首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Abstract— It was suggested that multilayered accretionary rims composed of ferrous olivine, andradite, wollastonite, salite‐hedenbergitic pyroxenes, nepheline, and Ni‐rich sulfides around Allende calcium‐aluminum‐rich inclusions (CAIs) are aggregates of gas‐solid condensates which reflect significant fluctuations in physico‐chemical conditions in the slowly cooling solar nebula and grain/gas separation processes. In order to test this model, we studied the mineralogy of accretionary rims around one type A CAI (E104) and one type B CAI (E48) from the reduced CV3 chondrite Efremovka, which is less altered than Allende. In contrast to the Allende accretionary rims, those in Efremovka consist of coarse‐grained (20–40 μm), anhedral forsterite (Fa1–8), Fe, Ni‐metal nodules, amoeboid olivine aggregates (AOAs) and fine‐grained CAIs composed of Al‐diopside, anorthite, and spinel, ± forsterite. Although the fine‐grained CAIs, AOAs and host CAIs are virtually unaltered, a hibonite‐spinel‐perovskite CAI in the E48 accretionary rim experienced extensive alteration, which resulted in the formation of Fe‐rich, Zn‐bearing spinel, and a Ca, Al, Si‐hydrous mineral. Forsterites in the accretionary rims typically show an aggregational nature and consist of small olivine grains with numerous pores and tiny inclusions of Al‐rich minerals. No evidence for the replacement of forsterite by enstatite was found; no chondrule fragments were identified in the accretionary rims. We infer that accretionary rims in Efremovka are more primitive than those in Allende and formed by aggregation of high‐temperature condensates around host CAIs in the CAI‐forming regions. The rimmed CAIs were removed from these regions prior to condensation of enstatite and alkalies. The absence of andradite, wollastonite, and hedenbergite from the Efremovka rims may indicate that these rims sampled different nebular regions than the Allende rims. Alternatively, the Ca, Fe‐rich silicates rimming Allende CAIs may have resulted from late‐stage metasomatic alteration, under oxidizing conditions, of original Efremovka‐like accretionary rims. The observed differences in O‐isotope composition between forsterite and Ca, Fe‐rich minerals in the Allende accretionary rims (Hiyagon, 1998) suggest that the oxidizing fluid had an 16O‐poor oxygen isotopic composition.  相似文献   

2.
The Allende matrix is dominated by micron‐sized lath‐shaped fayalitic olivine grains with a narrow compositional range (Fa40–50). Fayalitic olivines also occur as rims around forsterite grains in chondrules and isolated forsterite fragments in the matrix or as veins cross‐cutting the grains. Allende is a type 3 CV carbonaceous chondrite having experienced a moderate thermal metamorphism. There is therefore a strong chemical disequilibrium between the large forsterite grains and the fayalite‐rich fine‐grained matrix. Chemical gradients at interfaces are poorly developed and thus not accessible using conventional techniques. Here, we used analytical transmission electron microscopy to study the microstructure of the fayalite‐rich matrix grains and interfaces with forsterite fragments. We confirm that fayalitic grains in the matrix and fayalitic rims around forsterite fragments have the same properties, suggesting a common origin after the accretion of the parent body of Allende. Composition profiles at the rim/forsterite interfaces exhibit a plateau in the rim (typically Fa45), a compositional jump of 10 Fa% at the interface, and a concentration gradient in the forsterite grain. Whatever the studied forsterite grain or whatever the nature of the interface, the Fe‐Mg profiles in forsterite grains have the same length of about 1.5 μm. This strongly suggests that the composition profiles were formed by solid‐state diffusion during the thermal metamorphism episode. Time–temperature couples associated with the diffusion process during thermal metamorphism are deduced from profile modeling. Considering the uncertainties on the diffusion coefficient value, we found that the peak temperature in Allende is ranging from 425 to 505 °C.  相似文献   

