首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Climatic conditions are difficult to obtain in high mountain regions due to few meteorological stations and, if any, their poorly representative location designed for convenient operation. Fortunately, it has been shown that remote sensing data could be used to estimate near-surface air temperature (Ta) and other climatic conditions. This paper makes use of recorded meteorological data and MODIS data on land surface temperature (Ts) to estimate monthly mean air temperatures in the southeastern Tibetan Plateau and its neighboring areas. A total of 72 weather stations and 84 MODIS images for seven years (2001 to 2007) are used for analysis. Regression analysis and spatio-temporal analysis of monthly mean Ts vs. monthly mean Ta are carried out, showing that recorded Ta is closely related to MODIS Ts in the study region. The regression analysis of monthly mean Ts vs. Ta for every month of all stations shows that monthly mean Ts can be rather accurately used to estimate monthly mean Ta (R2 ranging from 0.62 to 0.90 and standard error between 2.25℃ and 3.23℃). Thirdly, the retrieved monthly mean Ta for the whole study area varies between 1.62℃ (in January, the coldest month) and 17.29℃ (in July, the warmest month), and for the warm season (May-September), it is from 13.1℃ to 17.29℃. Finally, the elevation of isotherms is higher in the central mountain ranges than in the outer margins; the 0℃ isotherm occurs at elevation of about 4500±500 m in October, dropping to 3500±500 m in January, and ascending back to 4500±500 m in May next year. This clearly shows that MODIS Ts data combining with observed data could be used to rather accurately estimate air temperature in mountain regions.  相似文献   

2.
基于MODIS数据的青藏高原气温与增温效应估算   总被引:12,自引:2,他引:10  
姚永慧  张百平 《地理学报》2013,68(1):95-107
利用2001-2007 年MODIS地表温度数据、137 个气象观测台站数据和ASTERGDEM数据, 采用普通线性回归分析方法(OLS)及地理加权回归分析方法(GWR), 研究了高原月均地表温度与气温的相关关系, 最终选择精度较高的GWR分析方法, 建立了高原气温与地表温度、海拔高度的回归模型。各月气温GWR回归模型的决定系数(Adjusted R2) 都达到了0.91 以上(0.91~0.95), 标准误差(RMSE) 介于1.16~1.58℃;约70%以上的台站各月残差介于-1.5~1.5℃之间, 80%以上的台站的残差介于-2~2℃之间。根据该模型, 估算了青藏高原气温, 并在此基础上, 将高原及周边地区7 月份月均气温转换到4500 m和5000 m海拔高度上, 对比分析高原内部相对于外围地区的增温效应。研究结果表明:(1) 利用GWR方法, 结合地面台站的观测数据和MODIS Ts、DEM等, 对高原气温估算的精度高于以往普通回归分析模型估算的精度(RMSE=2~3℃), 精度可以提高到1.58℃;(2) 高原夏半年海拔5000 m左右的高山区气温能达到0℃以上, 尤其是7 月份, 海拔4000~5500 m的高山区的气温仍能达到10℃左右, 为山地森林的发育提供了温度条件, 使高原成为北半球林线分布最高的地方;(3) 高原的增温效应非常突出, 初步估算, 在相同的海拔高度上高原内部气温要比外围地区高6~10℃。  相似文献   

3.
MODIS-based estimation of air temperature of the Tibetan Plateau   总被引:1,自引:0,他引:1  
The immense and towering Tibetan Plateau acts as a heating source and, thus, deeply shapes the climate of the Eurasian continent and even the whole world. However, due to the scarcity of meteorological observation stations and very limited climatic data, little is quantitatively known about the heating effect and temperature pattern of the Tibetan Plateau. This paper collected time series of MODIS land surface temperature (LST) data, together with meteorological data of 137 stations and ASTER GDEM data for 2001-2007, to estimate and map the spatial distribution of monthly mean air temperatures in the Tibetan Plateau and its neighboring areas. Time series analysis and both ordinary linear regression (OLS) and geographical weighted regression (GWR) of monthly mean air temperature (Ta) with monthly mean land surface temperature (Ts) were conducted. Regression analysis shows that recorded Ta is rather closely related to Ts, and that the GWR estimation with MODIS Ts and altitude as independent variables, has a much better result with adjusted R 2 〉 0.91 and RMSE = 1.13-1.53℃ than OLS estimation. For more than 80% of the stations, the Ta thus retrieved from Ts has residuals lower than 2℃. Analysis of the spatio-temporal pattern of retrieved Ta data showed that the mean temperature in July (the warmest month) at altitudes of 4500 m can reach 10℃. This may help explain why the highest timberline in the Northern Hemisphere is on the Tibetan Plateau.  相似文献   

