Quaternary Science Reviews》2007,26(7-8):1106-1128
The coastal geomorphology of the northeastern Raukumara Peninsula, New Zealand, is examined with the aim of determining the mechanisms of Holocene coastal uplift. Elevation and coverbed stratigraphic data from previously interpreted coseismic marine terraces at Horoera and Waipapa indicate that, despite the surface morphology, there is no evidence that these terraces are of marine or coseismic origin. Early Holocene transgressive marine deposits at Hicks Bay indicate significant differences between the thickness of preserved intertidal infill sediments and the amount of space created by eustatic sea level rise, therefore uplift did occur during early Holocene evolution of the estuary. The palaeoecology and stratigraphy of the sequence shows no evidence of sudden land elevation changes. Beach ridge sequences at Te Araroa slope gradually toward the present day coast with no evidence of coseismic steps. The evolution of the beach ridges was probably controlled by sediment supply in the context of a background continuous uplift rate. No individual dataset uniquely resolves the uplift mechanism. However, from the integration of all evidence we conclude that Holocene coastal uplift of this region has been driven by a gradual, aseismic mechanism. An important implication of this is that tectonic uplift mechanisms do vary along the East Coast of the North Island. This contrasts with conclusions of previous studies, which have inferred Holocene coastal uplift along the length of the margin was achieved by coseismic events. This is the first global example of aseismic processes accommodating uplift at rates of >1 mm yr−1 adjacent to a subduction zone and it provides a valuable comparison to subduction zones dominated by great earthquakes.  相似文献   

2.
Facies analyses of Pleistocene deposits from southern coastal Tanzania (Lindi District) document that sediments formed in a wetland evolving on a coastal terrace in the Lindi Fracture Zone foreland. The exposed succession shows a marked sedimentary change from tidal to terrestrial facies. 14C analyses on gastropod shells indicate the emergence of the Lindi coast at ∼ 44 14C ka BP. Emergence and subsequent elevation of terraces to 21 m above present-day sea level was linked to the falling eustatic sea level prior to the last glacial maximum, and to a periodic elevation due to extensional tectonic episodes in the eastern branch of the East African Rift System (EARS). Since ∼ 44 14C ka BP tectonic uplift at the coast was 80-110 m, comparable to that in the extreme uplift areas of the EARS.  相似文献   

3.
The NW—SE trending segments of the California coastline from Point Arena to Point Conception (500 km) and from Los Angeles to San Diego (200 km) generally parallel major right-lateral strike-slip fault systems. Minor vertical crustal movements associated with the dominant horizontal displacements along these fault systems are recorded in local sedimentary basins and slightly deformed marine terraces. Typical maximum uplift rates during Late Quaternary time are about 0.3 m/ka, based on U-series ages of corals and amino-acid age estimates of fossil mollusks from the lowest emergent terraces.In contrast, the E–W-trending segments of the California coastline between Point Conception and Los Angeles (200 km) parallel predominantly northward-dipping thrust and high-angle reverse faults of the western Transverse Ranges. Along this coast, marine terraces display significantly greater vertical deformation. Amino-acid age estimates of mollusks from elevated marine terraces along the Ventura—Santa Barbara coast imply anomalously high uplift rates of between 1 and 6 m/ka over the past 40 to 100 ka. The deduced rate of terrace uplift decreases from Ventura to Los Angeles, conforming with a similar trend observed by others in contemporary geodetic data.The more rapid rates of terrace uplift in the western Transverse Ranges reflect N—S crustal shortening that is probably a local accommodation of the dominant right-lateral shear strain along coastal California.  相似文献   