3.
Abstract— The CV (Vigarano‐type) chondrites are a petrologically diverse group of meteorites that are divided into the reduced and the Bali‐like and Allende‐like oxidized subgroups largely based on secondary mineralogy (Weisberg et al., 1997; Krot et al., 1998b). Some chondrules and calcium‐aluminum‐rich inclusions (CAIs) in the reduced CV chondrite Vigarano show alteration features similar to those in Allende: metal is oxidized to magnetite; low‐Ca pyroxene, forsterite, and magnetite are rimmed and veined by ferrous olivine (Fs40–50); and plagioclase mesostases and melilite are replaced by nepheline and sodalite (Sylvester et al., 1993; Kimura and Ikeda, 1996, 1997, 1998). Our petrographic observations indicate that Vigarano also contains individual chondrules, chondrule fragments, and lithic clasts of the Bali‐like oxidized CV materials. The largest lithic clast (about 1 times 2 cm in size) is composed of opaque matrix, type‐I chondrules (400–2000 μm in apparent diameter) surrounded by coarse‐grained and fine‐grained rims, and rare CAIs. The matrix‐chondrule ratio is about 1.1. Opaque nodules in chondrules in the clast consist of Cr‐poor and Cr‐rich magnetite, Ni‐ and Co‐rich metal, Ni‐poor and Ni‐rich sulfide; low‐Ni metal nodules occur only inside chondrule phenocrysts. Chromium‐poor magnetite is preferentially replaced by fayalite. Chondrule mesostases are replaced by phyllosilicates; low‐Ca pyroxene and olivine phenocrysts appear to be unaltered. Matrix in the clast consists of very fine‐grained (<1 μm) ferrous olivine, anhedral fayalite grains (Fa80–100), rounded objects of porous Ca‐Fe‐rich pyroxenes (Fs10–50Wo50), Ni‐poor sulfide, Ni‐ and Co‐rich metal, and phyllosilicates; magnetite is rare. On the basis of the presence of the Bali‐like lithified chondritic clast—in addition to individual chondrules and CAIs of both Bali‐like and Allende‐like materials—in the reduced CV chondrite Vigarano, we infer that (1) all three types of materials were mixed during regolith gardening on the CV asteroidal body, and (2) the reduced and oxidized CV materials may have originated from a single, heterogeneously altered asteroid.  相似文献   

4.
Abstract— We present a detailed petrographic and electron microprobe study of metal grains and related opaque minerals in the chondrule interiors and rims of the Bishunpur (LL3.1) ordinary chondrite. There are distinct differences between metal grains that are completely encased in chondrule interiors and those that have some portion of their surface exposed outside of the chondrule boundary, even though the two types of metal grains can be separated by only a few microns. Metal grains in chondrule interiors exhibit minor alteration in the form of oxidized P‐, Cr‐, and Si‐bearing minerals. Metal grains at chondrule boundaries and in chondrule rims are extensively altered into troilite and fayalite. The results of this study suggest that many metal grains in Bishunpur reacted with a type‐I chondrule melt and incorporated significant amounts of P, Cr, and Si. As the system cooled, some metal oxidation occurred in the chondrule interior, producing metal‐associated phosphate, chromite, and silica. Metal that migrated to chondrule boundaries experienced extensive corrosion as a result of exposure to the external atmosphere present during chondrule formation. It appears that chondrule‐derived metal and its corrosion products were incorporated into the fine‐grained rims that surround many type‐I chondrules, contributing to their Fe‐rich compositions. We propose that these fine‐grained rims formed by a combination of corrosion of metal expelled from the chondrule interior and accretion of fine‐grained mineral fragments and microchondrules.  相似文献   

5.
The formation of the high‐pressure compositional equivalents of olivine and pyroxene has been well‐documented within and surrounding shock‐induced veins in chondritic meteorites, formed by crystallization from a liquid‐ or solid‐state phase transformation. Typically polycrystalline ringwoodite grains have a narrow range of compositions that overlap with those of their olivine precursors, whereas the formation of iron‐enriched ringwoodite has been documented from only a handful of meteorites. Here, we report backscattered electron images, quantitative wavelength‐dispersive spectrometry (WDS) analyses, qualitative WDS elemental X‐ray maps, and micro‐Raman spectra that reveal the presence of Fe‐rich ringwoodite (Fa44‐63) as fine‐grained (500 nm), polycrystalline rims on olivine (Fa24‐25) wall rock and as clasts engulfed by shock melt in a previously unstudied L5 chondrite, Dhofar 1970. Crystallization of majorite + magnesiowüstite in the vein interior and metastable mineral assemblages within 35 μm of the vein margin attest to rapid crystallization of a superheated shock melt (>2300 K) from 20─25 GPa to ambient pressure and temperature. The texture and composition of bright polycrystalline ringwoodite rims (Fa44‐63; MnO 0.01─0.08 wt%) surrounding dark polycrystalline olivine (Fa8‐14; MnO 0.56─0.65 wt%) implies a solid‐state transformation mechanism in which Fe was preferentially partitioned to ringwoodite. The spatial association between ringwoodite and shock melt suggests that the rapidly fluctuating thermal regimes experienced by chondritic minerals in contact with shock melt are necessary to both drive phase transformation but also to prevent back‐transformation.  相似文献   