4.
基于Modis地表温度的横断山区气温估算及其时空规律分析   总被引:5,自引:1,他引:4  
姚永慧  张百平  韩芳 《地理学报》2011,66(7):917-927
横断山区气象观测站稀少且多分布在河谷之中,气温资料极度匮乏,严重影响山区地理与生态研究。随着遥感技术的发展,热红外遥感数据,结合地面观测数据,可以用来推测山区气温。本文通过对横断山区2001 年-2007 年间64 个气象台站的多年月平均气温数据(Ta) 与Modis地表温度多年月平均值(Ts) 进行了时序分析和回归分析,并取得如下研究结果:(1) Ts 与Ta 具有非常好的线性相关关系,89%的台站的决定系数高于0.5;95%的台站的标准误差都低于3 oC,84.4%的台站标准误差低于2.5 oC;12 个月份的Ts 与Ta 的决定系数R2在0.63~0.90 之间,标准误差在2.22~3.05 oC之间。(2) 研究区内月均气温的变化范围在-2.25~15.64 oC之间;生长季(5-9 月份) 的月均气温变化范围为:10.44~15.64 oC。(3) 等温线的海拔高度自山体外围向内部逐渐升高,与山体效应的增温效应相吻合;0 oC等温线自10 月份从海拔4700±500 m左右逐渐降低,至1月份降至最低点,约在3500±500 m左右,此后,逐渐回升,至次年5 月份再次达到4700±500 m左右,也就是说横断山区5200 m以下的广大山区全年至少有6~12 个月的气温在0 oC以上。研究表明:可以利用Modis月均地表温度结合地面观测台站的数据较精确的估算山区月均气温。  相似文献   

5.
Air temperature is an important climatological variable and is usually measured in meteorological stations. Accurate mapping of its spatial and temporal distribution is of great interest for various scientific disciplines, but low station density and complexity of the terrain usually lead to significant errors and unrepresentative spatial patterns over large areas. Fortunately the current studies have shown that the regression models can help overcome the problem with the help of time series remote sensing data. However, noise induced by cloud contamination and other atmospheric disturbances variability impedes the application of LST data. An improved Savizky-Golay (SG) algorithm based on the LST background library is used in this paper to reconstruct MODIS LST product. Data statistical analysis included 12 meteorological stations and 120 reconstructed MODIS LST images of the period from 2001 to 2010. The coeffificient of correlations (R2) for 80% of the stations was higher than 0.5 (below 0.5 for only 2 stations) which illustrated that there is a considerably close agreement between monthly mean TA (air temperature) and the reconstructed LST in the Lancang River basin. Comparing to the regression model for every month with only LST data, the regression model with LST and NDVI had higher R2 and RMSE. Finally, the LST-NDVI regression method was applied as an estimate model to produce distributed maps of air temperature with month intervals and 1 km spatial in the Lancang River basin of 2010.  相似文献   

6.
基于MODIS的秦巴山地气温估算与山体效应分析   总被引:1,自引:0,他引:1  
秦巴山地作为横亘在中国南北过渡带的巨大山脉,其山体效应对中国中部植被和气候的非地带性分布产生了重要的影响,山体内外同海拔的温差是表征山体效应大小较为理想的指标。本研究结合MODIS地表温度(LST)数据、STRM-1 DEM数据和秦巴山地的118个气象站点的观测数据,分别采用普通线性回归(OLS)和地理加权回归(GWR)两种分析方法对秦巴山地的气温进行估算,在此基础上将秦巴山地各月气温转换为同海拔(1500 m,秦巴山地平均海拔)气温,对比分析秦巴山地的山体效应。结果表明:① 相比OLS分析,GWR分析方法的精度更高,各月回归模型的R 2均在0.89以上,均方根误差(RMSE)在0.68~0.98 ℃之间。② 利用GWR估算得到的同海拔气温,从东向西随海拔升高呈现了明显的升高的趋势,秦岭西部山地比东段升高约6 ℃和4.5 ℃;大巴山西部山地年均和7月份同海拔的气温较东段升高约8 ℃和5 ℃。③ 从南向北,以汉江为分界,秦岭与大巴山的同海拔的气温均呈现出由山体边缘向内部升高的趋势。④ 秦巴山地西部大起伏高山,秦岭大起伏高中山和大巴山大起伏中山,相比豫西汉中中山谷地,各月均同海拔气温分别升高了约3.85~9.28 ℃、1.49~3.34 ℃和0.43~3.05 ℃,平均温差约为3.50 ℃,说明秦巴山地大起伏中高山的山体效应十分明显。  相似文献   

