首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
林振  卢书强  梅军 《华南地质》2024,(1):152-161
本文以湖北省秭归县为研究区,选取高程、水系距离、道路距离、岩土体类型、坡向、坡度、土地覆盖类型、年降雨量等8个评价因子开展滑坡易发性评价工作,依据ArcGIS软件数据分析工具完成各评价因子相关性分析。对评价因子相关性值|r|>0.1的高程、坡向因子剔除,计算各因子信息量值。利用信息量模型进行滑坡易发性评价,将研究区划分为四个区域:(1)极高易发区,面积140.0864 km2,占研究区总面积6.18%,主要分布在长江及支流沿岸;(2)高易发区,面积1002.445 km2,占研究区总面积44.23%,主要呈带状分布在极高易发区两侧,部分位于两河口镇、磨坪乡周边区域;(3)中易发区,面积833.8711 km2,占研究区总面积36.79%,呈带状分布在极高易发区两侧,零散分布;(4)低易发区,面积290.2564 km2,占研究区总面积12.80%,多分布在高山人稀区域。本文研究结果能够较好地反映研究区滑坡灾害分布规律,可为秭归县防灾减灾工作提供依据。  相似文献   

2.
在对浏阳市永和镇既有岩溶塌陷进行详细勘查的基础上,选取了岩溶发育程度(钻孔溶蚀率)、与区内断层的距离、上覆土层厚度、岩溶水特征、与人工抽水漏斗中心的距离以及地面塌陷现状(地面塌陷密度)等6个岩溶塌陷易发性评价因子,提出了赋值条件及赋值范围,并根据既有塌陷的评价因子评分状况,采用熵值法获取了评价因子的权重,基于正态云模型对研究区岩溶塌陷灾害的易发性进行了评价。正态云模型评价结果中既有岩溶塌陷均分布在岩溶塌陷高易发区,而层次分析法评价结果中3个既有塌陷分布在岩溶塌陷中易发区,说明正态云模型在处理类似岩溶塌陷易发性评价等模糊性及随机性问题时比层次分析法更精准。  相似文献   

3.
金沙江上游巴塘—德格河段地处青藏高原东部,该区地质、地形、地貌极其复杂,滑坡灾害最为发育,开展区域滑坡易发性评价对防灾减灾工作有着重要的意义。本文以金沙江上游巴塘—德格河段为研究区,在滑坡编录与野外实际调查的基础上,通过对滑坡分布规律和影响因素分析,选取高程、坡度、坡向、曲率、地形起伏度、地表切割度、地表粗糙度、地层岩性、断层、水系和道路等11个影响因子,构建了滑坡易发性评价指标体系。利用皮尔森系数去除高相关性影响因子,运用频率比方法定量分析各个因子与滑坡发育的关系。通过频率比模型选取非滑坡样本,采用集成学习算法模型进行滑坡易发性评价,根据易发性指数将研究区划分为极高易发区、高易发区、中易发区、低易发区及极低易发区5个等级。由滑坡易发性分区图和ROC曲线表明,高和极高易发区主要沿金沙江沿岸和沟谷分布,随机森林模型的成功率曲线下面积AUC=0.84,历史滑坡灾害位于高-极高易发区的灾害数占总滑坡数的84.8%,梯度提升树模型的成功率曲线下面积AUC=0.79,历史滑坡灾害位于高-极高易发区灾害数占总滑坡数的79.3%。由AUC值和历史灾害的分布可知,随机森林模型比梯度提升树模型在本研究区滑坡易发性评价中有着更好的评价精度和更高的预测能力。  相似文献   

4.
滑坡易发性评价是滑坡灾害管理的基础工作,也是制定各项防灾减灾措施的重要依据。针对传统的信息量模型在评价过程中确定权重值存在准确性不高的缺点,文章提出RBF神经网络和信息量耦合模型。以甘肃省岷县为研究区,筛选坡度等9个指标因子构建了滑坡灾害易发性评价指标体系,应用RBF神经网络-信息量耦合模型(RBFNN-I)进行滑坡灾害易发性评价,利用合理性检验和ROC曲线对模型的评价结果进行精度检验。结果表明:(1)RBFNN-I模型的AUC值为0.853,相比单一的RBFNN和I模型分别提高了6.3%和9.7%,说明RBFNN-I模型具有更好的评价精度;(2)岷县滑坡灾害的极高易发区和高易发区主要分布在临潭—宕昌断裂带、洮河及其支流、闾井河和蒲麻河两侧河谷地带,距断层距离、降雨量、距道路距离和NDVI是影响岷县滑坡灾害分布的主控因子。  相似文献   