6.
Abstract— –The presence of apparently unaltered, micron‐sized Fe,Ni metal grains, juxtaposed against hydrated fine‐grained rim materials in the CM2 chondrite Yamato (Y‐) 791198 has been cited as unequivocal evidence of preaccretionary alteration. We have examined the occurrence, composition, and textural characteristics of 60 Fe,Ni metal grains located in fine‐grained rims in Y‐791198 using scanning electron microscopy (SEM) and electron microprobe analysis. In addition, three metal grains, prepared by focused ion beam (FIB) sample preparation techniques were studied by transmission electron microscopy (TEM). The metal grains are heterogeneously distributed within the rims. Electron microprobe analyses show that all the metal grains are kamacite with minor element contents (P, Cr, and Co) that lie either within or close to the range for other CM2 metal grains. X‐ray maps obtained by electron microprobe show S, P, and/or Ca enrichments on the outermost parts of many of the metal grains. Z‐contrast STEM imaging of FIB‐prepared Fe,Ni metal grains show the presence of a small amount of a lower Z secondary phase on the surface of the grains and within indentations on the grain surfaces. Energy‐filtered TEM (EFTEM) compositional mapping shows that these pits are enriched in oxygen and depleted in Fe relative to the metal. These observations are consistent with pitting corrosion of the metal on the edges of the grains and we suggest may be the result of the formation of Fe(OH)2, a common oxidation product of Fe metal. The presence of such a layer could have inhibited further alteration of the metal grains. These findings are consistent with alteration by an alkaline fluid as suggested by Zolensky et al. (1989), but the location of this alteration remains unconstrained, because Y‐791198 was recovered from Antarctica and therefore may have experienced incipient terrestrial alteration. However, we infer that the extremely low degree of oxidation of the metal is inconsistent with weathering in Antarctica and that alteration in an extraterrestrial environment is more probable. Although the presence of unaltered or incipiently altered metal grains in these fine‐grained rims could be interpreted as evidence for preaccretionary alteration, we suggest an alternative model in which metal alteration was inhibited by alkaline fluids on the asteroidal parent body.  相似文献   

7.
Abstract— Two dark lithic fragments and matrix of the Krymka LL3.1 chondrite were mineralogically and chemically studied in detail. These objects are characterised by the following chemical and mineralogical characteristics, which distinguish them from the host chondrite Krymka: (1) bulk chemical analyses revealed low totals (systematically lower than 94 wt%) due to high porosity; (2) enrichment in FeO and depletion in S, MgO and SiO2 due to a high abundance of Fe‐rich silicates and low sulfide abundance; (3) fine‐grained, almost chondrule‐free texture with predominance of a porous, cryptocrystalline groundmass and fine grains; (4) occurrence of a small amount of once‐molten material (microchondrules) enclosed in fine‐grained materials; (5) occurrence of accretionary features, especially unique accretionary spherules; (6) high abundance of small calcium‐ aluminium‐rich inclusions (CAIs) in one of the fine‐grained fragments. It is suggested that the abundance of CAIs in this fragment is one of the highest ever found in an ordinary chondrite. Accretionary, fine‐grained spherules within one of the fragments bear fundamental information about the initial stages of accretion as well as on the evolution of the clast, its incorporation, and history within the bulk rock of Krymka. The differences in porosity, bulk composition, and mineralogy of cores and rims of the fine‐grained spherulitic objects allow us to speculate on the following processes: (1) Low velocity accretion of tiny silicate grains onto the surface of coarse metal or silicate grains in a dusty region of the nebula is the beginning of the formation of accretionary, porous (fluffy) silicate spherules. (2) Within a dusty environment with decreasing silicate/(metal + sulfide) ratio the porous spherules collected abundant metal and sulfide particles together with silicate dust, which formed an accretionary rim. Variations of the silicate/(sulfide + metal) ratio in the dusty nebular environment result in the formation of multi‐layered rims on the surface of the silicate‐rich spherules. (3) Soft accretion and lithification of rimmed, fluffy spherules, fine‐grained, silicate‐rich dust, metal‐sulfide particles, CAIs, silicate‐rich microchondrules, and coarse silicate grains and fragments followed. (4) After low‐temperature processing of the primary, accretionary rock collisional fragmentation occurred, the fragments were subsequently coated by fine‐grained material, which was highly oxidized and depleted in sulfides. (5) In a final stage this accretionary “dusty” rock was incorporated as a fragment within the Krymka host.  相似文献   