7.
青藏高原气温空间分布规律及其生态意义   总被引:6,自引:1,他引:5  
姚永慧  张百平 《地理研究》2015,34(11):2084-2094
作为世界第三极的青藏高原,其巨大的块体产生了显著的夏季增温作用,对亚洲乃至全球气候都具有重大影响。但由于高原自然条件严酷,山区气象观测台站很少,气象资料极度匮乏;如果依靠台站数据进行空间插值获得高原气温的空间分布数据,会由于插值点过少而产生较大误差并可能掩盖一些空间信息,因而难以全面反映高原气温的空间分布规律。利用基于MODIS地表温度数据估算的青藏高原气温数据,详细分析各月气温及重要等温线的空间分布格局,并结合林线和雪线数据,初步探讨了高原气温空间分布格局对高原地理生态格局的重要影响。研究表明:① 等温线的海拔高度自高原东北部、东部边缘向内部逐渐升高,等温线在高原内部比东部边缘高500~2000 m,表明相同海拔高度上气温自边缘向高原内部逐渐升高。② 高原西北部的羌塘高原、可可西里为高原的寒冷区,全年有7个月的气温低于0 ℃,3~4个月的气温低于-10 ℃;青藏高原南部(喜马拉雅山北坡—冈底斯山南坡)和中部(冈底斯山北坡—唐古拉山南坡)是高原的温暖区,全年有5个月的气温能达到5~10 ℃,有3个月的气温能超过10 ℃,尤其是拉萨—林芝—左贡一带在3500~4000 m以下的地区最冷月均温也能高于0 ℃。③ 北半球最高雪线和林线分别分布于高原的西南部和东南部,表明高原气温空间分布特征对本地的地理生态格局具有重要影响。  相似文献   

8.
气温是反映生态环境的重要参数之一,准确估算气温的时空分布对于气候变化研究具有重要意义。论文基于2011—2019年青海省气温实测数据、MODIS产品和SRTM DEM数据,在像元尺度分别开展了晴天条件和有云条件下瞬时空气温度的遥感估算研究,并评价了不同气温估算方法的精度差异,进而通过多元回归模型生成研究区高精度月空气温度产品,对青海省气温的时空分布格局进行分析。研究结果表明,在未使用气温实测数据进行校准的情况下,通过将MOD07_L2大气廓线产品反演的空气温度与MOD06_L2地表温度平均的方法,能够显著提高气温的估算精度。晴天条件下相关系数(r)为0.93,均方根误差(RMSE)为4.71 ℃;有云条件下r为0.89,RMSE为5.16 ℃。在使用气温观测值进行校准的情况下,通过引入高程参数,多元回归模型月尺度空气温度估算的决定系数(R2)和RMSE总体分别保持在0.8以上和2.5 ℃以下。将上述回归模型应用到栅格尺度,从而生成整个青海省高精度卫星过境时刻的逐月气温产品,进而分析其时空分布格局。具体来说,青海省月最高气温出现在7月,全省平均气温为13.59 ℃,最低气温出现在1月,全省平均气温为-9.44 ℃;气温的空间分布主要受海拔控制,全省平均气温直减率为4 ℃/km。上述研究表明MODIS大气廓线产品在全天气气温估算方面具有独特优势,特别是在地面气温实测数据的支持下能够有效降低遥感估算的系统性误差,实现大尺度复杂地形条件下气温的高精度估算。  相似文献   