5.
横断山区地质灾害发育多,其中属滑坡灾害易发育,危害大,且山区乡镇多地势环境复杂,不规范活动较多,易引发滑坡。因此对该区域乡镇进行滑坡易发性评价具有重要意义。以普洱市澜沧县安康佤族乡为例,选择高程、坡度、坡向、起伏度等8个影响因素建立滑坡易发性评价指标体系,构建了小区域滑坡灾害易发性评价指标层次结构模型,利用层次分析法(AHP)确定出各个因子权重值。基于易发综合强度指数法,利用ArcGIS地理空间分析评价了研究区滑坡易发性,划分了四类区域:高易发区,面积占比14.53%;较高易发区,面积占比34.06%;中易发区,面积占比33.57%;低易发区,面积占比17.84%。为安康佤族乡防灾减灾以及滑坡灾害治理提供参考,也为小区域滑坡灾害易发性评价提供了思路方法。  相似文献   

6.
以安徽省池州市为研究区,选取坡度、坡向、工程地质岩组、断裂、道路、河流、降雨量、土地利用类型8个影响因子进行地质灾害易发性评价。基于全市345个地质灾害点(崩塌和滑坡)样本数据,采用信息量模型对研究区各影响因子的信息量进行计算,依据灾害点密度将区域灾害易发性划分为5个等级:低易发区、较低易发区、中易发区、较高易发区和高易发区。结果表明:安徽省池州市地质灾害高易发区和较高易发区主要分布在坡度较大的山区河谷两侧,反映人类工程活动破坏、流水冲刷作用和地形地貌因素是影响该区地质灾害的主要因素。其中,高易发区和较高易发区面积为1 801.47 km~2,分别占全区总面积的7.89%和13.88%,高易发区和较高易发区内的灾害点分别占所有灾害点的48.7%和21.5%,其中高易发区的灾积比为6.17,明显高于其他易发等级。对地质灾害易发性的方法与技术的研究,旨在为该区的灾害防治和经济建设提供技术参考。  相似文献   

7.
基于深度学习的CZ铁路康定—理塘段滑坡易发性评价   总被引:1,自引:0,他引:1  
CZ铁路康定至理塘段地处青藏高原东部边缘,区域内地形地貌多变、地质构造复杂,滑坡灾害极其发育,严重威胁着CZ铁路康定至理塘段的规划建设和未来安全运行。因此,选取高程、坡向、平面曲率、剖面曲率、地形起伏度、地表切割度、地形湿度指数、归一化植被指数、岩性、距断层距离、距河流距离、距道路距离共计12个影响因子构建滑坡空间数据库,采用深度学习的卷积神经网络(convolutional neural network,CNN)模型进行滑坡易发性评价,根据易发性指数将研究区划分为极高易发区(13.76%)、高易发区(14.00%)、中易发区(15.86%)、低易发区(18.17%)、极低易发区(38.21%)5个等级,并与人工神经网络(artificial neural network,ANN)模型进行对比。结果表明,CNN模型的评价精度AUC(0.87)大于ANN(0.84)模型,且极高易发区的频率比值高于ANN模型,CNN模型在本研究区有着更高的预测能力;极高和高易发区主要分布在水系较为发育的地区,沿着雅砻江和其他河流两侧2 km范围内呈带状分布。滑坡易发性评价结果较好地反映了研究区滑坡灾害发育的分布现状,能够为该区的CZ铁路建设和未来安全运行过程中的防灾减灾工作提供科学的依据。  相似文献   