8.
Abstract– We report on mineralogy, petrography, and whole‐rock 26Al‐26Mg systematics of eight amoeboid olivine aggregates (AOAs) from the oxidized CV chondrite Allende. The AOAs consist of forsteritic olivine, opaque nodules, and variable amounts of Ca,Al‐rich inclusions (CAIs) of different types, and show evidence for alteration to varying degrees. Melilite and anorthite are replaced by nepheline, sodalite, and grossular; spinel is enriched in FeO; opaque nodules are replaced by Fe,Ni‐sulfides, ferroan olivine and Ca,Fe‐rich pyroxenes; forsteritic olivine is enriched in FeO and often overgrown by ferroan olivine. The AOAs are surrounded by fine‐grained, matrix‐like rims composed mainly of ferroan olivine and by a discontinuous layer of Ca,Fe‐rich silicates. These observations indicate that AOAs experienced in situ elemental open‐system iron‐alkali‐halogen metasomatic alteration during which Fe, Na, Cl, and Si were introduced, whereas Ca was removed from AOAs and used to form the Ca,Fe‐rich silicate rims around AOAs. The whole‐rock 26Al‐26Mg systematics of the Allende AOAs plot above the isochron of the whole‐rock Allende CAIs with a slope of (5.23 ± 0.13) × 10?5 reported by Jacobsen et al. (2008) . In contrast, whole‐rock 26Al‐26Mg isotope systematics of CAIs and AOAs from the reduced CV chondrite Efremovka define a single isochron with a slope of (5.25± 0.01) × 10?5 ( Larsen et al. 2011 ). We infer that the excesses in 26Mg* present in Allende AOAs are due to their late‐stage open‐system metasomatic alteration. Thus, the 26Al‐26Mg isotope systematics of Allende CAIs and AOAs are disturbed by parent body alteration processes, and may not be suitable for high‐precision chronology of the early solar system events and processes.  相似文献   

9.
Abstract— The Tagish Lake carbonaceous chondrite consists of heavily aqueously altered chondrules, CAIs, and larger mineral fragments in a fine‐grained, phyllosilicate‐dominated matrix. The vast majority of the coarse‐grained components in this meteorite are surrounded by continuous, 1.5 to >200 μm wide, fine‐grained, accretionary rims, which are well known from meteorites belonging to petrological types 2 and 3 and whose origin and modification is still a matter of debate. Texturally, the fine‐grained rims in Tagish Lake are very similar throughout the entire meteorite and independent of the nature of the enclosed object. They typically display sharp boundaries to the core object and more gradational contacts to the meteorite matrix. Compared to the matrix, the rims are much more finegrained and characterized by a significantly lower porosity. The rims consist of an unequilibrated assemblage of phyllosilicates, Fe,Ni sulfides, magnetites, low‐Ca pyroxenes, and forsteritic olivines, and are, except for a much lower abundance of carbonates, very similar to the Tagish Lake matrix. Electron microprobe and synchrotron X‐ray microprobe analyses show that matrix and rims are also very similar in composition and that the rims differ significantly from matrix and bulk meteorite only by being depleted in Ca. X‐ray elemental mapping and mineralogical observations indicate that Ca was lost during aqueous alteration from the enclosed objects and preferentially crystallized as carbonates in the porous matrix. The analyses also show that Ca is strongly fractionated from Al in the rims, whereas there is no fractionation of the Ti/Al‐ratios. Our data suggest that the fine‐grained rims in Tagish Lake initially formed by accretion in the solar nebula and were subsequently modified by in situ alteration on the parent body. This pervasive alteration removed any potential evidence for pre‐accretionary alteration but did not change the overall texture of the Tagish Lake meteorite.  相似文献   

10.
Abstract— Fine‐grained, spinel‐rich inclusions in the reduced CV chondrites Efremovka and Leoville consist of spinel, melilite, anorthite, Al‐diopside, and minor hibonite and perovskite; forsterite is very rare. Several CAIs are surrounded by forsterite‐rich accretionary rims. In contrast to heavily altered fine‐grained CAIs in the oxidized CV chondrite Allende, those in the reduced CVs experienced very little alteration (secondary nepheline and sodalite are rare). The Efremovka and Leoville fine‐grained CAIs are 16O‐enriched and, like their Allende counterparts, generally have volatility fractionated group II rare earth element patterns. Three out of 13 fine‐grained CAIs we studied are structurally uniform and consist of small concentrically zoned nodules having spinel ± hibonite ± perovskite cores surrounded by layers of melilite and Al‐diopside. Other fine‐grained CAIs show an overall structural zonation defined by modal mineralogy differences between the inclusion cores and mantles. The cores are melilite‐free and consist of tiny spinel ± hibonite ± perovskite grains surrounded by layers of anorthite and Al‐diopside. The mantles are calcium‐enriched, magnesium‐depleted and coarsergrained relative to the cores; they generally contain abundant melilite but have less spinel and anorthite than the cores. The bulk compositions of fine‐grained CAIs generally show significant fractionation of Al from Ca and Ti, with Ca and Ti being depleted relative to Al; they are similar to those of coarsegrained, type C igneous CAIs, and thus are reasonable candidate precursors for the latter. The finegrained CAIs originally formed as aggregates of spinel‐perovskite‐melilite ± hibonite gas‐solid condensates from a reservoir that was 16O‐enriched but depleted in the most refractory REEs. These aggregates later experienced low‐temperature gas‐solid nebular reactions with gaseous SiO and Mg to form Al‐diopside and ±anorthite. The zoned structures of many of the fine‐grained inclusions may be the result of subsequent reheating that resulted in the evaporative loss of SiO and Mg and the formation of melilite. The inferred multi‐stage formation history of fine‐grained inclusions in Efremovka and Leoville is consistent with a complex formation history of coarse‐grained CAIs in CV chondrites.  相似文献   