9.
类型变更的相邻气象观测站的日气温资料整合   总被引:1,自引:0,他引:1  
郑景云  卞娟娟 《地理研究》2012,31(4):579-588
利用日气温资料,分析了因气象观测站类型变更而致的气候资料连续性和均一性问题及其影响,提出了订正相邻观测站日气温并将因观测站类型变更而致的相邻站不连续日气温资料整合的方法。主要结论有:(1)气象观测站类型变更而致的气候数据不连续既影响资料的均一性,也影响气候变化研究的结果。在考虑或不考虑测站类型变更(仅1980年以后)时,对我国过去60年1月气温趋势变化的估计结果差别达6.0%。(2)虽然海拔差异明显影响相邻站气温,但城乡差别等下垫面及其周边环境差异因素的作用极为显著;可导致两个地理位置相近的测站最大月气温差别超过0.50℃。(3)利用相邻测站的月气温差异进行各月的日气温订正可以消除海拔、台站下垫面及其周边环境差异对观测资料的均一性影响;使订正后的序列能更好地反映出气候的年际变化特征;从而可为我国正在开展的气候区划新方案、气候变化对区划影响及冷暖期环境格局变化等研究工作提供更均一的气候观测基础资料。  相似文献   

10.
南极长城站_1985_2008_和中山站_1989_2008_地面温度变化   总被引:2,自引:0,他引:2       下载免费PDF全文
利用长城站1985-2008年和中山站1989-2008年逐月气温资料,分析了两站短期气候特征及其变化趋势,评估了两站地面温度观测资料的代表性。结果表明,长城站和别林斯高晋站同期的年平均温度均为-2.1℃,温度趋势变化速率分别为0.27℃/10a.和0.33℃/10a,呈现出南极半岛具有明显的气候变暖趋势。中山站和戴维斯站的同期温度变化速率分别为0.12℃/10a.和0.07℃/10a,显示的气候变暖趋势不明显。两站温度变化趋势与邻近站相比基本相似,表明两站观测的温度资料具有南极乔治王岛和东南极沿岸区的代表性。长城站四季平均气温都呈上升趋势,且秋季增温速率最大,冬季次之,其它季节不明显。中山站春季和冬季具有降温趋势,秋季和夏季具有升温倾向,其中以秋季升温趋势和冬季降温趋势最为显著。  相似文献   

11.
陆福志  鹿化煜 《地理学报》2019,74(5):875-888
本文建立了秦岭—大巴山高分辨率(~29 m×29 m)的气候格点数据集,包括逐月气温和降水、年均温和年降水、春夏秋冬气温和降水。空间插值方法采用国际上较为先进的ANUSPLIN软件内置的薄盘光滑样条函数,以经度、纬度和海拔为独立变量。空间插值结果与流行的WorldClim 2.0气候格点数据集具有一致性,但是比后者更精确、分辨率更高、细节更突出。本文揭示和证实:秦岭南麓是最冷月气温的0℃分界线。秦岭—大巴山气温具有明显的垂直地带性。6月气温直减率最大,为0.61℃/100 m;12月气温直减率最小,为0.38℃/100 m;年均气温直减率为0.51℃/100 m。夏季和秋季降水从西南向东北递减,强降水中心出现在大巴山西南坡。冬季降水从东南向西北递减。大巴山是年降水1000 mm分界线,夏季降水500mm分界线;秦岭是年降水800 mm分界线,夏季降水400 mm分界线。与大尺度大气环流对比揭示:秦岭—大巴山气温和降水空间分布主要受到东亚季风和地形因子的控制。本文进一步明确了秦岭和大巴山的气候意义:大巴山主要阻挡夏季风北上,影响降水空间分布;秦岭主要阻挡冬季风南下,影响冬季气温空间分布。本文建立的高分辨率气候格点数据集,加深了对区域气候的认识,并将有多方面的用途。  相似文献   

12.
念青唐古拉山南坡气温分布及其垂直梯度   总被引:4,自引:0,他引:4  
利用架设在念青唐古拉山南坡9个海拔高度(4 300~5 500 m)的自动气象站1 a(2006年8月1日至2007年7月31日)的实测数据,对山坡1.5 m高度的近地面气温随海拔梯度和时间的分布进行了分析。表明念青南坡4 300~4 950 m冷季(10~4月)存在逆温。利用高山各观测高度的温度与当雄气象站气温具有良好相关,推算出多年平均情况下念青唐古拉山南坡各观测高度的年平均气温和各月平均气温。并由此推测念青唐古拉山南坡海拔5 100 m以上存在高山多年冻土,此多年冻土下界高度比《中国冻土》指出的高度高约200 m。  相似文献   

