首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We study the circumstances under which first collisions occur in young and dense star clusters. The initial conditions for our direct N -body simulations are chosen such that the clusters experience core collapse within a few million years, before the most massive stars have left the main sequence. It turns out that the first collision is typically driven by the most massive stars in the cluster. Upon arrival in the cluster core, by dynamical friction, massive stars tend to form binaries. The enhanced cross-section of the binary compared to a single star causes other stars to engage the binary. A collision between one of the binary components and the incoming third star is then mediated by the encounters between the binary and other cluster members. Due to the geometry of the binary–single star engagement the relative velocity at the moment of impact is substantially different than in a two-body encounter. This may have profound consequences for the further evolution of the collision product.  相似文献   

2.
Characteristic time scales relevant to the accumulation of planetesimals in a gaseous nebula are examined and the accumulation toward the planets is simulated by numerically solving a growth equation for a mass distribution function. The eccentricity and inclination of planetesimals are assumed to be determined by a balance between excitation due to mutual gravitational scattering and dissipation due to gas drag. Two kinds of mass motion in the radial direction, i.e., diffusion due to mutual scattering and inward flow due to gas drag, are both taken into account. The diffusion is shown to be effective in later stages with a result of accelerating the accumulation. As to the coalescent collision cross section, the usual formula for a binary encounter in a free space is used but the effect of tidal disruption which increases substantially the cross section is taken into account. Numerical results show that the gravitational enhancement factor (i.e., the so-called “Safronov number”), contained in the cross section formula, always takes a value of the order of unity but the accumulation proceeds relatively rapidly owing to the effects of radial diffusion and tidal disruption. That is, a proto-Earth, a proto-Jupiter, and a proto-Saturn with masses of 1×1027 g are formed in 5×106, 1×107, and 1.6×108 years, respectively. Also, a tentative numerical computation for the Neptune formation shows that a proto-Neptune with the same mass requires a long accumulation time, 4.6×109 years. Finally, the other effects which are expected to reduce the above growth times further are discussed.  相似文献   

3.
The aim of this paper is to show that in the case of a low probability of asteroid collision with the Earth, the appropriate selection and weighting of the data are crucial for the impact investigation and for analysing the impact possibilities using extensive numerical simulations. By means of the Monte Carlo special method, a large number of 'clone' orbits have been generated. A full range of orbital elements in the six-dimensional parameter space, that is, in the entire confidence region allowed by the observational material, has been examined. On the basis of 1000 astrometric observations of (99942) Apophis, the best solutions for the geocentric encounter distance of  6.065 ± 0.081 R  (without perturbations by asteroids) or  6.064 ± 0.095 R  (including perturbations by the four largest asteroids) were derived for the close encounter with the Earth on 2029 April 13. The present uncertainties allow for special configurations ('keyholes') during this encounter that may lead to very close encounters in future approaches of Apophis. Two groups of keyholes are connected with the close encounter with the Earth in 2036 (within the minimal distance of  5.7736−5.7763 R  on 2029 April 13) and 2037 (within the minimal distance of  6.3359–6.3488 R  ). The nominal orbits for our most accurate models run almost exactly in the middle of these two impact keyhole groups. A very small keyhole for the impact in 2076 has been found between these groups at the minimal distance of 5.97347   R  . This keyhole is close to the nominal orbit. The present observations are not sufficiently accurate to eliminate definitely the possibility of impact with the Earth in 2036 and for many years after.  相似文献   

4.
The possibilities of deflecting an asteroid from its collision course with the Earth by changing its velocity with an impact are considered. Using the asteroid Apophis as an example, the time dependence of the positions and sizes of the keyholes leading to collision is studied. It has been found that the possibility of deflecting this asteroid usually exists, and the impact can be accomplished in principle, given the capabilities of modern space technology. A change in the velocity should be performed before the encounter of 2029 in order to use the gravitational maneuver effect. The possible accuracy of determining Apophis’ orbit and the keyholes that lead to collision and are associated with the resonance returns are considered.  相似文献   

5.
The paper deals with the problem of impulsive collision avoidance between two colliding objects in three dimensions and assuming elliptical Keplerian orbits. Closed-form analytical expressions are provided that accurately predict the relative dynamics of the two bodies in the encounter b-plane following an impulsive delta-V manoeuvre performed by one object at a given orbit location prior to the impact and with a generic three-dimensional orientation. After verifying the accuracy of the analytical expressions for different orbital eccentricities and encounter geometries the manoeuvre direction that maximises the miss distance is obtained numerically as a function of the arc length separation between the manoeuvre point and the predicted collision point. The provided formulas can be used for high-accuracy instantaneous estimation of the outcome of a generic impulsive collision avoidance manoeuvre and its optimisation.  相似文献   