11.
Abstract– Metamorphosed clasts in the CV carbonaceous chondrite breccias Mokoia and Yamato‐86009 (Y‐86009) are coarse‐grained, granular, polymineralic rocks composed of Ca‐bearing (up to 0.6 wt% CaO) ferroan olivine (Fa34–39), ferroan Al‐diopside (Fs9–13Wo47–50, approximately 2–7 wt% Al2O3), plagioclase (An37–84Ab63–17), Cr‐spinel (Cr/(Cr + Al) = 0.19–0.45, Fe/(Fe + Mg) = 0.60–0.79), nepheline, pyrrhotite, pentlandite, Ca‐phosphate, and rare grains of Ni‐rich taenite; low‐Ca pyroxene is absent. Most clasts have triple junctions between silicate grains, indicative of prolonged thermal annealing. Based on the olivine‐spinel and pyroxene thermometry, the estimated metamorphic temperature recorded by the clasts is approximately 1100 K. Few clasts experienced thermal metamorphism to a lower degree and preserved chondrule‐like textures. The Mokoia and Y‐86009 clasts are mineralogically unique and different from metamorphosed chondrites of known groups (H, L, LL, R, EH, EL, CO, CK) and primitive achondrites (acapulcoites, brachinites, lodranites). On a three‐isotope oxygen diagram, compositions of olivine in the clasts plot along carbonaceous chondrite anhydrous mineral line and the Allende mass‐fractionation line, and overlap with those of the CV chondrule olivines; the Δ17O values of the clasts range from about ?4.3‰ to ?3.0‰. We suggest that the clasts represent fragments of the CV‐like material that experienced metasomatic alteration, high‐temperature metamorphism, and possibly melting in the interior of the CV parent asteroid. The lack of low‐Ca pyroxene in the clasts could be due to its replacement by ferroan olivine during iron‐alkali metasomatic alteration or by high‐Ca ferroan pyroxene during melting under oxidizing conditions.  相似文献   

12.
Based on the high abundance of fine‐grained material and its dark appearance, NWA 11024 was recognized as a CM chondrite, which is also confirmed by oxygen isotope measurements. But contrary to known CM chondrites, the typical phases indicating aqueous alteration (e.g., phyllosilicates, carbonates) are missing. Using multiple analytical techniques, this study reveals the differences and similarities to known CM chondrites and will discuss the possibility that NWA 11024 is the first type 3 CM chondrite. During the investigation, two texturally apparent tochilinite–cronstedtite intergrowths were identified within two thin sections. However, the former phyllosilicates were recrystallized to Fe‐rich olivine during a heating event without changing the textural appearance. A peak temperature of 400–600 °C is estimated, which is not high enough to destroy or recrystallize calcite grains. Thus, calcites were never constituents of the mineral paragenesis. Another remarkable feature of NWA 11024 is the occurrence of unknown clot‐like inclusions (UCLIs) within fine‐grained rims, which are unique in this clarity. Their density and S concentration are significantly higher than of the surrounding fine‐grained rim and UCLIs can be seen as primary objects that were not formed by secondary alteration processes inside the rims. Similarities to chondritic and cometary interplanetary dust particles suggest an ice‐rich first‐generation planetesimal for their origin. In the earliest evolution, NWA 11024 experienced the lowest degree of aqueous alteration of all known CM chondrites and subsequently, a heating event dehydrated the sample. We suggest to classify the meteorite NWA 11024 as the first type 3 CM chondrite similar to the classification of CV3 chondrites (like Allende) that could also have lost their matrix phyllosilicates by thermal dehydration.  相似文献   