4.
This paper presents a case study that assessed spatial variations in the tectonic uplift rates of beach deposits in the relict Kujukuri strand plain, situated on the northeastern coast of the Boso Peninsula, eastern Japan. The southern Boso Peninsula is tilted downward to the northeast due to plate subduction along the Sagami Trough. However, the cause of the northeastern coast uplift creating the relict strand plain is unclear, due to the absence of a Holocene raised marine terrace sequence. Elevations and ages of beach deposits were collected from drilled cores and ground-penetrating radar profiles along three shore-normal sections in the southern Kujukuri strand plain. From this, alongshore variations in the relative sea level since the mid-Holocene could be seen. These corresponded to north-to-northeast downward tilting at a rate of 0.4 m/ka for an interval 10 km and are concordant with the longer term tilting of the last interglacial marine terrace surrounding the plain. Although it is difficult to assess shore-normal variations of uplift based on the present dataset, the recognized tilting apparently continues to the tilting of the southern Boso Peninsula, implying the Sagami Trough probably affects the uplift of the Kujukuri coast.  相似文献   

5.
Coral terrace surveys and U-series ages of coral yield a surface uplift rate of ∼0.5 m/ka for Kisar Island, which is an emergent island in the hinterland of the active Banda arc–continent collision. Based on this rate, Kisar first emerged from the ocean as recently as ∼450 ka. These uplifted terraces are gently warped in a pattern of east–west striking folds. These folds are strike parallel to more developed thrust-related folds of similar wavelength imaged by a seismic reflection profile just offshore. This deformation shows that the emergence of Kisar is influenced by forearc closure along the south-dipping Kisar Thrust. However, the pinnacle shape of Kisar and the protrusion of its metamorphic rocks through the forearc basin sediments also suggest a component of extrusion along shear zones or active doming.Coral encrusts the island coast in many locations over 100 m above sea level. Terrace morphology and coral ages are best explained by recognizing major surfaces as mostly growth terraces and minor terraces as mostly erosional into older terraces. All reliable and referable coral U-series ages determined by MC-ICP-MS correlate with marine isotope stage (MIS) 5e (118–128 ka). The only unaltered coral samples are found below 6 m elevation; however an unaltered Tridacna (giant clam) shell in growth position at 95 m elevation yields a U-series age of 195 ± 31 ka, which corresponds to MIS 7. This age agrees with the best-fit uplift model for the island. Loose deposits of unaltered coral fragments found at elevations between 8 and 20 m yield U-series ages of <100 years and may represent paleotsunami deposits from previously undocumented tectonic activity in the region.  相似文献   

6.
The tectonic position of the Kamchatka Cape Peninsula at the junction of the active Kuril–Kamchatka and Aleutian arcs exposes the coastline of the peninsula to strong neotectonic activities. Fracture zones have variable influence on uplift of the Kamchatka Cape Peninsula. Relevant morphologic indicators of neotectonic activity are multilevel, highly uplifted marine terraces and terraces displaced along active faults. Recent uplift rates of coastal sediments are determined by remote sensing via ASTER and SRTM DEM combined with optically stimulated luminescence dating (OSL). On the Kamchatka Cape Peninsula, terraces from the same generation are mapped at different elevations by remote sensing methods. After defining different areas of uplifted terraces, four neotectonic blocks are identified. According to apatite fission track data, the mean differential exhumation rates range from 0.2 to 1.2 mm year?1 across the blocks since Late Miocene. The OSL data presented point to significant higher uplift rates of up to 3 ± 0.5 and 4.3 ± 1 mm year?1, which indicates an acceleration of the vertical movement along the coast of Kamchatka Cape Peninsula in Upper Pleistocene and Holocene times.  相似文献   