13.
近50 a新疆气温精细化时空变化分析   总被引:9,自引:0,他引:9       下载免费PDF全文
利用新疆93个气象站1961-2010年的逐月平均气温资料,使用线性趋势分析、Mann-Kendall检测以及基于ArcGIS的混合插值法对春、夏、秋、冬四季和年平均气温的变化趋势、突变特征以及各气温要素多年平均值和突变前后变化量的空间分布进行了分析。结果表明:(1)新疆春、夏、秋、冬四季和年平均气温的空间分布总体呈现“南疆高,北疆低;平原和盆地高,山区低”的格局。(2)在全球变暖背景下,1961-2010年新疆春、夏、秋、冬四季和年平均气温分别以0.24 ℃/10 a、0.21 ℃/10 a、0.39 ℃/10 a、0.49 ℃/10 a和0.33℃/10 a的倾向率呈显著的上升趋势,并分别于2004年、1997年、1995年、1985年和1994年发生了突变性的上升,突变后较突变前,各季和年平均气温分别升高了1.5 ℃、0.8 ℃、1.2 ℃、1.6 ℃和1.0 ℃,但气温上升幅度具有明显的区域性差异,其空间分布总体呈现“北疆大,南疆小”的格局。  相似文献   

14.
利用2007—2020年西藏38个气象站点平均草面温度(简称草温)、平均气温、平均地表温度、云量、降水量等观测资料,采用气候统计诊断方法分析了西藏草面温度的时空分异特征及其影响因素,以期科学研究当地草地生态系统和开展专业气象服务。结果表明:西藏年平均草温呈自东南向西北递减的分布。草温与海拔高度存在显著的负相关,海拔高度每升高100 m,季平均草温降低0.44~0.70 ℃,年平均草温降低0.58 ℃;与纬度有着显著的曲线关系,29.3°N以南(北)地区,随着纬度增加,草温随之升高(降低)。各站草温呈一峰一谷的日变化特征,日最低值出现在07:00—08:00(北京时间),日最高值均出现在14:00;草温月平均最低值都出现在1月,月平均最高值出现在6月或7月;76%的站点草温的变化为夏季>春季>秋季>冬季的气候特征。西藏草温年较差为21.4 ℃,较气温年较差偏大3.1 ℃;草温日较差达35.7 ℃,远高于气温日较差,偏大21.6 ℃。草温与气温之差以夏季最大,其次是春季、冬季两者比较接近;草温与地表温度之差以春季最大,夏季次之,冬季最小。在空间分布上,月平均草温与气温、地表温度均呈显著的正相关,与平均风速、积雪日呈显著的负相关;积雪深度对草温的影响,除冬季外二者存在显著的负相关;大部分月份平均草温与总云量、低云量、降水量的关系不显著。86.8%的站点5—9月平均逐小时草温与降水量存在显著的负相关关系。  相似文献   

15.
内蒙古地区气温变化的季节和区域差异   总被引:9,自引:2,他引:7  
利用内蒙古地区1961~2003年101个气象站的月平均气温资料和旋转经验正交函数分解的方法,根据四季气温变化的一致性进行区域的划分,并分析气温变化的季节和区域差异。结果表明:内蒙古地区的四季气温变化存在着明显的东、西分异,春、秋、冬季的气温场划分为东部和西部两大区域,而在夏季,则划分为西部、东南部和东北部三大区域;在年际波动方面,除夏季的东南区以外,近43年中各区四季气温的变化都经历了一次显著的由降而升的转折,转折点大致出现在80年代中、后期或90年代初、中期;在线性趋势方面,东部区春、夏季的升温幅度和显著性大于西部区,而西部区秋、冬季的升温幅度和显著性则大于东部区。一般而言,冬季和夏季升温最为显著,其次是春季,秋季升温最为微弱。  相似文献   

16.
基于GIS的祁连山区气温和降水的时空变化分析   总被引:9,自引:4,他引:5  
基于ArcGIS平台Geostatistical Analyst中的Kriging插值方法,和Spatial Analyst中的Surface Analyst,分析了祁连山区18个气象站点1960\_2005年气温、降水的数据,并且空间化显示了各年代间的气温、降水变化。结果表明:①1960\_2005年祁连山区的气温呈显著的上升趋势,升幅基本在0.5 ℃/10a左右,20世纪90年代中期以后气温上升最为明显,变幅最大超过1℃。②祁连山区的气温变化和西北地区的气温变化有很好的同步性。冬季气温分布趋势与夏季相同,但冬季南北坡的温差明显小于夏季。各月的平均气温直减率差别大,冬季气温直减率较低,春季气温直减率较大。③分析了祁连山区降水的累积距平,祁连山的东、中、西三段的降水在80年代以前都是呈下降的趋势,在80年代以后表现为显著增加,并且中部表现最为明显。在祁连山的北坡、南坡和的降水总体趋势变化也是在80年代,在80年代以前呈下降趋势,而80年代后为上升趋势。④祁连山区的降水呈上升趋势,降水具有明显的区域性和季节性, 从东南向西北逐渐减少,冬季降水均在13 mm以下,而在夏季降水量最高可达247 mm。  相似文献   