13.
Abstract— Rumuruti (R) chondrites constitute a new, well‐established chondrite group different from the carbonaceous, ordinary, and enstatite chondrites. Many of these samples are gas‐rich regolith breccias showing the typical light‐dark structure and consist of abundant fragments of various parent‐body lithologies embedded in a fine‐grained olivine‐rich matrix. Unequilibrated type‐3 lithologies among these fragments have frequently been mentioned in various publications. In this study, detailed mineralogical data on seven primitive fragments from the R‐chondrites Dar al Gani 013 and Hughes 030 are presented. The fragments range from ~300 μ in size up to several millimeters. Generally, the main characteristics can be summarized as follows: (1) Unequilibrated type‐3 fragments have a well‐preserved chondritic texture with a chondrule‐to‐matrix ratio of ~1:1. Chondrules and chondrule fragments are embedded in a fine‐grained olivine‐rich matrix. Thus, the texture is quite similar to that of type‐3 carbonaceous chondrites. (2) In all cases, matrix olivines in type‐3 fragments have a significantly higher Fa content (44–57 mol%) than olivines in other (equilibrated) lithologies (38–40 mol% Fa). (3) Olivines and pyroxenes occurring within chondrules or as fragments are highly variable in composition (Fa0–65 and Fs0–33, respectively) and, generally, more magnesian than those found in equilibrated R chondrites. Agglomerated material of the R‐chondrite parent body (or bodies) was highly unequilibrated. It is suggested that the material that accreted to form the parent body consisted of chondrules and chondrule fragments, mainly having Mg‐rich silicate constituents, and Fe‐rich highly oxidized fine‐grained materials. The dominating phase of this fine‐grained material may have been Fa‐rich olivine from the beginning. The brecciated whole rocks, the R‐chondrite regolith breccias, were not significantly reheated subsequent to brecciation or during lithification, as indicated by negligible degree of equilibration between matrix components and Mg‐rich olivines and pyroxenes in primitive type‐3 fragments.  相似文献   

14.
Abstract– An anomalous Ca‐Al‐Fe‐rich spherical inclusion (CAFI) was found in the Vigarano CV3 chondrite. The CAFI has an igneous texture and contains large amounts of almost pure and coarse‐grained hercynite grains (approximately 56 vol%) as well as refractory phases such as grossite and perovskite. However, melilite and Mg‐spinel, which are common in ordinary Ca‐Al‐rich inclusions, are very rare (<1 vol%). Another unique characteristic of the CAFI is the presence in its core of dmitryivanovite (CaAl2O4), which was formed by shock metamorphism of a low‐pressure form of CaAl2O4 that was originally crystallized from a molten droplet. The fine‐grained hercynite and unidentified aluminous phase in the rim of the CAFI may have been produced from grossite during aqueous alteration in the Vigarano parent body.  相似文献   

15.
Abstract— MacAlpine Hills (MAC) 87300 and 88107 are two unusual carbonaceous chondrites that are intermediate in chemical composition between the CO3 and CM2 meteorite groups. Calcium‐aluminum‐rich inclusions (CAIs) from these two meteorites are mostly spinel‐pyroxene and melilite‐rich (Type A) varieties. Spinel‐pyroxene inclusions have either a banded or nodular texture, with aluminous diopside rimming Fe‐poor spinel. Melilite‐rich inclusions (Åk4–42) are irregular in shape and contain minor spinel (FeO <1 wt%), perovskite and, more rarely, hibonite. The CAIs in MAC 88107 and 87300 are similar in primary mineralogy to CAIs from low petrologic grade CO3 meteorites but differ in that they commonly contain phyllosilicates. The two meteorites also differ somewhat from each other: melilite is more abundant and slightly more Al‐rich in inclusions from MAC 88107 than in those from MAC 87300, and phyllosilicate is more abundant and Mg‐poor in MAC 87300 CAIs relative to that in MAC 88107. These differences suggest that the two meteorites are not paired. The CAI sizes and the abundance of melilite‐rich CAIs in MAC 88107 and 87300 suggests a genetic relationship to CO3 meteorites, but the CAIs in both have suffered a greater degree of aqueous alteration than is observed in CO meteorites. Aluminum‐rich melilite in CAIs from both meteorites generally contains excess 26Mg, presumably from the in situ decay of 26Al. Although well‐defined isochrons are not observed, the 26Mg excesses are consistent with initial 26Al/27Al ratios of approximately 3–5 times 10?5. An unusual hibonite‐bearing inclusion is isotopically heterogeneous, with two large and abutting hibonite crystals showing significant differences in their degrees of mass‐dependent fractionation of 25Mg/24Mg. The two crystals also show differences in their inferred initial 26Al/27Al ratios, 1 × 10?5 vs. ≤3 × 10?6.  相似文献   