7.
The Kunlun Range, a reactivated orogenic belt, constitutes the northern margin of the Tibetan Plateau. The extreme relief and major landforms of the Kunlun Range are a product of late Cenozoic tectonics and erosion. However, well-developed late Quaternary terraces that occur along the northern slope of the Kunlun Range probably resulted from climatic change rather than surface uplift. The terrace sequences formed in thick Quaternary valley fills and have total incision depths of 50–60 m. Optically stimulated luminescence dating was employed to place time controls on the valley fills and associated terraces. Dating results suggest that periods of significant aggradation were synchronous between different rivers and correspond to the last glacial stage. The abrupt change from aggradation to incision occurred between 21.9 ± 2.7 and 16 ± 2.2 ka, coincident with the last glacial–interglacial transition. Additional terraces developed during the late glacial period and early to middle Holocene. Based on a broader set of chronological data in northern Tibet, at least four regional incision periods can be recognized. Chronological data, terrace elevation profiles, and climate proxy records suggest that these terracing periods were triggered by cool and/or wet climatic conditions. A geometric survey of the riverbed longitudinal profile suggests that surface uplift serves as a potential dynamic forcing for long-term incision. A model is proposed for terrace formation as a response to climatic perturbation in an uplifted mountain range.  相似文献   

8.
《Geodinamica Acta》2013,26(3-4):123-131
Abstract

Geomorphological, biological and AMS radiocarbon dating provide evidence of an about lm high elevated palaeo-shoreline at the NE coast of Ikaria Island,Aegean Sea, and to a seismic uplift which occurred after AD950-1150 and was probably responsible for damage in an ancient tower. These data are important for several reasons. They provide evidence for a strong earthquake in an island usually assumed aseismic, coastal uplifts and coastal fauna are scarce in this region, while the Late Holocene uplift correlates with a flight of marine terraces of probably Quaternary age, at least up to 40m high. Long-term uplift is not observed at the footwall of a fault bounding a major graben north of Ikaria, it represents a structural puzzle and it may help to shed some light to the evolution of various extensional terranes.  相似文献   

9.
《Quaternary Science Reviews》2007,26(7-8):876-893
The Quaternary sedimentary record of Sal Island includes marine and related aeolian and alluvial fan deposits. The substratum of the island is volcanic, with ages between 25 and 0.6 Ma. Quaternary marine units generally occur as raised marine terraces forming a broad staircase between elevations of 55–60 m and present sea level. Terraces include a basal conglomerate overlaid by calcarenite; both host corals, algae and molluscs.A chronostratigraphic framework for the Middle Pleistocene to Holocene units has been generated based on a geomorphologic map of the Quaternary landforms and associated deposits and morphosedimentary analysis, with support of laboratory dating: U-series by TIMS in corals, 14C analyses, palaeomagnetic measurements, and K/Ar ages from other literature. U-series dating of corals from marine terraces provides benchmarks for the Last Interglacial (Oxygen Isotope Substage 5e) and Holocene deposits. The present elevation of the marine terraces and their staircase arrangement suggest a change in vertical movement trend around 330 ka from an uplift to either subsidence or stabilization.  相似文献   

10.
A detailed study of uplifted Middle–Late Pleistocene marine terraces on the eastern side of northern Calabria, southern Italy, provides insights into the temporal and spatial scale variability of vertical displacement rates over a time span of 400 ka. Calabria is located in the frontal orogen of southern Italy above the westerly-plunging Ionian slab, and a combination of lithospheric, crustal, and surface processes concurred to rapid Late Quaternary uplift. Eleven terrace orders and a raised Holocene beach were mapped up to 480 m a.s.l., and were correlated between the coastal slopes of Pollino and Sila mountain ranges across the Sibari Plain, facing the Ionian Sea side of northeastern Calabria. Precise corrections were applied to the measured shoreline angles in order to account for uncertainty in measurement, erosion of marine deposits, recent debris shedding, and bathymetric range of markers. Radiometric (ESR and 14C) dating of shells provides a crono-stratigraphic scheme, although many samples were found to be resedimented in younger terraces. Terrace T4, whose inner margin stands at elevations of 94–130 m, is assigned to MIS 5.5 (124 ka), based on new ESR dating and previous amino acid racemization estimations. The underlying terraces T3, T2 and T1 are attributed to MIS 5.3 (100 ka), 5.1 (80 ka) and 3 (60 ka), as inferred from their relative position supplemented by ESR and 14C age determinations. The age of higher terraces is poorly constrained, but conceivably is tracked back to MIS 11 (400 ka). The reconstructed depositional sequence of terraces attributed to MIS 5.5 and 7 reveals two regressive marine cycles separated by an alluvial fanglomerate, which, given the steady uplift regime, points to minor sub-orbital sea-level changes during interstadial highstands. Based on the terrace chronology, uplift in the last 400 ka occurred at an average rate of 1 mm/a, but was characterized by the alternation of more rapid (up to 3.5 mm/a) and slower (down to 0.5 mm/a) periods of displacement. Spatial variability in uplift rates is recorded by the deformation profile of terraces parallel to the coast, which document the growth of local fold structures.  相似文献   