17.
基于GIS的重庆地区气温空间分布研究   总被引:1,自引:0,他引:1  
在观测资料的基础上,利用GIS技术,结合DEM引入天文辐射和高程,研究了重庆地区的多年月平均气温空间分布.并采用独立于观测站外的气象哨的多年月平均观测资料进行了验证.结果表明:天文辐射和高程的气温分布模拟,能够较好地反映地形遮蔽对气温分布的影响.天文辐射的引入较好地把地形对气温要素的影响进行了量化,是对气象要素空间分布研究的一次有益尝试,对山区气象要素空间分布的研究有一定的借鉴作用.  相似文献   

18.
中国南方不同土地利用/覆被类型对气温升温的影响   总被引:2,自引:0,他引:2  
基于我国南方六省国家气象台站历史气象资料、1:10万土地利用/覆被数据和NCEP再分析气温资料,通过比较气温变化在不同观测环境气象站之间的差异,分析中国南方三种主要土地利用/覆被类型对气温趋势的影响。结果显示:土地利用/覆被类型对气温趋势具有稳定的影响,建设用地的年均温、年均最高和最低气温的升温幅度均最高,耕地次之,林地最小。进一步利用再分析资料剔除区域大尺度气候背景影响后,建设用地的年均温升温趋势仍最大(0.105℃/10a),其次是耕地(0.056℃/10a),林地的升温趋势最小(-0.025℃/10a),且为负。这表明对于研究区气温的升温趋势,林地具有抑制作用,建设用地具有增强作用,且增强作用较耕地强。林地的各季节平均气温的变化幅度同样低于非林地。  相似文献   

19.
ERA-Interim气温数据在中国区域的适用性评估   总被引:5,自引:0,他引:5  
高路  郝璐 《福建地理》2014,(2):75-81
运用中国756个观测站点的逐月平均气温数据,对比分析了ERA-Interim再分析资料的误差。结果发现:ERA-Interim再分析资料能够很好地反映观测值的年际变化,相关性达到0.955~0.995。ERA-Interim在580个站点的冷偏差或暖偏差小于1℃,占站点总数的76.7%,可信度较高。64个站点的冷偏差或暖偏差大于5℃,可信度较低。ERA-Interim在东部地区的暖偏差多于西部地区,冷偏差的高值主要集中在西部地区的高海拔站点。海拔低于200 m的站点偏差最小,适用性好,多数海拔3 000 m以上的站点呈现较大冷偏差,适用性较差。通过回归分析发现,观测站点与ERA-Interim格点的高度差是导致误差的主要原因,因此通过高程校正能够有效降低误差,提高ERA-Interim适用性。  相似文献   

20.
利用2002-2008年6~9月EOS/MODIS卫星晴空资料,计算分析了融雪期库玛拉克河流域的积雪面积、覆盖率、雪深及雪水量;利用气象、水文台站的观测资料,对2002-2008年积雪变化与气象因子间的相互关系,2002-2008年7次洪峰时间段内最高温度的有效作用时间和12 h降水的有效影响时间等进行了分析与研究。结果表明:2002-2008年盛夏库玛拉克河流域高温融雪的主导作用比较明显,当流域内山区积雪量在5.5×108 m3以上、0 ℃层平均高度上升到4 500 m以上并且能维持4 d,库玛拉克河流域融雪型洪水的融雪量可达1.8×108~10.3×108 m3,夏季0 ℃层高度的变化可作为融雪型洪水预测的较好指标。2002-2008年这个历史时期实际积雪融化后产生的雪水当量9.88×108 t,全部融化后产生的最大可能雪水当量小于11.18×108 t;这个历史时期理论最大可能积雪融化后产生的雪水当量为17.55×108 t,全部融化后产生的雪水当量小于17.75×108 t。估算实际融化和理论融化的雪水当量,可为积雪融化后产生的最大洪水量估算提供数据支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号