8.
为研究康定市泥石流易发性,将康定市划分为421个沟域单元,采用ArcGIS软件中空间分析工具以及SPSS软件分别对评价指标内部叠加情况、评价指标与泥石流灾害相关性进行了分析,通过筛除剔除重叠度高、相关性差的评价因子,选取流域面积、melton比率、形状系数比、流域崩滑密度、流域植被覆盖率、流域道路密度、流域平均径流侵蚀力指数、多年汛期平均降雨量等8个评价指标进行康定市泥石流地质灾害易发性评价。采用信息量模型与熵值法相结合的方法定量评价了泥石流易发性,熵值法定量确定了评价指标权重,计算出评价因子加权信息量值,将康定市泥石流划分为极高易发区、高易发区、中易发区以及低易发区4个等级。通过频率比模型、受试者工作特征曲线(ROC曲线)对泥石流易发性评价结果进行检验,ROC曲线AUC值为0.842,表明评价模型精度较高。  相似文献   

9.
以万山区为例,在区域滑坡孕灾条件的基础上,筛选工程地质岩组、斜坡结构、平均坡度、地貌、距构造距离及距河流距离共6个易发条件因子,选取逻辑回归模型和信息量模型对山区滑坡进行易发性评价。结果显示逻辑回归模型中中高易发区面积占比分别为1578%和1970%,82%的地质灾害点落在该区域内;信息量模型中中高易发区面积占比为1241%、2519%,包含了区域88%的滑坡灾害点。最后通过实际发生的灾害点在各易发区的分布情况进行检验,逻辑回归模型中灾害点落在高易发区的比例远小于信息量模型,且高易发等级中灾害点实际发生的比值较小,说明针对山区区域滑坡地质灾害易发性评价结果预测上,信息量模型的评价结果更为客观准确。  相似文献   

10.
准确的滑坡易发性评价结果是滑坡风险评估的基础,对防灾减灾工作有着重要的意义。文章以雅安市为研究区,在野外地质调查的基础上,选取高程、坡度、坡向、平面曲率、剖面曲率、地形湿度指数、泥沙输运指数、径流强度指数、归一化植被指数、年均降雨量、地震动峰值加速度、地形起伏度、距断层距离、地层岩性、距河流距离、距道路距离等16个因子,构建研究区滑坡易发性评价指标体系,采用度神经网深络(DNN)模型进行滑坡易发性评价,根据易发性指数将研究区划分为极高易发区(12.2%)、高易发区(7.0%)、中易发区(9.8%)、低易发区(17.0%)、极低易发区(54.1%)五个等级,并与人工神经网络(ANN)模型进行对比,用ROC曲线的AUC值进行精度检验。结果表明,DNN模型的评价精度AUC(0.99)大于ANN(0.96)模型。因此,相比ANN模型,DNN模型在该研究区有着更好的拟合能力和预测能力,滑坡极高和高易发区主要分布于雅安市人类工程活动强烈的低海拔地区,沿着道路和水系分布,距道路距离、高程、年均降雨量是影响雅安滑坡发育的主要影响因子。  相似文献   

11.
河北省顺平县位于太行山东麓,主要发育有崩塌、滑坡、泥石流、地裂缝等四种类型地质灾害。基于该县地质灾害发育特征,采用GIS技术和信息量数学评价模型,选取坡度、起伏度、坡向、工程地质岩组、归一化植被指数(NDVI)、与河流的距离6个评价因子,对顺平县地质灾害进行易发性评价。评价结果显示:高易发区面积约为125 km2,占全县总面积的17.5%,分散分布于西北部的中低山和丘陵地区,密集发育崩塌灾害,少量发育滑坡、泥石流灾害;中易发区面积约为200 km2,占全县总面积的28.0%,成片分布于西北部的中低山和丘陵地区,少量发育崩塌、滑坡、泥石流灾害;低易发区面积约为389 km2,占全县总面积的54.5%,主要分布于东南部的平原地区及西北部丘陵地区内的宽阔沟谷,沿古河道发育地裂缝灾害,个别地区发育崩塌、滑坡灾害。   相似文献   

12.
本文以三峡库区巫山县为研究区,利用收集的资料,提取出9类指标因子(高程、坡度、坡向、地形湿度指数TWI、地表粗糙度指数TRI、地层岩性、水系距离、构造距离、植被覆盖指数NDVI),利用相关性分析剔除高程因子。将灾害点和指标因子数据带入支持向量机(SVM)和人工神经网络(ANN)模型,得到研究区滑坡易发性区划图。根据ROC曲线对模型的精确度进行评价,得到SVM模型的成功率和预测率曲线的AUC值分别为0.919和0.862,ANN模型分别为0.86和0.837,表明两个模型均适用于研究区滑坡易发性评价。根据以上工作,本文提出了基于Max{LSI(SVM);LSI(ANN)}函数的SVM-ANN模型,并将其应用到该区的滑坡易发性评价中。SVM、ANN和SVM-ANN模型中,历史滑坡灾害点分布在高-极高易发区的比例分别为90.06%、83.18%和94.01%,表明SVM-ANN模型更适用于滑坡灾害风险分析的实际应用。  相似文献   