11.
The NW—SE trending southern California coastline between the Palos Verdes Peninsula and San Diego roughly parallels the southern part and off-shore extension of the dominantly right-lateral, strike-slip, Newport—Inglewood fault zone. Emergent marine terraces between Newport Bay and San Diego record general uplift and gentle warping on the northeast side of the fault zone throughout Pleistocene time. Marine terraces on Soledad Mt. and Point Loma record local differential uplift (maximum 0.17 m/ka) during middle to late Pleistocene time on the southwest side of the fault (Rose Canyon fault) near San Diego.The broad Linda Vista Mesa (elev. 70–120 m) in the central part of coastal San Diego County, previously thought to be a single, relatively undeformed marine terrace of Plio—Pleistocene age, is a series of marine terraces and associated beach ridges most likely formed during sea-level highstands throughout Pleistocene time. The elevations of the terraces in this sequence gradually increase northwestward to the vicinity of San Onofre, indicating minor differential uplift along the central and northern San Diego coast during Pleistocene time. The highest, oldest terraces in the sequence are obliterated by erosional dissection to the northwest where uplift is greatest.Broad, closely spaced (vertically) terraces with extensive beach ridges were the dominant Pleistocene coastal landforms in central San Diego County where the coastal slope is less than 1% and uplift is lowest. The beach ridges die out to the northwest as the broad low terraces grade laterally into narrower, higher, and more widely spaced (vertically) terraces on the high bluffs above San Onofre where the coastal slope is 20–30% and uplift is greatest. At San Onofre the terraces slope progressively more steeply toward the ocean with increasing elevation, indicating continuous southwest tilt accompanying uplift from middle to late Pleistocene time. This southwest tilt is also recorded in the asymmetrical valleys of major local streams where strath terraces occur only on the northeast side of NW—SE-trending valley segments.The deformational pattern (progressively greater uplift to the northwest with slight southwest tilt) recorded in the marine and strath terraces of central and northern coastal San Diego County conforms well with the historic pattern derived by others from geodetic data. It is not known how much of the Santa Ana structural block (between the Newport—Inglewood and the Elsinore fault zones) is affected by this deformational pattern.  相似文献   

12.
The detailed stratigraphic survey and paleontological study (mollusks, corals, foraminifera and ostracods) of four low-level, ~3 m, marine terrace sections: Punta Canoas, Manzanillo del Mar, Playa de Oro, and Tierra Bomba Island, from the Cartagena region, southern Caribbean, supplemented with 22 radiocarbon dates, reveals that the northern terraces were deposited as parasequences in a clastic depositional system compared to the Tierra Bomba Island succession that was deposited in a carbonate depositional system between ~3600 and ~1700 cal yrs BP. Drier conditions and the southern location of the ITCZ at about 3 ka triggered stronger easterly Trades and more dynamic southwestward sediment drift fed by the Magdalena River mouth, thus promoting the formation of sand spits that ultimately isolated the Cienaga de Tesca coastal lagoon from the Caribbean Sea. Our estimates support the hypothesis that the present position of the terraces is the product of neotectonism rather than a higher 3 ka, sea-level. Upheaval of the terraces varies between ~3.8 mmyr?1 at Punta Canoas and ~2.2 mmyr?1 at Tierra Bomba to ~1.5 mmyr?1 at Manzanillo del Mar and Playa de Oro terraces. Our study corroborates previous contentions on the role of mud diapirism and the dynamics of the Dique Fault as late Holocene upheaval mechanisms.  相似文献   