6.
The influence of non-thermal Dupree turbulence and the plasma shielding on the electron–ion collision is investigated in astrophysical non-thermal Lorentzian turbulent plasmas. The second-order eikonal analysis and the effective interaction potential including the Lorentzian far-field term are employed to obtain the eikonal scattering phase shift and the eikonal collision cross section as functions of the diffusion coefficient, impact parameter, collision energy, Debye length and spectral index of the astrophysical Lorentzian plasma. It is shown that the non-thermal effect suppresses the eikonal scattering phase shift. However, it enhances the eikonal collision cross section in astrophysical non-thermal turbulent plasmas. The effect of non-thermal turbulence on the eikonal atomic collision cross section is weakened with increasing collision energy. The variation of the atomic cross section due to the non-thermal Dupree turbulence is also discussed.  相似文献   

7.
J.E. Chambers 《Icarus》2007,189(2):386-400
The stability of an additional planet between the orbit of Mars and the asteroid belt is examined in the context of the Planet V hypothesis. In this model, the Solar System initially contained a fifth terrestrial planet, “Planet V,” which was removed after ∼700 Myr, a possible trigger for the late heavy bombardment on the inner planets. The model is investigated using 96 N-body integrations of the 8 major planets with an additional body between Mars and the asteroid belt. In more than 1/4 of simulations, Planet V survives for 1000 Myr. In most other cases, Planet V collides with the Sun or hits another planet after several hundred Myr, leaving 4 surviving terrestrial planets. In 24/96 simulations, Planet V is lost by ejection or collision with the Sun while the other four terrestrial planets survive without undergoing a collision. In 18 cases, Planet V is removed at least 200 Myr after the beginning of the simulation. The endstate depends sensitively on the mass of Planet V. Collision with the Sun is likely when Planet V's mass is 0.25 Mars masses or less. When Planet V is more massive than this, collisions involving it and/or other terrestrial planets become commonplace. In unstable systems, the times of first encounter and first collision/ejection depend on the initial aphelion distance of Mars. Reducing Mars's aphelion distance increases these times and also increases the fraction of systems surviving for 1000 Myr. When Mars's current orbit is used, the stability of Planet V increases when these two planets are widely separated initially. Planet V's aphelion distance Q typically begins to cross the asteroid belt within a few tens to a few hundred Myr, and its orbit last leaves the belt several hundred Myr later in most cases. The total time spent with Q>2.1 AU is typically less than 200 Myr.  相似文献   

8.
9.
The Agena B upper-stage rocket 1963-27A was launched into a near-circular orbit, inclined at 82.3° to the Equator, on 29 June 1963. Its orbit is determined at 52 epochs over the 16 month interval prior to its decay on 26 October 1969. The resulting orbital elements are used to obtain 95 atmospheric density values, at heights near 400km. Corrected to fixed heights, and normalised to a common exospheric temperature, these values reveal the semi-annual variation in density. A comparison between the observed variation and that of a recent model atmosphere is made. Although agreement between the two is generally good, their principal differences are discussed.  相似文献   

10.
The probability of variation of the integrals of the orbit as a result of an encounter was found for a two dimensional system. A method of solution of the Kolmogorov-Feller's equation is obtained using this probability function as a kernel, and it allows us to obtain the distribution of the integrals of the orbit as a function of time. The method is applied to the investigation of the evolution of orbits in the outer cometary cloud under the action of galactic stars. We consider the variations of orbits as a purely discontinuous random process, so we take into account not only distant but also close interactions.  相似文献   

11.
The probability of variation of the integrals of the orbit as a result of an encounter was found for a two dimensional system. A method of solution of the Kolmogorov-Feller's equation is obtained using this probability function as a kernel, and it allows us to obtain the distribution of the integrals of the orbit as a function of time. The method is applied to the investigation of the evolution of orbits in the outer cometary cloud under the action of galactic stars. We consider the variations of orbits as a purely discontinuous random process, so we take into account not only distant but also close interactions.  相似文献   

12.
The hypothesis is advanced that after collision of a Mars-sized impact with the Earth, collisions between debris particles themselves are able to place enough material into Earth orbit, to form the Moon. Collision probability estimates show that the collision frequency is high enough to place about one lunar mass into Earth orbit, if the average semimajor axis is of order of the Earth's Roche limit of 18 500 km.  相似文献   