13.
在甘肃省白龙江流域地质灾害资料收集及现场调查的基础上, 统计分析了该区滑坡发育与地层岩性、坡度、坡向、高程、断裂、植被等因素之间的关系, 建立了白龙江流域滑坡易发性评价指标体系。采用基于GIS的层次分析法评价模型, 完成了滑坡易发性分区评价, 将研究区滑坡按易发程度划分为高易发区、中易发区、低易发区和极低易发区, 其中, 高易发区占研究区总面积的13.59%, 主要分布在断裂带、白龙江两侧以及软弱岩土体分布的区域; 中易发区占27.85%;主要分布在白龙江支流以及主要道路两侧的一定范围内; 低易发区占33.09%, 主要分布在海拔相对较高、植被覆盖度较高、基本上无断裂带通过的区域; 其余区域为极低易发区, 占25.46%。对比分析显示评价结果与实际滑坡发育情况吻合, 可以较好地反映区内滑坡灾害发育的总体特征。   相似文献   

14.
湖南省石门县皂市水库地区滑坡地质灾害频发,采用证据权法进行滑坡易发性评价可以为滑坡防治提供科学依据.本文首先以斜坡单元为基本制图单元,利用ArcGIS空间分析功能,结合历史滑坡灾害点实地复核数据、遥感影像、地形图、数字高程模型、地质图等数据,提取了坡度、坡形、斜坡高差、植被覆盖度、地层岩性、斜坡结构类型、断层缓冲距离、道路缓冲距离、河流缓冲距离等9个证据因子并划分证据层;然后基于证据权法分别计算各证据层权重值,生成了研究区滑坡易发性分区图,并进行了预测精度分析.结果表明:(1)研究区滑坡易发性可划分为高易发区、中易发区、低易发区、极低易发区4类,4类分区面积占比分别为7.5%、20.6%、54.9%、17.0%;(2)基于成功率曲线法得出分区准确率为84.7%,评价结果与灾害点分布较为吻合.  相似文献   

15.
以麦积区1 ∶ 50 000地质灾害风险调查项目为依托,在前人研究及分析区内地质灾害分布规律与发育特征的基础上,以栅格单元作为基本评价单元,运用多因素加权指数和法,以地形条件、地貌类型、工程地质岩组、距断层距离、距水域距离、植被覆盖等作为区内地质灾害易发性评价的一级因子。以高程、坡度、坡向、地形起伏度、地面粗糙度、地表曲率等作为表征地形条件的二级评价因子,以距支流及干流距离作为表征距水域距离的二级评价因子,采用层次分析法计算各一级评价因子及其所属的二级评价因子的权重,基于ArcGIS平台对各评价单元综合易发性指数进行计算并进行归一化处理,采用自然间断点法将研究区地质灾害易发性划分为高易发区(8. 26%)、中易发区(19. 49%)、低易发区(23. 69%)、非易发区(48. 56%)4个区域。采用历史灾害统计法定性验证与ROC曲线法(AUC=0. 866)定量验证相结合的综合评价方法对划分结果进行验证,表明多因素加权指数和法能够较为客观准确的对麦积区地质灾害易发性进行评价。  相似文献   

16.
云南省陇川县地质环境脆弱,易发生滑坡灾害,对其开展滑坡易发性评价对指导陇川县的滑坡地质灾害防治具有重大意义。根据陇川县地理环境、地质环境、人类活动等条件,选取高程、坡度、坡向、剖面曲率、平面曲率、归一化植被指数、水系距离、断层距离、地层岩性和道路距离等10个评价因子,利用信息量模型和ArcGIS软件进行滑坡易发性评价。结果表明,滑坡高易发区主要位于研究区北部、东南部和西南部;中易发区主要位于中部、东部和西部部分地区;低易发区主要位于陇把镇、城子镇大部分地区和户撒阿昌族乡的西北部;不易发区主要位于清平乡中部、城子镇中部部分地区、以及章凤镇大部分地区。在中易发区和高易发区包含83.56%的滑坡灾害点,且滑坡面积随着易发性等级的增加也随之增大。滑坡中、高易发区内发生的滑坡面积分别占研究区滑坡面积的22.79%和58.13%,分析结果与实际灾害分布特征相吻合,可为研究区及类似区域的滑坡地质灾害防灾减灾工作提供参考意见。  相似文献   