13.
《Quaternary Science Reviews》2007,26(22-24):2844-2863
We present the first overall synthesis of the terrace deposits of the River Euphrates in SE Turkey, northern Syria, and western Iraq, combining new observations with summaries of data sets from different reaches that had previously been independently studied on a piecemeal basis. The largest number of terraces observed in any reach of the Euphrates is 11, in western Iraq, where this river leaves the uplands of the Arabian Platform. In many other localities not more than 5 or 6 terraces have previously been identified, although we infer that some of these are resolvable into multiple terraces. These terraces are typically formed of gravel, principally consisting of Neotethyan ophiolite and metamorphic lithologies transported from Anatolia. Although older gravels are also evident, most of the Euphrates terrace deposits appear, given the chronologies that have been established for different parts of the study region, to date from the late Early Pleistocene onwards, the cold stages most often represented being interpreted as marine Oxygen Isotope Stages 22, 16, 12, 8, 6 and/or 4, and 2. The formation of this terrace staircase reflects regional uplift of the Arabian Platform. Estimated amounts of uplift since the Middle Pliocene decrease southeastward from almost 300 m in SE Turkey to ∼150 m in western Iraq. Uplift rates increased in the late Early Pleistocene, the uplift estimated since then decreasing from ∼110 m in SE Turkey to a minimum of ∼50 m in the Syria–Iraq border region, then increasing further downstream across western Iraq to ∼70 m. Numerical modelling of this uplift indicates a relatively thin mobile lower-crustal layer, consistent with the low surface heat flow in the Arabian Platform.  相似文献   

14.
The presence of raised beaches and marine terraces along the Makran coast indicates episodic uplift of the continental margin resulting from large-magnitude earthquakes. The uplift occurs as incremental steps similar in height to the 1–3 m of measured uplift resulting from the November 28, 1945 (M 8.3) earthquake at Pasni and Ormara, Pakistan. The data support an E—W-trending, active subduction zone off the Makran coast.The raised beaches and wave-cut terraces along the Makran coast are extensive with some terraces 1–2 km wide, 10–15 m long and up to 500 m in elevation. The terraces are generally capped with shelly sandstones 0.5–5 m thick. Wave-cut cliffs, notches, and associated boulder breccia and swash troughs are locally preserved. Raised Holocene accretion beaches, lagoonal deposits, and tombolos are found up to 10 m in elevation. The number and elevation of raised wave-cut terraces along the Makran coast increase eastward from one at Jask, the entrance to the Persian Gulf, at a few meters elevation, to nine at Konarak, 250 km to the east. Multiple terraces are found on the prominent headlands as far east as Karachi. The wave-cut terraces are locally tilted and cut by faults with a few meters of displacement.Long-term, average rates of uplift were calculated from present elevation, estimated elevation at time of deposition, and 14C and U–Th dates obtained on shells. Uplift rates in centimeters per year at various locations from west to east are as follows: Jask, 0 (post-Sangamon); Konarak, 0.031–0.2 (Holocene), 0.01 (post-Sangamon); Ormara 0.2 (Holocene).  相似文献   