13.
The most puzzling property of the extrasolar planets discovered by recent radial velocity surveys is their high orbital eccentricities, which are very difficult to explain within our current theoretical paradigm for planet formation. Current data reveal that at least 25% of these planets, including some with particularly high eccentricities, are orbiting a component of a binary star system. The presence of a distant companion can cause significant secular perturbations in the orbit of a planet. At high relative inclinations, large-amplitude, periodic eccentricity perturbations can occur. These are known as “Kozai cycles” and their amplitude is purely dependent on the relative orbital inclination. Assuming that every planet host star also has a (possibly unseen, e.g., substellar) distant companion, with reasonable distributions of orbital parameters and masses, we determine the resulting eccentricity distribution of planets and compare it to observations? We find that perturbations from a binary companion always appear to produce an excess of planets with both very high (?0.6) and very low (e ? 0.1) eccentricities. The paucity of near-circular orbits in the observed sample implies that at least one additional mechanism must be increasing eccentricities. On the other hand, the overproduction of very high eccentricities observed in our models could be combined with plausible circularization mechanisms (e.g., friction from residual gas) to create more planets with intermediate eccentricities (e? 0.1–0.6).  相似文献   

14.
Observed W-shaped occultation signatures of certain narrow ringlets in the ring systems of Saturn and Uranus imply a concentration of material near their inner and outer radial edges. A model is proposed where edge bunching is a natural consequence of particles in entwined elliptical orbits, with the same particles alternately defining both edges. While such orbits cross over in radius, collisions would not occur if they have small inclinations, the same fixed argument of periapse ω, and other parameters whereby the particles would “fly in formation” along compressed helical paths relative to the core of the ringlet, which is taken to be a circle in the equatorial plane. For this model to match the observed ring thickness and ringlet widths, orbit inclinations i must be much smaller than their eccentricities e, which themselves would be very small compared to unity. Thus, the meridional cross section of the resultant torus would be a very thin ellipse of thickness proportional to i∣cos ω∣, tilted slightly from the equatorial plane by (i/e)∣sin ω∣ radians. However, gravitational perturbations due to the oblateness of the planet would cause a secular change in ω so that this cross section would collapse periodically to a tilted line, and collisions would then occur. If this collapse could be prevented, the torus could remain in a continuous state of nearly zero viscosity. Stabilization against collapse appears possible due to several remarkable characteristics that are added to the model when the particles are electrically charged. First, because of inherent features of the torus structure, a weak electric force could counter the key effect of the vastly larger oblateness force. Second, because the electric perturbation also affects i, there is a large region in ω,i space where stability against cross-sectional collapse is automatic. For this region, the thickness of the elliptical cross section would expand and contract in concert with the way that the major axis of the ellipse rocks back and forth relative to the equatorial plane. The period of these “rocking and breathing” changes would be from 1 to 3 weeks for a torus in the C ring of Saturn, for example. The electric effects could change considerably without driving the parameters of the torus from the stable domain where cross-sectional collapse does not occur. While specialized and in several important ways still incomplete, the proposed model could account for the W-shaped patterns and explain how very dense ringlets might endure without energy loss due to collisions. It also appears to be capable of explaining the observed sorting of particles by size within a ringlet. Several characteristics of the model suggest definitive tests of its applicability, including its prediction that a nonsymmetrical W-shaped occultation signature could be reversed a half orbit away, and that grazing solar illumination of tilted ringlets might cast shadows that change with time in a prescribed way.  相似文献   

15.
The probability of an asteroid colliding with a planet can be estimated by the Monte Carlo method, in particular, through the statistical simulation of the possible initial conditions for the motion of an asteroid based on the probability density distribution set by the respective covariance matrix to be further projected with the orbital model onto the supposed time point of the collision. Hence, the collision probability is calculated as the ratio between the number of projected (virtual) asteroids striking the planet and their total number. The main problem is that different elements of the initial conditions (orbit or state vector) are correlated and, therefore, cannot be simulated independently. These correlations are reflected in the nondiagonal covariance matrix of the solution. The matrix is diagonalized by an orthogonal transformation. In the uncertainty domain constructed from the diagonal matrix elements, the initial values for each of the six orbital elements are simulated independently from the other elements, but with the accounting for their normal distribution. The program for calculating the normal distribution is based on the central limit theorem. Each sample of the initial values for the six orbital elements is transferred to the initial reference frame using an inverse transformation. Then, numerical integration is used to track the asteroid’s motion along the respective orbit to predict a possible impact event. Asteroids 99942 Apophis and 2007 WD5 are used as examples to show that disregarding the correlations when diagonalizing the covariance matrix to set the initial conditions may seriously distort the collision probability estimates. The paper gives the probabilities of the collisions of Apophis with the Earth and asteroid 2007 WD5 with Mars calculated by the author from observation sets showing nonzero collision probabilities. The author’s estimates are compared to those calculated by NASA.  相似文献   