17.
根据研究区的基本情况,选择坡度、坡向、地层岩性、距断层距离、降雨、土地利用等6个评价因子,采用滑坡灾害易发性评价的GIS与AHP耦合模型进行戛洒镇滑坡灾害易发性评价,并将滑坡灾害分为极高、高、中、低和极低易发区5个区域进行了滑坡灾害易发性评价结果分析,以期为后期的小流域滑坡风险评估研究服务。  相似文献   

18.
在研究广东省崩塌、滑坡、泥石流孕灾环境的基础上,选取高程、坡度、地质年代、岩性、距断层距离、距水系距离、归一化植被指数(NDVI)7个因子作为地质灾害易发条件因子。首先利用CF模型计算出7个因子各分类级别的CF值,然后将各因子的CF值作为自变量,是否发生地质灾害作为因变量,利用Logistic回归模型得到各因子的回归系数。再对各因子之间的独立性进行检验,所选7个因子都符合独立性检验条件,全部进入到逻辑回归方程中,计算出各独立单元发生崩滑流地质灾害的概率。根据计算结果将广东省崩滑流地质灾害易发程度划分成四类:极低易发区(16.63%),低易发区(28.65%),中易发区(32.57%),高易发区(22.15%)。评价模型的合理性和精确度都符合检验要求,说明采用确定性系模型和逻辑回归模型能够较为客观准确地评价广东省地质灾害易发性。  相似文献   

19.
蓉遵高速公路(土城—旺隆段)沿线崩塌频繁发生,威胁公路安全甚至人类的生命财产安全。文章通过实地调查蓉遵高速公路(土城-旺隆段)崩塌地质灾害的影响因素,构建了9个影响因子,分别是地形起伏度、高程、归一化植被指数、坡向、地层岩性、距道路距离、距河流距离、坡度及降雨量。采用确定性系数模型(certain factors, CF)、层次分析法(analytic hierarchy process, AHP)及耦合模型(CF-AHP)对研究区进行崩塌地质灾害易发性评价,并分别采用崩塌地质灾害点频率统计和成功率曲线对3种模型的评价精度进行检验。结果表明,CF、AHP和CF-AHP的AUC预测精度分别为0.848,0.835,0.866,且3种评价模型得到的崩塌地质灾害的高、中易发区频率比值占总频率比值均超过70%。3种模型精确度由大到小分别为CF-AHP、CF、AHP模型,说明CF-AHP模型的滑坡预测优于单一的CF、AHP模型,能精确地评价蓉遵高速公路(土城-旺隆段)崩塌地质灾害易发性,为公路沿线区域崩塌灾害的防灾减灾提供决策依据。  相似文献   

20.
滑坡是沙溪流域主要地质灾害类型之一,开展滑坡灾害易发性评价可为区域地质灾害防治提供数据基础和决策依据。通过沙溪流域生态地质调查,分析了滑坡灾害分布规律和影响因素之间的关系,选取岩性建造、地貌、坡度、坡向、降雨量、距河流距离和距断层距离7项指标,利用层次分析法及地理信息系统空间分析技术,开展沙溪流域滑坡地质灾害易发性评价。结果显示: 沙溪流域滑坡易发性影响因子依次为岩性建造、多年年均降水量、地形地貌、坡度、距河流距离、距断层距离和坡向; 沙溪流域滑坡灾害易发性与坡度、岩性建造、年均降水量表现出明显正相关,即坡度越大、岩性建造性质越软弱、越易风化,年均降水量越多,越易引发滑坡灾害; 滑坡灾害易发性与断裂构造、河流距离与滑坡灾害易发性呈负相关,即距离越近越容易诱发地质灾害; 流域整体以低易发区和极低易发区为主,高易发区主要分布在沙溪流域中南部、东部及东北部地区。这为沙溪流域地质灾害防治提供了基础数据和决策依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号