15.
内蒙古狼山山前台地成因及其新构造运动意义   总被引:3,自引:0,他引:3  
内蒙古狼山地处阴山造山带西段、河套断陷带的西北缘,晚新生代以来狼山山前断裂广泛发育、构造抬升强烈。研究晚更新世以来狼山的构造隆升对深入了解河套断陷带的形成演化机制及其隆升过程对河套盆地古地理格局的影响具有重要的意义。狼山山前翁格勒其格和乌兰敖包台地的沉积学、地貌学和年代学研究表明,T1台地形成于47.4 kaB.P.,其沉积物为晚更新世河套古大湖沉积;T2台地形成于69 kaB.P.,其沉积物可能为黄河流经狼山山前的冲积物。台地特征的分析显示,狼山山前台地主要由构造抬升形成,两级台地记录了狼山晚更新世晚期(Qp3-2)以来的构造隆升过程。69 kaB.P.到47.4 kaB.P.翁格勒其格和乌兰敖包地区的隆升速率分别为1.34 m/ka和1.25 m/ka,47.4 kaB.P.以来分别为0.81 m/ka和1.18 m/ka,狼山南段(翁格勒其格地区)构造抬升有减小的趋势。晚更新世晚期(Qp3-2)以来由于狼山的快速隆升,导致黄河河道不断东迁,河套平原的古河道是其迁移的证据。狼山山前湖岸阶地的研究进一步证实晚更新世晚期河套地区发育统一古大湖。  相似文献   

16.
The evidence of coseismic uplift on the dynamic, wave-dominated Hua-tung coast fringing the active Coastal Range (eastern Taiwan) has been equivocal, due to complex controls by wave and terrestrial sediment over morphological and ecological systems of the coast. This study, by applying radiocarbon dating methods, demonstrates coseismic-uplift nature of the coast by finding synchronously killed intertidal organisms (mostly boring shell Jouannetia sp.) stranded at different sites of the coast with distinct physiographic characters. Based on these data, together with evidence from wave-cut notch sequences, two coseismic-uplift systems are recognized. One centers around the northern-middle part of the coast and yields events with uplift amounts of maximal 3–6 m and an average recurrence interval of at least several hundred years. The most recent activity of this system, influencing at least 70 km of coast, occurred at ~ 0.9 ka. The earthquake generating this event also triggered extensive landslides/debris flows in the region. Another system, exemplified by the uplift associated with the 2003 Cheng-kung earthquake, centers on the southern part of the coast and yields uplift of likely < 1 m every < 0.2 ky. Two pre-historic events of this system are identified as occurring at ~ 0.7 ka and ~ 1.1 ka. These two coseismic-uplift systems are consistent in position with two anticlinal structures defined by long-term uplift of the coast. However, the areas subjected to maximal coseismic uplift are located off where the climaxes of long-term uplift occur, implying that the latter areas have been uplifted mainly by aseismic and/or relatively frequent/small-magnitude coseismic motion.  相似文献   

17.
《Quaternary Science Reviews》2007,26(22-24):2897-2912
The Late Cenozoic development of the River Tana in Kenya has been reconstructed for its central reach near its confluence with the River Mutonga, which drains the Mount Kenya region. Age control for this system has been provided by K–Ar and Ar–Ar dating. Between 3.21 and 2.65 Ma a major updoming occurred, in relation to the formation of the Kenyan rift valley. The tilting related to this doming has been reconstructed from lava flows that preserve former river gradients. Linear projection of these trends to the current rift valley rim suggests a net updoming of the eastern Gregory Rift valley by at least ∼1 km during 3.21–2.65 Ma. In contrast, since 2.65 Ma the Tana system has been mainly subject to relatively minor epeirogenic uplift. Changing climatic conditions combined with continuing uplift yielded a typical staircase of strath terraces with at least 10 distinct levels. A more detailed reconstruction of the incision rates since 215 ka has been made, by correlating mineralogically fingerprinted volcaniclastic Tana deposits with dated tephras in a lake record. These volcaniclastic sediments were deposited during glacial periods, contemporaneous with lahars. The reconstructed incision rates for the three youngest terraces are ∼0.1–0.2 mm a−1, thus considerably faster than the overall average rate of valley incision since the Mid-Pliocene, of 0.06 mm a−1. A plausible uplift history has been reconstructed using the estimated ages of the Tana terraces and marine terraces on the Indian Ocean coastline. The result suggests an increase in the rate of incision by the River Tana at ∼0.9 Ma, an observation typical in most European river terrace staircases. The reconstructed Late Quaternary development of Tana valley indicates that a similar Quaternary uplift mechanism has operated in both Europe and East Kenya, suggesting a globally applicable process.  相似文献   