16.
An extended Ulysses interplanetary coronal mass ejections (ICMEs) list is used to statistically study the occurrence rate of ICMEs, the interaction of ICMEs with solar wind, and the magnetic field properties in ICMEs. About 43% of the ICMEs are identified as magnetic clouds (MCs). It is found that the occurrence rate of ICMEs approximately follows the solar activity level, except for the second solar orbit; the rate is higher in the southern heliolatitude than in the northern heliolatitude; and it roughly decreases with the increase of ICME speeds. Our results show that the speed difference between the ICME and the solar wind in front of it shows a slight decrease with increasing heliocentric distance for ICMEs preceded by a shock, whereas no such dependence is found for the ICMEs without shock association. It is also found that approximately 23% of the ICMEs are associated with radial field events, in which the interplanetary magnetic field with near-radial direction lasts for many hours, in the Ulysses detected range, and these associated events are not necessarily confined to fast ICMEs or the trailing portions of ICMEs. Nearly all these associated events occur during the period of declining solar wind speed and most of them occur at low heliolatitudes.  相似文献   

17.
We study the kinematic properties of stars under the combined potential of a Kuzmin disk with a simple radial oscillation and a logarithmic halo. The results are: 1) There exist stable, ordered and near-circular orbits. 2) The effect of the oscillating disk is greater on orbits with smaller angular momenta and on that departly greatly from the near-circular orbits. 3) Most of the motion in the disk is ordered motion. 4) Orbits that depart greatly from the near-circular orbits generally have chaotic motion and may eventually escape. But the actual fraction escaped in one Hubble time is small. 5) Disk oscillation may be one of the mechanisms for the formation and long-term maintenance of some star clusters; the larger the amplitude, the greater may be the number of clusters; for a given disk galaxy, there may be more clusters with small than with large angular momenta.  相似文献   

18.
Based on a new version of the Hipparcos catalog and currently available radial velocity data, we have searched for stars that either have encountered or will encounter the solar neighborhood within less than 3 pc in the time interval from −2 Myr to +2 Myr. Nine new candidates within 30 pc of the Sun have been found. To construct the stellar orbits relative to the solar orbit, we have used the epicyclic approximation. We show that, given the errors in the observational data, the probability that the well-known star HIP 89 825 (GL 710) encountering with the Sun most closely falls into the Oort cloud is 0.86 in the time interval 1.45 ± 0.06 Myr. This star also has a nonzero probability, 1 × 10−4, of falling into the region d < 1000 AU, where its influence on Kuiper Belt objects becomes possible.  相似文献   

19.
The calculation of collision probability is the foundation of collision detection and avoidance maneuver for space objects. Now an assumption of linear relative motion is usually applied in the calculation of collision probability and then the complex 3-dimensional problem can be reduced to a 2-dimensional integral of probability density function over the area of circle. However, if the relative velocity value is very small, the term of linear relative motion is not valid. So it is necessary to consider the calculation of collision probability for nonlinear relative motions. The method used to calculate collision probability for nonlinear relative motion is studied, and test cases are designed to justify the validity of this method. It is applicable to collision probability problems involving relative velocity and error covariance varying with time. The results indicate that it is necessary to calculate collision probability with this nonlinear method under certain circumstances. For example, for elliptical relative motions in Satellite Formation Flying, when the relative velocity is below 100 m/s, the relative error between the linear method and the nonlinear method exceeds 5%; for the problem of conjunction analysis of two satellites with circular orbits, when the relative velocity is below 10 m/s, the relative error is also larger than 1%. Some significant conclusions are obtained for the collision detection system of our country.  相似文献   

20.
Currently, there is some positive probability of a collision of the asteroid Apophis with the Earth in 2036. In this study, the problem of preventing the collision by correcting the asteroid’s orbit is examined. The characteristics of the impulsive correction are investigated, as well as the ways of its implementation by kinetic and nuclear impacts. Impulsive and weak effects are compared. Weak effects leading to slow changes in the asteroid’s orbit are considered to be more usable because of the potentially higher accuracy of this correction. The characteristics of the gravitational effect of the asteroid by a special spacecraft (SC) kept by its control jet engines at a certain point near the asteroid and gravitationally perturbing the motion of Apophis are analyzed. The change in the perigee radius of the Apophis orbit in 2036 and the SC mass consumption are examined as functions of the effect duration, the SC mass, its distance to the asteroid, the start time of the correction, and the velocity of the SC engine exhaust jet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号