16.
We investigated the inventory of presolar silicate, oxide, and silicon carbide (SiC) grains of fine‐grained chondrule rims in six Mighei‐type (CM) carbonaceous chondrites (Banten, Jbilet Winselwan, Maribo, Murchison, Murray and Yamato 791198), and the CM‐related carbonaceous chondrite Sutter's Mill. Sixteen O‐anomalous grains (nine silicates, six oxides) were detected, corresponding to a combined matrix‐normalized abundance of ~18 ppm, together with 21 presolar SiC grains (~42 ppm). Twelve of the O‐rich grains are enriched in 17O, and could originate from low‐mass asymptotic giant branch stars. One grain is enriched in 17O and significantly depleted in 18O, indicative of additional cool bottom processing or hot bottom burning in its stellar parent, and three grains are of likely core‐collapse supernova origin showing enhanced 18O/16O ratios relative to the solar system ratio. We find a presolar silicate/oxide ratio of 1.5, significantly lower than the ratios typically observed for chondritic meteorites. This may indicate a higher degree of aqueous alteration in the studied meteorites, or hint at a heterogeneous distribution of presolar silicates and oxides in the solar nebula. Nevertheless, the low O‐anomalous grain abundance is consistent with aqueous alteration occurring in the protosolar nebula and/or on the respective parent bodies. Six O‐rich presolar grains were studied by Auger Electron Spectroscopy, revealing two Fe‐rich silicates, one forsterite‐like Mg‐rich silicate, two Al‐oxides with spinel‐like compositions, and one Fe‐(Mg‐)oxide. Scanning electron and transmission electron microscopic investigation of a relatively large silicate grain (490 nm × 735 nm) revealed that it was crystalline åkermanite (Ca2Mg[Si2O7]) or a an åkermanite‐diopside (MgCaSi2O6) intergrowth.  相似文献   

17.
CV (Vigarano type) carbonaceous chondrites, comprising Allende‐like (CVoxA) and Bali‐like (CVoxB) oxidized and reduced (CVred) subgroups, experienced differing degrees of fluid‐assisted thermal and shock metamorphism. The abundance and speciation of secondary minerals produced during asteroidal alteration differ among the subgroups: (1) ferroan olivine and diopside–hedenbergite solid solution pyroxenes are common in all CVs; (2) nepheline and sodalite are abundant in CVoxA, rare in CVred, and absent in CVoxB; (3) phyllosilicates and nearly pure fayalite are common in CVoxB, rare in CVred, and virtually absent in CVoxA; (4) andradite, magnetite, and Fe‐Ni‐sulfides are common in oxidized CVs, but rare in reduced CVs; the latter contain kirschsteinite instead. Thus, a previously unrecognized correlation exists between meteorite bulk permeabilities and porosities with the speciation of the Ca‐, Fe‐rich silicates (pyroxenes, andradite, kirschsteinite) among the CVox and CVred meteorites. The extent of secondary mineralization was controlled by the distribution of water ices, permeability, and porosity, which in turn were controlled by impacts on the asteroidal parent body. More intense shock metamorphism in the region where the reduced CVs originated decreased their porosity and permeability while simultaneously expelling intergranular ices and fluids. The mineralogy, petrography, and bulk chemical compositions of both the reduced and oxidized CV chondrites indicate that mobile elements were redistributed between Ca,Al‐rich inclusions, dark inclusions, chondrules, and matrices only locally; there is no evidence for large‐scale (>several cm) fluid transport. Published 53Mn‐53Cr ages of secondary fayalite in CV, CO, and unequilibrated ordinary chondrites, and carbonates in CI, CM, and CR chondrites are consistent with aqueous alteration initiated by heating of water ice‐bearing asteroids by decay of 26Al, not shock metamorphism.  相似文献   