18.
Three fluvial terraces in Porougong River in the middle reach of Shiquan River were identified, and the palynological records were investigated to decipher the paleoenvironmental changes in the west inland of the Tibetan Plateau. Three phases of uplift in the west inland of the Tibetan Plateau are suggested to be associated with the third, second, and first fluvial terraces (T3, T2, and T1) being formed at ca.126-25.1 ka B.P., 25.1-4.5 ka B.P., and 4.5-1.3 ka B.P., respectively. The differentiated uplift rate infers that the inland Tibetan Plateau shows an earlier uplift than the surroundings. Coincident with the phased uplift, three episodes of the changes in paleovegetation and paleoclimate since late Middle Pleistocene could be identified by the spore-pollen records, including the forests under the warm-wet climate featured by the assemblage of Picea + Pinus-Betula-Ulmus-Chenopodiaceae-Epheara in the third terrace, the forest-grassy vegetation under the semi-arid and semi-wet climate as shown by the Picea + Pinus-Chenopodiaceae-Epheara assemblage in the second terrace, and the grassland under the cold-dry climate indicated by the Chenopodiaceae-Artemisia-Ephedra assemblage in the first terrace. The association of the paleovegetation and paleoclimate changes with the phased uplift of the fluvial terraces has revealed the important impact of the Plateau uplift.  相似文献   

19.
A combination of published and new radiometric dates on uplifted Holocene fossil beaches from northeastern Sicily and southern Calabria (southern Italy) is compared with the altitude of the inner margin of the Last Interglacial (LIg) (Late Pleistocene, 124 ka) and older marine terraces in order to gain a regional-scale outline of uplift rates and their temporal changes in a region which is one of the fastest uplifting sectors of the Central Mediterranean Sea. Late Holocene radiocarbon dates from Ioppolo (southern Calabria) and Ganzirri (northeast Sicily), two newly discovered sites are here presented for the first time. The Holocene uplift rates are highest at St. Alessio and Taormina in eastern Sicily (2.4 mm/y) and at Scilla in southwestern Calabria (2.1 mm/y), two sites located across the Messina Straits and which separate the island of Sicily from mainland Italy. Uplift rates decrease towards the south and north from this centre of uplift. Late Holocene uplift rates show an apparent increase of between 64 and 124% when compared with the longer-term uplift rates calculated from the LIg highstand terraces. Furthermore, we discovered that the locations of fastest Late Pleistocene and Late Holocene uplift rates spatially coincide. To what extent the Holocene increase in uplift rates results from incomplete elastic strain release along the major extensional faults which frame the seismotectonic of the area, or indicate a true change in regional tectonic processes, is not resolved. Nonetheless, the heterogeneity of uplift, with a well-defined centre that crosses the Messina Straits, and its persistence at different time-scales indicates a tight connection between wider regional processes and fault-related displacement in controlling crustal instability in this area.  相似文献   

20.
Many morphological elements in Cuba's landscape (e.g. marine terraces, tidal notches) demonstrate that coastal uplift has taken place, but the rate at which this occurs is not known. Carbonate phreatic overgrowths on speleothems have been found in a cave in Central North Cuba, ~1 km from the present coastline at 16 m asl. They form exceptional and unique mushroom‐shaped speleothems and balconies decorating the walls of the rooms. These phreatic overgrowths on speleothems (POS) formed at the oscillating air–water interface in sea‐level controlled anchialine lakes. U/Th dating of these overgrowths suggests ages that are compatible with the Marine Isotope Stage 5e (i.e. 130–115 ka). These POS have fixed this sea‐level highstand and demonstrate that this part of Cuba has been subjected to a much lower uplift rate than previously reported, that is, less than 0.1 mm/year since the last interglacial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号