18.
The Vicência meteorite, a stone of 1.547 kg, fell on September 21, 2013, at the village Borracha, near the city of Vicência, Pernambuco, Brazil. It was recovered immediately after the fall, and our consortium study showed it to be an unshocked (S1) LL3.2 ordinary chondrite. The LL group classification is based on the bulk density (3.13 g cm?3); the chondrule mean apparent diameter (0.9 mm); the bulk oxygen isotopic composition (δ17O = 3.768 ± 0.042‰, δ18O = 5.359 ± 0.042‰, Δ17O = 0.981 ± 0.020‰); the content of metallic Fe,Ni (1.8 vol%); the Co content of kamacite (1.73 wt%); the bulk contents of the siderophile elements Ir and Co versus Au; and the ratios of metallic Fe0/total iron (0.105) versus total Fe/Mg (1.164), and of Ni/Mg (0.057) versus total Fe/Mg. The petrologic type 3.2 classification is indicated by the beautifully developed chondritic texture, the standard deviation (~0.09) versus mean Cr2O3 content (~0.14 wt%) of ferroan olivine, the TL sensitivity and the peak temperature and peak width at half maximum, the cathodoluminescence properties of chondrules, the content of trapped 132Xetr (0.317 × 10?8cm3STP g?1), and the Raman spectra for organic material in the matrix. The cosmic ray exposure age is ~72 Ma, which is at the upper end of the age distribution of LL group chondrites. The meteorite is unusual in that it contains relatively large, up to nearly 100 μm in size, secondary fayalite grains, defined as olivine with Fa>75, large enough to allow in situ measurement of oxygen and Mn‐Cr isotope systematics with SIMS. Its oxygen isotopes plot along a mass‐dependent fractionation line with a slope of ~0.5 and Δ17O of 4.0 ± 0.3‰, and are similar to those of secondary fayalite and magnetite in the unequilibrated chondrites EET 90161, MET 96503, and Ngawi. These data suggest that secondary fayalite in Vicência was in equilibrium with a fluid with a Δ17O of ~4‰, consistent with the composition of the fluid in equilibrium with secondary magnetite and fayalite in other unequilibrated ordinary chondrites. Secondary fayalite and the chondrule olivine phenocrysts in Vicência are not in isotopic equilibrium, consistent with low‐temperature formation of fayalite during aqueous alteration on the LL parent body. That alteration, as dated by the 53Mn‐53Cr chronology age of secondary fayalite, took place 4.0 ? 1.1 + 1.4 Ma after formation of CV CAIs when anchored to the quenched angrite D'Orbigny.  相似文献   

19.
Abstract— Petrographic and mineralogic studies of amoeboid olivine inclusions (AOIs) in CO3 carbonaceous chondrites reveal that they are sensitive indicators of parent‐body aqueous and thermal alteration. As the petrologic subtype increases from 3.0 to 3.8, forsteritic olivine (Fa0–1) is systematically converted into ferroan olivine (Fa60–75). We infer that the Fe, Si and O entered the assemblage along grain boundaries, forming ferroan olivine that filled fractures and voids. As temperatures increased, Fe+2 from the new olivine exchanged with Mg+2 from the original AOI to form diffusive haloes around low‐FeO cores. Cations of Mn+2, Ca+2 and Cr+3 were also mobilized. The systematic changes in AOI textures and olivine compositional distributions can be used to refine the classification of CO3 chondrites into subtypes. In subtype 3.0, olivine occurs as small forsterite grains (Fa0–1), free of ferroan olivine. In petrologic subtype 3.2, narrow veins of FeO‐rich olivine have formed at forsterite grain boundaries. With increasing alteration, these veins thicken to form zones of ferroan olivine at the outside AOI margin and within the AOI interior. By subtype 3.7, there is a fairly broad olivine compositional distribution in the range Fa63–70, and by subtype 3.8, no forsterite remains and the high‐Fa peak has narrowed, Fa64–67. Even at this stage, there is incomplete equilibration in the chondrite as a whole (e.g., data for coarse olivine grains in Isna (CO3.8) chondrules and lithic clasts show a peak at Fa39). We infer that the mineral changes in AOI identified in the low petrologic types required aqueous or hydrothermal fluids whereas those in subtypes ?3.3 largely reflect diffusive exchange within and between mineral grains without the aid of fluids.  相似文献   

20.
A detailed mineralogical and chemical study of Almahata Sitta fine‐grained ureilites (MS‐20, MS‐165, MS‐168) was performed to shed light on the origin of these lithologies and their sulfide and metal. The Almahata Sitta fine‐grained ureilites (silicates <30 μm grain size) show textural and chemical evidence for severe impact smelting as described for other fine‐grained ureilites. Highly reduced areas in Almahata Sitta fine‐grained ureilites show large (up to ~1 mm) Si‐bearing metal grains (up to ~4.5 wt% Si) and niningerite [Mg>0.5,(Mn,Fe)<0.5S] with some similarities to the mineralogy of enstatite (E) chondrites. Overall, metal grains show a large compositional variability in Ni and Si concentrations. Niningerite grains probably formed as a by‐product of smelting via sulfidation. The large Si‐Ni variation in fine‐grained ureilite metal could be the result of variable degrees of reduction during impact smelting, inherited from coarse‐grained ureilite precursors, or a combination of both. Large Si‐bearing metal grains probably formed via coalescence of existing and newly formed metal during impact smelting. Bulk and in situ siderophile trace element abundances indicate three distinct populations of (1) metal crystallized from partial melts in MS‐20, (2) metal resembling bulk chondritic compositions in MS‐165, and (3) residual metal in MS‐168. Almahata Sitta fine‐grained ureilites developed their distinctive mineralogy due to severe reduction during smelting. Despite the presence of E chondrite and ureilite stones in the Almahata Sitta fall, a mixing relation of E chondrites or their constituents and ureilite material in Almahata Sitta can be ruled out based on isotopic, textural, and mineral‐chemical reasons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号